metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 6| June 2008| Pages m817-m818

μ-Aqua-bis­­(μ-4-methyl­benzoato-κ2O:O′)bis­­[(4-methyl­benzoato-κO)(1,10-phenanthroline-κ2N,N′)iron(II)]

aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: fengsu60@yahoo.cn

(Received 11 April 2008; accepted 12 May 2008; online 17 May 2008)

In the title binuclear complex, [Fe2(C8H7O2)4(C12H8N2)2(H2O)], the FeII ion is six-coordinated by three carboxylate O atoms from three 4-methyl­benzoate ligands, two N atoms from two 1,10-phenanthroline ligands and one bridging aqua ligand in a distorted octa­hedral geometry. The coordinated water mol­ecule acting as the bridging ligand is located on a twofold axes and the complex mol­ecule displays C2 mol­ecular symmetry. The Fe⋯Fe separation in the binuclear complex is 3.490 (3) Å. The crystal structure is stabilized by hydrogen bonding and ππ stacking inter­actions [the centroid–centroid distance between adjacent 1,10-phenanthroline ring systems is 3.653 (2) Å, and that between the 1,10-phenanthroline ring system and the phenyl ring of the 4-methyl­benzoate unit of a neighbouring complex is 3.622 (3) Å].

Related literature

For related literature, see: Song et al. (2007[Song, W.-D., Gu, C.-S., Hao, X.-M. & Liu, J.-W. (2007). Acta Cryst. E63, m1023-m1024.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe2(C8H7O2)4(C12H8N2)2(H2O)]

  • Mr = 1030.67

  • Monoclinic, C 2/c

  • a = 23.1987 (6) Å

  • b = 15.7222 (4) Å

  • c = 15.6464 (4) Å

  • β = 121.017 (1)°

  • V = 4890.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.66 mm−1

  • T = 296 (2) K

  • 0.20 × 0.19 × 0.16 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.880, Tmax = 0.902

  • 31900 measured reflections

  • 5066 independent reflections

  • 3725 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.133

  • S = 1.05

  • 5066 reflections

  • 326 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Selected geometric parameters (Å, °)

Fe1—O3 2.1365 (18)
Fe1—O2i 2.1369 (18)
Fe1—O1 2.1657 (18)
Fe1—N1 2.275 (2)
Fe1—O1W 2.2970 (17)
Fe1—N2 2.298 (2)
O3—Fe1—O2i 93.91 (7)
O3—Fe1—O1 172.16 (8)
O2i—Fe1—O1 89.79 (7)
O3—Fe1—N1 100.73 (8)
O2i—Fe1—N1 86.60 (8)
O1—Fe1—N1 86.37 (7)
O3—Fe1—O1W 88.54 (6)
O2i—Fe1—O1W 108.77 (7)
O1—Fe1—O1W 83.73 (6)
N1—Fe1—O1W 161.62 (6)
O3—Fe1—N2 89.48 (8)
O2i—Fe1—N2 159.38 (8)
O1—Fe1—N2 89.47 (7)
N1—Fe1—N2 72.79 (8)
O1W—Fe1—N2 91.64 (7)
Symmetry code: (i) [-x, y, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯O4i 0.938 (8) 1.80 (2) 2.578 (2) 138 (2)
Symmetry code: (i) [-x, y, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SMART. Bruker AXS Inc, Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SMART. Bruker AXS Inc, Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the structural investigation of 4-methylbenzoate complexes, it has been found that the 4-methylbenzoic acid functions as a multidentate ligand [Song et al. (2007)] with versatile binding and coordination modes. In this report, an iron(II) complex, (I) (Fig. 1) was obtained by the reaction of 4-methylbenzoic acid, 1,10-phenanthroline and ferrous chloride in alkaline aqueous solution.

A half of the binuclear complex is an asymmetric unit where FeII ion is in the distorted octahedral geometry with the six coordinating atoms: three carboxyl O atoms from two µ2-bridging 4-methylbenzoate ligands and one 4-methylbenzoate ligand, two N atoms from one chelating 1,10-phenanthroline ligands, and one µ2-bridging aqua ligand. The Fe···Fe separation is 3.490 (3) Å. The crystal packing is via O—H···O hydrogen bond (Table 1) and via two π-π stacking interactions (Fig. 2). The centroid to centroid distance between adjacent 1,10-phenanthroline rings (x, –y,-1/2 + z) is 3.653 (2) Å, whereas the centroid to centroid distance between 1,10-phenanthroline ring and phenyl ring of 4-methylbenzoate of neighbouring complexes (1/2 - x, 1/2 - y, 1 - z) is 3.622 (3) Å.

Related literature top

For related literature, see: Song et al. (2007).

Experimental top

A mixture of ferrous chloride (1 mmol), 4-methylbenzate (1 mmol), 1,10-phenanthroline (1 mmol), NaOH (1.5 mmol) and H2O (12 mL) was placed in a 23 mL Teflon reactor, which was heated to 433 K for three days and then cooled to room temperature at a rate of 10 K h-1. The crystals obtained were washed with water and dryed in air.

Refinement top

Carbon-bound H atoms were placed at calculated positions and were treated as riding on the parent C atoms with C—H = 0.93–0.97 Å, and with Uiso(H) = 1.2 Ueq(C). Water H atoms were tentatively located in difference Fourier maps and were refined with distance restraints of O–H = 0.82 Å, and with Uiso(H) = 1.5 Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I) showing the atomic numbering scheme. Non-H atoms are shown with the 30% probability displacement ellipsoids. Unlabelled atoms are related to the labelled atoms by the symmetry code (-x, y, 1/2 - z).
[Figure 2] Fig. 2. A packing view of the title compound.
µ-Aqua-bis(µ-4-methylbenzoato-κ2O:O')bis[(4-methylbenzoato- κO)(1,10-phenanthroline-κ2N,N')iron(II)] top
Crystal data top
[Fe2(C8H7O2)4(C12H8N2)2(H2O)]F(000) = 2136
Mr = 1030.67Dx = 1.400 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5300 reflections
a = 23.1987 (6) Åθ = 1.3–28.0°
b = 15.7222 (4) ŵ = 0.66 mm1
c = 15.6464 (4) ÅT = 296 K
β = 121.017 (1)°Block, colourless
V = 4890.8 (2) Å30.20 × 0.19 × 0.16 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
5066 independent reflections
Radiation source: fine-focus sealed tube3725 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ϕ and ω scansθmax = 26.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2929
Tmin = 0.880, Tmax = 0.902k = 1919
31900 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0679P)2 + 3.2244P]
where P = (Fo2 + 2Fc2)/3
5066 reflections(Δ/σ)max = 0.002
326 parametersΔρmax = 0.30 e Å3
2 restraintsΔρmin = 0.42 e Å3
Crystal data top
[Fe2(C8H7O2)4(C12H8N2)2(H2O)]V = 4890.8 (2) Å3
Mr = 1030.67Z = 4
Monoclinic, C2/cMo Kα radiation
a = 23.1987 (6) ŵ = 0.66 mm1
b = 15.7222 (4) ÅT = 296 K
c = 15.6464 (4) Å0.20 × 0.19 × 0.16 mm
β = 121.017 (1)°
Data collection top
Bruker APEXII area-detector
diffractometer
5066 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3725 reflections with I > 2σ(I)
Tmin = 0.880, Tmax = 0.902Rint = 0.053
31900 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0442 restraints
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.30 e Å3
5066 reflectionsΔρmin = 0.42 e Å3
326 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.041139 (18)0.35596 (2)0.37994 (3)0.03908 (15)
C10.10393 (16)0.51103 (18)0.5379 (2)0.0495 (7)
H10.06240.53650.49660.059*
C20.15332 (18)0.5574 (2)0.6182 (2)0.0612 (9)
H20.14470.61260.63020.073*
C30.21397 (18)0.5211 (2)0.6784 (2)0.0664 (10)
H30.24740.55150.73210.080*
C40.22666 (15)0.4382 (2)0.6603 (2)0.0545 (8)
C50.28939 (16)0.3946 (3)0.7205 (2)0.0717 (11)
H50.32500.42290.77380.086*
C60.29761 (16)0.3135 (3)0.7014 (2)0.0691 (10)
H60.33890.28710.74170.083*
C70.24490 (14)0.2671 (2)0.6211 (2)0.0543 (8)
C80.25042 (16)0.1818 (2)0.5991 (3)0.0636 (9)
H80.29050.15240.63800.076*
C90.19760 (17)0.1427 (2)0.5217 (3)0.0624 (9)
H90.20030.08550.50860.075*
C100.13890 (15)0.18871 (19)0.4614 (2)0.0523 (7)
H100.10340.16160.40680.063*
C110.18322 (13)0.30873 (18)0.55822 (19)0.0432 (6)
C120.17422 (13)0.39593 (18)0.57830 (19)0.0414 (6)
C130.07480 (12)0.46759 (16)0.25133 (19)0.0360 (6)
C140.11705 (13)0.54627 (16)0.28046 (19)0.0384 (6)
C150.17772 (14)0.54973 (19)0.3703 (2)0.0507 (7)
H150.19110.50410.41430.061*
C160.21825 (16)0.6204 (2)0.3949 (3)0.0636 (9)
H160.25940.62090.45450.076*
C170.19931 (19)0.6901 (2)0.3334 (3)0.0633 (9)
C180.13827 (19)0.68755 (19)0.2446 (3)0.0609 (9)
H180.12450.73440.20230.073*
C190.09739 (15)0.61659 (17)0.2176 (2)0.0462 (6)
H190.05670.61580.15720.055*
C200.2436 (2)0.7685 (3)0.3605 (4)0.1012 (16)
H20A0.28910.75380.40970.152*
H20B0.22760.81140.38690.152*
H20C0.24220.79000.30200.152*
C210.03260 (13)0.21381 (18)0.4188 (2)0.0419 (6)
C220.04954 (13)0.17394 (19)0.4901 (2)0.0441 (6)
C230.05669 (16)0.2209 (2)0.5580 (2)0.0582 (8)
H230.05040.27950.56080.070*
C240.07324 (18)0.1821 (3)0.6230 (3)0.0715 (10)
H240.07910.21520.66720.086*
C250.08085 (18)0.0948 (3)0.6218 (3)0.0680 (9)
C260.07224 (18)0.0482 (2)0.5554 (3)0.0677 (9)
H260.07610.01070.55500.081*
C270.05788 (15)0.08647 (19)0.4887 (2)0.0545 (8)
H270.05380.05340.44280.065*
C280.0974 (2)0.0524 (3)0.6938 (3)0.1022 (15)
H28A0.08680.09040.74800.153*
H28B0.07140.00120.71940.153*
H28C0.14440.03870.65960.153*
N10.11349 (11)0.43230 (14)0.51775 (15)0.0415 (5)
N20.13141 (10)0.26953 (14)0.47845 (16)0.0411 (5)
O10.09509 (9)0.40711 (12)0.31245 (14)0.0455 (5)
O20.02203 (9)0.46592 (11)0.16733 (14)0.0449 (5)
O30.01572 (10)0.29140 (12)0.43251 (15)0.0517 (5)
O40.03673 (11)0.16889 (14)0.35009 (15)0.0555 (5)
O1W0.00000.26095 (16)0.25000.0398 (6)
H1W0.0291 (12)0.2479 (17)0.227 (2)0.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0366 (2)0.0383 (2)0.0366 (2)0.00068 (15)0.01482 (18)0.00227 (16)
C10.0582 (18)0.0447 (16)0.0424 (15)0.0101 (14)0.0236 (14)0.0025 (13)
C20.082 (2)0.0510 (19)0.0527 (18)0.0247 (17)0.0359 (19)0.0115 (15)
C30.068 (2)0.077 (2)0.0430 (17)0.0399 (19)0.0213 (17)0.0120 (17)
C40.0486 (17)0.071 (2)0.0358 (15)0.0213 (15)0.0159 (14)0.0032 (14)
C50.0423 (18)0.105 (3)0.0417 (18)0.0271 (19)0.0026 (15)0.0093 (19)
C60.0330 (16)0.102 (3)0.0511 (19)0.0008 (18)0.0061 (15)0.023 (2)
C70.0357 (15)0.076 (2)0.0480 (17)0.0066 (14)0.0190 (14)0.0223 (15)
C80.0464 (18)0.080 (2)0.066 (2)0.0248 (17)0.0302 (18)0.0348 (19)
C90.056 (2)0.057 (2)0.074 (2)0.0179 (16)0.0329 (19)0.0174 (17)
C100.0472 (17)0.0490 (17)0.0554 (18)0.0086 (13)0.0226 (15)0.0087 (14)
C110.0321 (13)0.0574 (18)0.0361 (14)0.0012 (12)0.0147 (12)0.0144 (12)
C120.0354 (14)0.0525 (16)0.0314 (13)0.0105 (12)0.0137 (12)0.0046 (12)
C130.0333 (13)0.0368 (14)0.0404 (14)0.0016 (11)0.0208 (12)0.0015 (11)
C140.0386 (14)0.0401 (14)0.0368 (14)0.0034 (11)0.0197 (12)0.0051 (11)
C150.0429 (16)0.0550 (18)0.0469 (16)0.0032 (13)0.0180 (14)0.0038 (14)
C160.0505 (19)0.072 (2)0.061 (2)0.0193 (17)0.0235 (16)0.0280 (18)
C170.075 (2)0.057 (2)0.074 (2)0.0326 (17)0.050 (2)0.0351 (18)
C180.093 (3)0.0361 (16)0.075 (2)0.0073 (16)0.058 (2)0.0052 (15)
C190.0534 (17)0.0385 (14)0.0468 (16)0.0029 (13)0.0259 (14)0.0041 (12)
C200.131 (4)0.081 (3)0.124 (4)0.067 (3)0.089 (3)0.058 (3)
C210.0306 (13)0.0470 (16)0.0458 (15)0.0021 (11)0.0180 (12)0.0079 (13)
C220.0338 (14)0.0513 (16)0.0443 (15)0.0009 (12)0.0181 (13)0.0071 (13)
C230.065 (2)0.0578 (19)0.0601 (19)0.0069 (16)0.0380 (17)0.0005 (16)
C240.079 (2)0.087 (3)0.066 (2)0.008 (2)0.049 (2)0.0042 (19)
C250.065 (2)0.085 (3)0.061 (2)0.0109 (19)0.0369 (18)0.0139 (19)
C260.075 (2)0.057 (2)0.074 (2)0.0110 (17)0.041 (2)0.0135 (18)
C270.0579 (19)0.0508 (18)0.0568 (18)0.0047 (14)0.0311 (16)0.0045 (14)
C280.109 (3)0.126 (4)0.093 (3)0.022 (3)0.068 (3)0.025 (3)
N10.0429 (13)0.0426 (13)0.0329 (11)0.0052 (10)0.0152 (10)0.0019 (10)
N20.0356 (12)0.0418 (12)0.0402 (12)0.0033 (10)0.0155 (10)0.0072 (10)
O10.0432 (11)0.0407 (11)0.0543 (12)0.0012 (8)0.0263 (9)0.0097 (9)
O20.0400 (10)0.0427 (11)0.0442 (11)0.0085 (8)0.0162 (9)0.0041 (8)
O30.0583 (12)0.0442 (11)0.0649 (13)0.0038 (9)0.0406 (11)0.0047 (9)
O40.0634 (13)0.0565 (12)0.0519 (12)0.0118 (10)0.0334 (11)0.0035 (10)
O1W0.0425 (15)0.0403 (14)0.0374 (14)0.0000.0211 (12)0.000
Geometric parameters (Å, º) top
Fe1—O32.1365 (18)C14—C191.391 (4)
Fe1—O2i2.1369 (18)C15—C161.376 (4)
Fe1—O12.1657 (18)C15—H150.9300
Fe1—N12.275 (2)C16—C171.373 (5)
Fe1—O1W2.2970 (17)C16—H160.9300
Fe1—N22.298 (2)C17—C181.382 (5)
C1—N11.324 (4)C17—C201.519 (4)
C1—C21.393 (4)C18—C191.382 (4)
C1—H10.9300C18—H180.9300
C2—C31.352 (5)C19—H190.9300
C2—H20.9300C20—H20A0.9600
C3—C41.398 (5)C20—H20B0.9600
C3—H30.9300C20—H20C0.9600
C4—C121.400 (4)C21—O41.248 (3)
C4—C51.436 (5)C21—O31.265 (3)
C5—C61.346 (5)C21—C221.499 (4)
C5—H50.9300C22—C231.372 (4)
C6—C71.422 (5)C22—C271.387 (4)
C6—H60.9300C23—C241.398 (4)
C7—C81.406 (5)C23—H230.9300
C7—C111.412 (4)C24—C251.383 (5)
C8—C91.349 (5)C24—H240.9300
C8—H80.9300C25—C261.367 (5)
C9—C101.395 (4)C25—C281.519 (5)
C9—H90.9300C26—C271.387 (4)
C10—N21.328 (4)C26—H260.9300
C10—H100.9300C27—H270.9300
C11—N21.355 (3)C28—H28A0.9600
C11—C121.446 (4)C28—H28B0.9600
C12—N11.354 (3)C28—H28C0.9600
C13—O21.252 (3)O2—Fe1i2.1369 (18)
C13—O11.256 (3)O1W—Fe1i2.2970 (17)
C13—C141.496 (3)O1W—H1W0.938 (8)
C14—C151.386 (4)
O3—Fe1—O2i93.91 (7)C14—C15—H15119.8
O3—Fe1—O1172.16 (8)C17—C16—C15121.6 (3)
O2i—Fe1—O189.79 (7)C17—C16—H16119.2
O3—Fe1—N1100.73 (8)C15—C16—H16119.2
O2i—Fe1—N186.60 (8)C16—C17—C18118.3 (3)
O1—Fe1—N186.37 (7)C16—C17—C20121.8 (4)
O3—Fe1—O1W88.54 (6)C18—C17—C20120.0 (4)
O2i—Fe1—O1W108.77 (7)C19—C18—C17121.2 (3)
O1—Fe1—O1W83.73 (6)C19—C18—H18119.4
N1—Fe1—O1W161.62 (6)C17—C18—H18119.4
O3—Fe1—N289.48 (8)C18—C19—C14120.1 (3)
O2i—Fe1—N2159.38 (8)C18—C19—H19119.9
O1—Fe1—N289.47 (7)C14—C19—H19119.9
N1—Fe1—N272.79 (8)C17—C20—H20A109.5
O1W—Fe1—N291.64 (7)C17—C20—H20B109.5
N1—C1—C2122.9 (3)H20A—C20—H20B109.5
N1—C1—H1118.5C17—C20—H20C109.5
C2—C1—H1118.5H20A—C20—H20C109.5
C3—C2—C1119.0 (3)H20B—C20—H20C109.5
C3—C2—H2120.5O4—C21—O3124.9 (3)
C1—C2—H2120.5O4—C21—C22118.1 (3)
C2—C3—C4120.3 (3)O3—C21—C22117.0 (3)
C2—C3—H3119.8C23—C22—C27118.4 (3)
C4—C3—H3119.8C23—C22—C21122.3 (3)
C3—C4—C12117.0 (3)C27—C22—C21119.4 (3)
C3—C4—C5124.1 (3)C22—C23—C24121.0 (3)
C12—C4—C5118.9 (3)C22—C23—H23119.5
C6—C5—C4121.2 (3)C24—C23—H23119.5
C6—C5—H5119.4C25—C24—C23120.3 (3)
C4—C5—H5119.4C25—C24—H24119.8
C5—C6—C7121.8 (3)C23—C24—H24119.8
C5—C6—H6119.1C26—C25—C24118.3 (3)
C7—C6—H6119.1C26—C25—C28121.3 (4)
C8—C7—C11117.3 (3)C24—C25—C28120.4 (4)
C8—C7—C6124.0 (3)C25—C26—C27121.7 (3)
C11—C7—C6118.6 (3)C25—C26—H26119.2
C9—C8—C7120.0 (3)C27—C26—H26119.2
C9—C8—H8120.0C26—C27—C22120.2 (3)
C7—C8—H8120.0C26—C27—H27119.9
C8—C9—C10119.3 (3)C22—C27—H27119.9
C8—C9—H9120.4C25—C28—H28A109.5
C10—C9—H9120.4C25—C28—H28B109.5
N2—C10—C9123.0 (3)H28A—C28—H28B109.5
N2—C10—H10118.5C25—C28—H28C109.5
C9—C10—H10118.5H28A—C28—H28C109.5
N2—C11—C7122.0 (3)H28B—C28—H28C109.5
N2—C11—C12118.2 (2)C1—N1—C12118.0 (2)
C7—C11—C12119.8 (3)C1—N1—Fe1125.91 (19)
N1—C12—C4122.7 (3)C12—N1—Fe1115.70 (18)
N1—C12—C11117.6 (2)C10—N2—C11118.3 (2)
C4—C12—C11119.6 (3)C10—N2—Fe1126.82 (19)
O2—C13—O1124.3 (2)C11—N2—Fe1114.71 (17)
O2—C13—C14118.0 (2)C13—O1—Fe1124.66 (16)
O1—C13—C14117.7 (2)C13—O2—Fe1i120.36 (16)
C15—C14—C19118.5 (3)C21—O3—Fe1126.24 (18)
C15—C14—C13120.3 (2)Fe1—O1W—Fe1i98.87 (10)
C19—C14—C13121.1 (2)Fe1—O1W—H1W115.5 (18)
C16—C15—C14120.3 (3)Fe1i—O1W—H1W81.6 (18)
C16—C15—H15119.8
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O4i0.94 (1)1.80 (2)2.578 (2)138 (2)
Symmetry code: (i) x, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Fe2(C8H7O2)4(C12H8N2)2(H2O)]
Mr1030.67
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)23.1987 (6), 15.7222 (4), 15.6464 (4)
β (°) 121.017 (1)
V3)4890.8 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.66
Crystal size (mm)0.20 × 0.19 × 0.16
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.880, 0.902
No. of measured, independent and
observed [I > 2σ(I)] reflections
31900, 5066, 3725
Rint0.053
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.133, 1.06
No. of reflections5066
No. of parameters326
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.42

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Fe1—O32.1365 (18)Fe1—N12.275 (2)
Fe1—O2i2.1369 (18)Fe1—O1W2.2970 (17)
Fe1—O12.1657 (18)Fe1—N22.298 (2)
O3—Fe1—O2i93.91 (7)O1—Fe1—O1W83.73 (6)
O3—Fe1—O1172.16 (8)N1—Fe1—O1W161.62 (6)
O2i—Fe1—O189.79 (7)O3—Fe1—N289.48 (8)
O3—Fe1—N1100.73 (8)O2i—Fe1—N2159.38 (8)
O2i—Fe1—N186.60 (8)O1—Fe1—N289.47 (7)
O1—Fe1—N186.37 (7)N1—Fe1—N272.79 (8)
O3—Fe1—O1W88.54 (6)O1W—Fe1—N291.64 (7)
O2i—Fe1—O1W108.77 (7)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O4i0.938 (8)1.80 (2)2.578 (2)138 (2)
Symmetry code: (i) x, y, z+1/2.
 

Acknowledgements

The author acknowledges South China Normal University for supporting this work.

References

First citationBruker (2004). APEX2 and SMART. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, W.-D., Gu, C.-S., Hao, X.-M. & Liu, J.-W. (2007). Acta Cryst. E63, m1023–m1024.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 6| June 2008| Pages m817-m818
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds