organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2-Methyl­naphtho[2,1-b]furan-1-yl)acetic acid

aDepartment of Chemistry, University of Adelaide, 5005 South Australia, Australia, bDepartment of Wine and Horticulture, University of Adelaide, Waite Campus, Glen Osmond 5064, South Australia, Australia, and cDepartment of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA
*Correspondence e-mail: edward.tiekink@utsa.edu

(Received 20 May 2008; accepted 23 May 2008; online 30 May 2008)

In the title mol­ecule, C15H12O3, the two six-membered and one five-membered fused-ring system is almost planar and the CH2C(=O)OH residue is essentially orthogonal to it. In the crystal structure, centrosymmetric dimers are formed via the carboxylic acid {⋯O=C—O—H}2 synthon.

Related literature

For related literature, see: Haselgrove et al. (1999[Haselgrove, T. D., Jevric, M., Taylor, D. K. & Tiekink, E. R. T. (1999). Tetrahedron, 55, 14739-14762.]); Jevric et al. (2001[Jevric, M., Taylor, D. K. & Tiekink, E. R. T. (2001). Z. Kristallogr. 216, 543-544.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12O3

  • Mr = 240.25

  • Monoclinic, C 2/c

  • a = 31.380 (3) Å

  • b = 4.8370 (4) Å

  • c = 15.7885 (13) Å

  • β = 98.087 (2)°

  • V = 2372.6 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 223 (2) K

  • 0.49 × 0.36 × 0.18 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: none

  • 9334 measured reflections

  • 3445 independent reflections

  • 2790 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.138

  • S = 1.04

  • 3445 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O12—H12⋯O11i 0.83 1.83 2.6553 (14) 170
C21—H21B⋯O12ii 0.97 2.52 3.2663 (19) 134
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x, -y+2, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, M., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435-435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The effective dehydrogenation of diastereomeric mixture of 1, Fig. 3, to form the aromatized tricyclic 2 could be effected with the use of DDQ in THF under reflux conditions (Haselgrove et al., 1999). Crystals of the title acid derivative (I) were obtained by base hydrolysis of 2 in methanol solution (Jevric et al., 2001).

The tricyclic system in (I), Fig. 1, comprises six- (A), six- (B), and five-membered rings (C) with the sequence of dihedral angles between their respective least-squares planes being 1.48 (6), 2.34 (6), 0.91 (6) ° for A/B, A/C, and B/C, respectively. The CH2C(=O)OH residue is essentially orthogonal to this aromatic system as seen in the C1/C11/C12/O11 torsion angle of -165.68 (9)°. Centrosymmetrically related molecules associate into dimers via the familiar eight-membered carboxylic acid {···O=C—O—H}2 synthon, Table 1. Each dimer thus formed is associated to two other molecules, each related by 2-fold symmetry, via C—H···O contacts. These consolidate molecules into a 2-D array in the bc-plane as shown in Fig. 2.

Related literature top

For related literature, see: Haselgrove et al. (1999); Jevric et al.(2001).

Experimental top

To a stirring solution of 1 (Fig. 3, 1.91 g, 7.46 mmol) in anhydrous THF (50 ml) was added DDQ (1.81 g, 7.97 mmol) and the reaction brought to reflux for 24 h under a nitrogen atmosphere. The solution was allowed to cool to room temperature, diluted with water and extracted twice with dichloromethane. The organic phase was dried (MgSO4), filtered and volatiles removed in vacuo. The crude residue was purified by column chromatography (10% acetone in hexane) to give pure methyl 2-(2-methylnaphtho[2,1-b]furan-1-yl)acetate, 2, as a yellow solid, m.p: 349 - 351 K. Rf 0.41 (10% acetone in hexane). IR (CH2Cl2, cm-1) 1738, 1620, 1581, 1525, 804. 1H NMR (CDCl3, 300 MHz) δ 2.25 (s, 3H), 3.70 (s, 3H), 3.98 (s, 2H), 7.45–7.48 (m, 1H), 7.56–7.60 (m, 2H), 7.65–7.68 (m, 1H), 7.92–7.94 (m, 1H), 8.23–8.26 (m, 1H) p.p.m.. 13C NMR (CDCl3, 50 MHz) δ 12.0, 31.5, 52.2, 109.5, 112.1, 122.2, 122.8, 124.0, 124.6, 126.1, 128.0, 129.0, 130.8, 151.5, 152.2, 171.6 p.p.m.. MS m/z (%): 254 (M+, 76), 95 (100), 181 (31), 165 (27), 152 (22). HRMS, C16H14O3: calcd, 254.0943. Found 254.0942.

Compound (I) was obtained by the base hydrolysis of 2 in methanol solution. The colourless solid was recrystallized from ethanol solution in 75% yield; m.p.: 451 - 455 K (decomposes, sealed tube). IR (nujol, cm-1) 1699, 1622, 1579, 1525. 1H NMR (CDCl3, 300 MHz) δ 2.51 (s, 3H), 4.00 (s, 2H), 7.44–7.69 (m, 4H), 7.91–7.94 (m, 1H), 8.21–8.23 (m, 1H) p.p.m.. 13C NMR (CDCl3, 50 MHz) δ 11.9, 31.1, 108.8, 112.1, 122.0, 122.7, 124.0, 126.2, 127.9, 129.1, 130.8, 151.6, 152.4, 175.5 (1 masked carbon) p.p.m.. MS m/z (%): 240 (M+, 39), 195 (100), 165 (13), 152 (13), 69 (37). Elemental analysis found: C, 74.92; H, 4.98%. C15H12O3 requires C, 74.99; H, 5.03%.

Refinement top

All H atoms were included in the riding-model approximation, with C—H = 0.94 to 0.98 Å and O—H = 0.83 Å, and with Uiso(H) = 1.5Ueq(methyl-C and O) or 1.2Ueq(remaining C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing atom-labelling scheme and displacement ellipsoids at the 50% probability level. In addition an unlabelled symmetry related (1-x, 1-y, 1-z) molecule is shown to demonstrate the formation of a hydrogen bonded dimer.
[Figure 2] Fig. 2. Crystal packing in (I) viewed in projection down the b axis highlighting the stacking of the 2-D arrays. Colour scheme red (O), grey (C), and green (H). The O—H···O (orange) and C—H···O (blue) contacts are shown as dashed lines.
[Figure 3] Fig. 3. Reaction scheme.
2-(2-Methylnaphtho[2,1-b]furan-1-yl)acetic acid top
Crystal data top
C15H12O3F(000) = 1008
Mr = 240.25Dx = 1.345 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -C 2ycCell parameters from 3301 reflections
a = 31.380 (3) Åθ = 2.6–29.4°
b = 4.8370 (4) ŵ = 0.09 mm1
c = 15.7885 (13) ÅT = 223 K
β = 98.087 (2)°Block, colourless
V = 2372.6 (3) Å30.49 × 0.36 × 0.18 mm
Z = 8
Data collection top
Bruker SMART CCD
diffractometer
2790 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
Graphite monochromatorθmax = 30.0°, θmin = 2.6°
ω scansh = 4343
9334 measured reflectionsk = 64
3445 independent reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0801P)2 + 0.5375P]
where P = (Fo2 + 2Fc2)/3
3445 reflections(Δ/σ)max < 0.001
164 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C15H12O3V = 2372.6 (3) Å3
Mr = 240.25Z = 8
Monoclinic, C2/cMo Kα radiation
a = 31.380 (3) ŵ = 0.09 mm1
b = 4.8370 (4) ÅT = 223 K
c = 15.7885 (13) Å0.49 × 0.36 × 0.18 mm
β = 98.087 (2)°
Data collection top
Bruker SMART CCD
diffractometer
2790 reflections with I > 2σ(I)
9334 measured reflectionsRint = 0.026
3445 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 1.04Δρmax = 0.34 e Å3
3445 reflectionsΔρmin = 0.15 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.39156 (3)0.5681 (2)0.14890 (5)0.0436 (2)
O110.47261 (3)0.47260 (18)0.40193 (6)0.0458 (2)
O120.46215 (3)0.7752 (2)0.50211 (6)0.0597 (3)
H120.48080.68010.53120.090*
C10.40206 (3)0.6881 (2)0.28846 (7)0.0322 (2)
C20.41414 (4)0.7340 (3)0.21078 (7)0.0389 (3)
C3a0.36422 (4)0.4133 (2)0.19008 (7)0.0371 (3)
C40.33570 (4)0.2173 (3)0.14967 (8)0.0445 (3)
H40.33400.18050.09080.053*
C50.31044 (4)0.0821 (3)0.19964 (8)0.0447 (3)
H50.29110.05320.17480.054*
C5a0.31254 (3)0.1401 (2)0.28866 (8)0.0374 (3)
C60.28513 (4)0.0037 (3)0.33887 (10)0.0480 (3)
H60.26550.12880.31310.058*
C70.28646 (4)0.0600 (3)0.42402 (10)0.0511 (3)
H70.26750.03080.45590.061*
C80.31603 (4)0.2532 (3)0.46375 (8)0.0451 (3)
H80.31700.29000.52250.054*
C90.34350 (4)0.3890 (2)0.41782 (7)0.0360 (2)
H90.36340.51630.44560.043*
C9a0.34237 (3)0.3400 (2)0.32913 (7)0.0312 (2)
C9b0.36901 (3)0.4774 (2)0.27625 (7)0.0309 (2)
C110.42022 (3)0.8343 (2)0.36877 (7)0.0336 (2)
H11A0.39670.87810.40120.040*
H11B0.43291.00950.35350.040*
C120.45400 (3)0.6725 (2)0.42568 (6)0.0306 (2)
C210.44569 (4)0.9241 (4)0.17989 (10)0.0560 (4)
H21A0.45411.06450.22290.084*
H21B0.43271.01180.12730.084*
H21C0.47090.82040.16930.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0459 (5)0.0549 (5)0.0297 (4)0.0104 (4)0.0047 (3)0.0020 (3)
O110.0497 (5)0.0434 (5)0.0394 (5)0.0167 (4)0.0108 (4)0.0094 (3)
O120.0662 (6)0.0695 (7)0.0373 (5)0.0348 (5)0.0140 (4)0.0176 (4)
C10.0310 (5)0.0332 (5)0.0311 (5)0.0067 (4)0.0001 (4)0.0038 (4)
C20.0352 (5)0.0463 (6)0.0347 (5)0.0086 (4)0.0029 (4)0.0069 (5)
C3a0.0392 (5)0.0411 (6)0.0293 (5)0.0108 (4)0.0013 (4)0.0013 (4)
C40.0490 (6)0.0471 (7)0.0334 (6)0.0121 (5)0.0089 (5)0.0100 (5)
C50.0424 (6)0.0386 (6)0.0476 (7)0.0056 (5)0.0129 (5)0.0106 (5)
C5a0.0329 (5)0.0316 (5)0.0447 (6)0.0052 (4)0.0055 (4)0.0004 (4)
C60.0395 (6)0.0379 (6)0.0636 (8)0.0032 (5)0.0037 (5)0.0045 (6)
C70.0460 (7)0.0459 (7)0.0624 (9)0.0033 (5)0.0110 (6)0.0150 (6)
C80.0519 (7)0.0433 (6)0.0407 (6)0.0039 (5)0.0087 (5)0.0085 (5)
C90.0405 (5)0.0331 (5)0.0335 (5)0.0031 (4)0.0019 (4)0.0016 (4)
C9a0.0312 (5)0.0281 (5)0.0325 (5)0.0070 (4)0.0016 (4)0.0004 (4)
C9b0.0318 (5)0.0306 (5)0.0284 (5)0.0075 (4)0.0017 (4)0.0010 (4)
C110.0338 (5)0.0294 (5)0.0357 (5)0.0029 (4)0.0013 (4)0.0016 (4)
C120.0289 (4)0.0312 (5)0.0305 (5)0.0006 (4)0.0005 (3)0.0001 (4)
C210.0455 (7)0.0702 (10)0.0545 (8)0.0040 (6)0.0150 (6)0.0185 (7)
Geometric parameters (Å, º) top
O3—C3a1.3697 (15)C5a—C9a1.4323 (15)
O3—C21.3807 (15)C6—C71.366 (2)
O11—C121.2157 (13)C6—H60.9400
O12—C121.2968 (13)C7—C81.401 (2)
O12—H120.8300C7—H70.9400
C1—C21.3519 (16)C8—C91.3697 (17)
C1—C9b1.4474 (15)C8—H80.9400
C1—C111.4930 (15)C9—C9a1.4157 (15)
C2—C211.4832 (18)C9—H90.9400
C3a—C9b1.3829 (15)C9a—C9b1.4261 (15)
C3a—C41.3950 (17)C11—C121.5084 (14)
C4—C51.362 (2)C11—H11A0.9800
C4—H40.9400C11—H11B0.9800
C5—C5a1.4255 (18)C21—H21A0.9700
C5—H50.9400C21—H21B0.9700
C5a—C61.4127 (18)C21—H21C0.9700
C3a—O3—C2105.97 (9)C9—C8—H8119.7
C12—O12—H12109.5C7—C8—H8119.7
C2—C1—C9b106.37 (10)C8—C9—C9a120.89 (11)
C2—C1—C11124.78 (11)C8—C9—H9119.6
C9b—C1—C11128.84 (10)C9a—C9—H9119.6
C1—C2—O3111.41 (11)C9—C9a—C9b124.47 (10)
C1—C2—C21133.27 (12)C9—C9a—C5a118.55 (11)
O3—C2—C21115.32 (11)C9b—C9a—C5a116.98 (10)
O3—C3a—C9b110.84 (10)C3a—C9b—C9a118.67 (10)
O3—C3a—C4123.97 (10)C3a—C9b—C1105.40 (10)
C9b—C3a—C4125.19 (11)C9a—C9b—C1135.91 (9)
C5—C4—C3a116.72 (11)C1—C11—C12114.36 (9)
C5—C4—H4121.6C1—C11—H11A108.7
C3a—C4—H4121.6C12—C11—H11A108.7
C4—C5—C5a121.79 (11)C1—C11—H11B108.7
C4—C5—H5119.1C12—C11—H11B108.7
C5a—C5—H5119.1H11A—C11—H11B107.6
C6—C5a—C5120.93 (11)O11—C12—O12123.46 (9)
C6—C5a—C9a118.45 (11)O11—C12—C11123.82 (9)
C5—C5a—C9a120.62 (11)O12—C12—C11112.68 (9)
C7—C6—C5a121.48 (12)C2—C21—H21A109.5
C7—C6—H6119.3C2—C21—H21B109.5
C5a—C6—H6119.3H21A—C21—H21B109.5
C6—C7—C8120.00 (12)C2—C21—H21C109.5
C6—C7—H7120.0H21A—C21—H21C109.5
C8—C7—H7120.0H21B—C21—H21C109.5
C9—C8—C7120.60 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O12—H12···O11i0.831.832.6553 (14)170
C21—H21B···O12ii0.972.523.2663 (19)134
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+2, z1/2.

Experimental details

Crystal data
Chemical formulaC15H12O3
Mr240.25
Crystal system, space groupMonoclinic, C2/c
Temperature (K)223
a, b, c (Å)31.380 (3), 4.8370 (4), 15.7885 (13)
β (°) 98.087 (2)
V3)2372.6 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.49 × 0.36 × 0.18
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9334, 3445, 2790
Rint0.026
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.138, 1.04
No. of reflections3445
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.15

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O12—H12···O11i0.831.832.6553 (14)170
C21—H21B···O12ii0.972.523.2663 (19)134
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+2, z1/2.
 

Footnotes

Additional correspondence e-mail: dennis.taylor@adelaide.edu.au.

Acknowledgements

We are grateful to the Australian Research Council for financial support.

References

First citationAltomare, A., Cascarano, M., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435–435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHaselgrove, T. D., Jevric, M., Taylor, D. K. & Tiekink, E. R. T. (1999). Tetrahedron, 55, 14739–14762.  Web of Science CSD CrossRef CAS Google Scholar
First citationJevric, M., Taylor, D. K. & Tiekink, E. R. T. (2001). Z. Kristallogr. 216, 543–544.  CAS Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds