organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-3-(2-Chloro­phen­yl)-1-(2,4-di­chloro­phen­yl)prop-2-en-1-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and cDepartment of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 6 May 2008; accepted 12 May 2008; online 17 May 2008)

In the title chalcone derivative, C15H9Cl3O, the dihedral angle between the 2-chloro­phenyl and 2,4-dichloro­phenyl rings is 41.79 (14)°. Weak C—H⋯O and C—H⋯Cl intra­molecular inter­actions involving the enone unit generate S(5) ring motifs. In the crystal structure, the mol­ecules are arranged in a head-to-tail manner along the a axis. These chains are stacked along the b axis.

Related literature

For related literature on hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For related structures, see, for example: Fun, Chantrapromma et al. (2007[Fun, H.-K., Chantrapromma, S., Patil, P. S. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o2724-o2725.]); Fun, Patil et al. (2007[Fun, H.-K., Patil, P. S., Dharmaprakash, S. M. & Chantrapromma, S. (2007). Acta Cryst. E63, o561-o562.]); Patil, Chantrapromma et al. (2007[Patil, P. S., Chantrapromma, S., Fun, H.-K. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o1738-o1740.]; Patil, Fun et al. (2007[Patil, P. S., Fun, H.-K., Chantrapromma, S. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o2497-o2498.]). For background to the applications of substituted chalcones, see, for example: Agrinskaya et al. (1999[Agrinskaya, N. V., Lukoshkin, V. A., Kudryavtsev, V. V., Nosova, G. I., Solovskaya, N. A. & Yakimanski, A. V. (1999). Phys. Solid State, 41, 1914-1917.]); Gu et al. (2008[Gu, B., Ji, W., Patil, P. S., Dharmaprakash, S. M. & Wang, H. T. (2008). Appl. Phys. Lett. 92, 091118-091120.]); Patil, Dharmaprakash et al. (2007[Patil, P. S., Dharmaprakash, S. M., Ramakrishna, K., Fun, H.-K., Sai Santosh Kumar, R. & Rao, D. N. (2007). J. Cryst. Growth, 303, 520-524.]).

[Scheme 1]

Experimental

Crystal data
  • C15H9Cl3O

  • Mr = 311.57

  • Monoclinic, C 2/c

  • a = 50.177 (2) Å

  • b = 3.8082 (2) Å

  • c = 13.7297 (7) Å

  • β = 95.307 (3)°

  • V = 2612.3 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.69 mm−1

  • T = 100.0 (1) K

  • 0.39 × 0.20 × 0.14 mm

Data collection
  • Bruker SMART APEX2 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.775, Tmax = 0.910

  • 13605 measured reflections

  • 2976 independent reflections

  • 2374 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.189

  • S = 1.13

  • 2976 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9A⋯Cl3 0.93 2.66 3.042 (5) 106
C9—H9A⋯O1 0.93 2.53 2.841 (6) 100

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Nonlinear optical properties of chalcone derivatives have been widely investigated recently (Agrinskaya et al., 1999; Fun, Chantrapromma et al., 2007; Fun, Patil et al., 2007; Patil, Dharmaprakash et al., 2007; Patil, Chantrapromma et al., 2007; Patil, Fun et al., 2007). These molecules show potential in optical-limiting applications due to their large excited-state absorption cross sections (Gu et al., 2008). In view of the importance of chalcones and the continuation of our non-linear optic materials research the title chalcone derivative, (I), was synthesized and its crystal structure is reported here.

In the structure of the title chalcone derivative (Fig. 1), the enone unit O1/C6–C8, the 2-chlorophenyl and 2,4-dichlorophenyl rings are individually planar, with the maximum deviations of 0.016 (6), -0.017 (6) and 0.022 (5) Å for atom C7, C11 and C2, respectively. The molecule is slightly twisted about the C6–C7 bond as indicated by the torsion angles C1–C6–C7–C8 = 132.8 (5)°, C6–C7–C8–C9 = 171.6 (5)°, C7–C8–C9–C10 = -179.7 (5)° and C8–C9–C10–C15 = -160.7 (5)°. The dihedral angles between the 2-chlorophenyl and 2,4-dichlorophenyl rings is 41.79 (14)°. The least-squares plane through the enone unit makes dihedral angles of 10.3 (3)° and 46.9 (2)° with the 2-chlorophenyl and 2,4-dichlorophenyl rings, respectively. The orientation of the prop-2-en-1-one unit can be indicated by the torsion angle O1–C7–C8–C9 = -11.5 (8)°. Bond lengths and angles in (I) are in normal ranges (Allen et al., 1987) and comparable to those in related structures (Fun, Chantrapromma et al., 2007; Fun, Patil et al., 2007; Patil, Dharmaprakash et al., 2007; Patil, Chantrapromma et al., 2007; Patil, Fun et al., 2007).

In the molecular structure, both weak C9—H9A···O1 and C9—H9A···Cl1 intramolecular interactions (Table 1) generate S(5) ring motifs (Bernstein et al., 1995). In the crystal structure (Fig. 2), the molecules are arranged in a head-to-tail manner along the a-axis. These chains are stacked along the b axis.

Related literature top

For related literature on hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For related structures, see, for example: Fun, Chantrapromma et al. (2007); Fun, Patil et al. (2007); Patil, Chantrapromma et al. (2007; Patil, Fun et al. (2007). For background to the applications of substituted chalcones, see, for example: Agrinskaya et al. (1999); Gu et al. (2008); Patil, Dharmaprakash et al. (2007).

Experimental top

The title compound was synthesized by the condensation of 2-chlorobenzaldehyde (0.01 mol) with 2,4-dichloroacetophenones (0.01 mol) in methanol (60 ml) in the presence of a catalytic amount of sodium hydroxide solution (5 ml, 30%). After stirring (4 h), the contents of the flask were poured into ice-cold water (500 ml) and left to stand for 6 h. The resulting crude solid was filtered and dried. Colorless block-shaped single crystals of the title compound suitable for X-ray structure determination were recrystallized from acetone by slow evaporation of the solvent at room temperature.

Refinement top

All H atoms were placed in calculated positions (C—H = 0.93 Å) and treated as riding, with Uiso(H) = 1.2Ueq(C). The highest residual electron density peak is located at 1.90 Å from C13 and the deepest hole is located at 0.93 Å from Cl2.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing 50% probability displacement ellipsoids and the atomic numbering. Weak intramolecular C—H···O and C—H···Cl interactions are drawn as dashed lines.
[Figure 2] Fig. 2. The crystal packing of (I), viewed along the c axis showing head-to-tail arrangement along the a axis and stacking of the molecules along the b axis.
(E)-3-(2-Chlorophenyl)-1-(2,4-dichlorophenyl)prop-2-en-1-one top
Crystal data top
C15H9Cl3OF(000) = 1264
Mr = 311.57Dx = 1.584 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2976 reflections
a = 50.177 (2) Åθ = 0.8–27.5°
b = 3.8082 (2) ŵ = 0.69 mm1
c = 13.7297 (7) ÅT = 100 K
β = 95.307 (3)°Block, colorless
V = 2612.3 (2) Å30.39 × 0.20 × 0.14 mm
Z = 8
Data collection top
Bruker SMART APEX2 CCD area-detector
diffractometer
2976 independent reflections
Radiation source: fine-focus sealed tube2374 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
Detector resolution: 8.33 pixels mm-1θmax = 27.5°, θmin = 0.8°
ω scansh = 6464
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 44
Tmin = 0.775, Tmax = 0.911l = 1717
13605 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.189H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0626P)2 + 28.0963P]
where P = (Fo2 + 2Fc2)/3
2976 reflections(Δ/σ)max = 0.001
172 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.58 e Å3
Crystal data top
C15H9Cl3OV = 2612.3 (2) Å3
Mr = 311.57Z = 8
Monoclinic, C2/cMo Kα radiation
a = 50.177 (2) ŵ = 0.69 mm1
b = 3.8082 (2) ÅT = 100 K
c = 13.7297 (7) Å0.39 × 0.20 × 0.14 mm
β = 95.307 (3)°
Data collection top
Bruker SMART APEX2 CCD area-detector
diffractometer
2976 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2374 reflections with I > 2σ(I)
Tmin = 0.775, Tmax = 0.911Rint = 0.054
13605 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.189H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0626P)2 + 28.0963P]
where P = (Fo2 + 2Fc2)/3
2976 reflectionsΔρmax = 0.52 e Å3
172 parametersΔρmin = 0.58 e Å3
Special details top

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.24912 (2)0.3582 (3)0.13634 (9)0.0253 (3)
Cl20.32818 (2)0.9466 (3)0.04254 (9)0.0272 (3)
Cl30.46557 (2)0.9477 (4)0.12885 (9)0.0320 (3)
O10.37362 (7)0.9696 (11)0.2294 (3)0.0353 (9)
C10.32520 (9)0.5622 (13)0.2282 (4)0.0240 (10)
H1A0.33640.53660.28550.029*
C20.29887 (9)0.4535 (13)0.2272 (4)0.0247 (10)
H2A0.29240.35620.28250.030*
C30.28239 (8)0.4941 (13)0.1413 (4)0.0232 (10)
C40.29124 (9)0.6481 (12)0.0592 (3)0.0225 (10)
H4A0.27970.68250.00300.027*
C50.31790 (9)0.7503 (13)0.0626 (4)0.0237 (10)
C60.33539 (9)0.7072 (13)0.1473 (3)0.0226 (10)
C70.36458 (9)0.8125 (15)0.1559 (4)0.0292 (11)
C80.38100 (10)0.7060 (15)0.0778 (4)0.0312 (11)
H8A0.37400.55180.02950.037*
C90.40609 (9)0.8285 (15)0.0751 (4)0.0310 (11)
H9A0.41260.98140.12450.037*
C100.42374 (10)0.7390 (14)0.0006 (4)0.0298 (11)
C110.41423 (10)0.6012 (15)0.0914 (4)0.0346 (12)
H11A0.39600.56030.10460.042*
C120.43090 (11)0.5256 (15)0.1619 (4)0.0357 (12)
H12A0.42390.43930.22240.043*
C130.45816 (11)0.5780 (15)0.1430 (4)0.0357 (12)
H13A0.46950.52520.19070.043*
C140.46862 (9)0.7084 (14)0.0535 (4)0.0298 (11)
H14A0.48700.74330.04060.036*
C150.45143 (9)0.7860 (13)0.0163 (4)0.0263 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0192 (5)0.0235 (6)0.0333 (6)0.0020 (4)0.0024 (4)0.0004 (5)
Cl20.0291 (6)0.0242 (6)0.0288 (6)0.0030 (5)0.0058 (4)0.0011 (5)
Cl30.0250 (6)0.0343 (7)0.0363 (7)0.0035 (5)0.0016 (5)0.0009 (6)
O10.0274 (17)0.042 (2)0.036 (2)0.0053 (16)0.0011 (14)0.0058 (18)
C10.024 (2)0.021 (2)0.027 (2)0.0057 (18)0.0006 (17)0.004 (2)
C20.024 (2)0.019 (2)0.032 (3)0.0036 (18)0.0049 (18)0.000 (2)
C30.0156 (19)0.024 (2)0.031 (2)0.0004 (17)0.0051 (17)0.004 (2)
C40.024 (2)0.017 (2)0.025 (2)0.0020 (17)0.0019 (17)0.0009 (19)
C50.025 (2)0.018 (2)0.028 (2)0.0008 (18)0.0052 (18)0.000 (2)
C60.021 (2)0.021 (2)0.026 (2)0.0021 (18)0.0032 (17)0.000 (2)
C70.026 (2)0.032 (3)0.029 (3)0.001 (2)0.0028 (19)0.002 (2)
C80.026 (2)0.032 (3)0.035 (3)0.001 (2)0.001 (2)0.000 (2)
C90.027 (2)0.033 (3)0.033 (3)0.001 (2)0.002 (2)0.002 (2)
C100.027 (2)0.028 (3)0.035 (3)0.001 (2)0.004 (2)0.008 (2)
C110.032 (3)0.031 (3)0.041 (3)0.005 (2)0.000 (2)0.006 (2)
C120.042 (3)0.026 (3)0.038 (3)0.000 (2)0.003 (2)0.001 (2)
C130.034 (3)0.031 (3)0.043 (3)0.006 (2)0.007 (2)0.002 (3)
C140.022 (2)0.028 (3)0.040 (3)0.002 (2)0.0045 (19)0.002 (2)
C150.025 (2)0.019 (2)0.035 (3)0.0010 (19)0.0021 (19)0.006 (2)
Geometric parameters (Å, º) top
Cl1—C31.743 (4)C8—C91.347 (7)
Cl2—C51.746 (5)C8—H8A0.9300
Cl3—C151.751 (5)C9—C101.454 (7)
O1—C71.224 (6)C9—H9A0.9300
C1—C61.380 (7)C10—C151.398 (6)
C1—C21.383 (6)C10—C111.410 (8)
C1—H1A0.9300C11—C121.367 (8)
C2—C31.385 (7)C11—H11A0.9300
C2—H2A0.9300C12—C131.383 (7)
C3—C41.380 (7)C12—H12A0.9300
C4—C51.390 (6)C13—C141.382 (8)
C4—H4A0.9300C13—H13A0.9300
C5—C61.400 (6)C14—C151.380 (7)
C6—C71.512 (6)C14—H14A0.9300
C7—C81.468 (7)
C6—C1—C2122.4 (4)C7—C8—H8A119.6
C6—C1—H1A118.8C8—C9—C10124.7 (5)
C2—C1—H1A118.8C8—C9—H9A117.6
C1—C2—C3118.0 (4)C10—C9—H9A117.6
C1—C2—H2A121.0C15—C10—C11115.8 (5)
C3—C2—H2A121.0C15—C10—C9121.5 (5)
C4—C3—C2122.1 (4)C11—C10—C9122.7 (5)
C4—C3—Cl1118.3 (4)C12—C11—C10122.3 (5)
C2—C3—Cl1119.6 (4)C12—C11—H11A118.8
C3—C4—C5118.2 (4)C10—C11—H11A118.8
C3—C4—H4A120.9C11—C12—C13119.7 (5)
C5—C4—H4A120.9C11—C12—H12A120.2
C4—C5—C6121.5 (4)C13—C12—H12A120.2
C4—C5—Cl2116.7 (4)C14—C13—C12120.5 (5)
C6—C5—Cl2121.8 (3)C14—C13—H13A119.8
C1—C6—C5117.7 (4)C12—C13—H13A119.8
C1—C6—C7118.2 (4)C15—C14—C13118.9 (5)
C5—C6—C7124.1 (4)C15—C14—H14A120.5
O1—C7—C8123.2 (4)C13—C14—H14A120.5
O1—C7—C6118.4 (4)C14—C15—C10122.8 (5)
C8—C7—C6118.4 (4)C14—C15—Cl3117.4 (4)
C9—C8—C7120.9 (5)C10—C15—Cl3119.8 (4)
C9—C8—H8A119.6
C6—C1—C2—C30.1 (7)O1—C7—C8—C911.5 (8)
C1—C2—C3—C42.1 (7)C6—C7—C8—C9171.6 (5)
C1—C2—C3—Cl1179.6 (4)C7—C8—C9—C10179.7 (5)
C2—C3—C4—C52.9 (7)C8—C9—C10—C15160.7 (5)
Cl1—C3—C4—C5178.8 (4)C8—C9—C10—C1119.5 (9)
C3—C4—C5—C61.4 (7)C15—C10—C11—C121.5 (8)
C3—C4—C5—Cl2179.6 (4)C9—C10—C11—C12178.4 (5)
C2—C1—C6—C51.4 (7)C10—C11—C12—C131.3 (9)
C2—C1—C6—C7179.1 (5)C11—C12—C13—C140.4 (9)
C4—C5—C6—C10.6 (7)C12—C13—C14—C150.1 (8)
Cl2—C5—C6—C1177.4 (4)C13—C14—C15—C100.1 (8)
C4—C5—C6—C7180.0 (5)C13—C14—C15—Cl3179.6 (4)
Cl2—C5—C6—C72.0 (7)C11—C10—C15—C140.9 (8)
C1—C6—C7—O144.2 (7)C9—C10—C15—C14179.0 (5)
C5—C6—C7—O1135.2 (5)C11—C10—C15—Cl3178.8 (4)
C1—C6—C7—C8132.8 (5)C9—C10—C15—Cl31.3 (7)
C5—C6—C7—C847.8 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···Cl30.932.663.042 (5)106
C9—H9A···O10.932.532.841 (6)100

Experimental details

Crystal data
Chemical formulaC15H9Cl3O
Mr311.57
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)50.177 (2), 3.8082 (2), 13.7297 (7)
β (°) 95.307 (3)
V3)2612.3 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.69
Crystal size (mm)0.39 × 0.20 × 0.14
Data collection
DiffractometerBruker SMART APEX2 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.775, 0.911
No. of measured, independent and
observed [I > 2σ(I)] reflections
13605, 2976, 2374
Rint0.054
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.189, 1.13
No. of reflections2976
No. of parameters172
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0626P)2 + 28.0963P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.52, 0.58

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···Cl30.932.663.042 (5)106
C9—H9A···O10.932.532.841 (6)100
 

Footnotes

Additional correspondence author, e-mail: suchada.c@psu.ac.th.

Acknowledgements

This work is supported by the Department of Science and Technology (DST), Government of India, under grant No. SR/S2/LOP-17/2006. The authors also thank Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationAgrinskaya, N. V., Lukoshkin, V. A., Kudryavtsev, V. V., Nosova, G. I., Solovskaya, N. A. & Yakimanski, A. V. (1999). Phys. Solid State, 41, 1914–1917.  Web of Science CrossRef CAS Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Chantrapromma, S., Patil, P. S. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o2724–o2725.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Patil, P. S., Dharmaprakash, S. M. & Chantrapromma, S. (2007). Acta Cryst. E63, o561–o562.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGu, B., Ji, W., Patil, P. S., Dharmaprakash, S. M. & Wang, H. T. (2008). Appl. Phys. Lett. 92, 091118–091120.  Web of Science CrossRef Google Scholar
First citationPatil, P. S., Chantrapromma, S., Fun, H.-K. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o1738–o1740.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPatil, P. S., Fun, H.-K., Chantrapromma, S. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o2497–o2498.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPatil, P. S., Dharmaprakash, S. M., Ramakrishna, K., Fun, H.-K., Sai Santosh Kumar, R. & Rao, D. N. (2007). J. Cryst. Growth, 303, 520–524.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds