organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(−)-Kolavenic acid

aDepartment of Chemistry, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, bChemistry Institute, São Paulo State University, UNESP, 14801-970, Araraquara, SP, Brazil, and cDepartment of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA
*Correspondence e-mail: julio@power.ufscar.br

(Received 7 May 2008; accepted 13 May 2008; online 17 May 2008)

In the two, almost identical, mol­ecules in the asymmetric unit of the title compound [systematic name: (E)-3-methyl-5-(1,2,4a,5-tetra­methyl-1,2,3,4,4a,7,8,8a-octa­hydro­naphthalen-1-yl)pent-2-enoic acid], C20H32O2, the rings are trans fused. The cyclo­hexane ring has a chair conformation and the cyclo­hexene ring a distorted half-boat conformation. The two independent mol­ecules are connected into a dimer via O—H⋯O hydrogen bonds. The dimers are associated into supra­molecular chains along c via C—H⋯O contacts.

Related literature

For related structures, see: Puliti & Mattia (2000[Puliti, R. & Mattia, C. A. (2000). J. Mol. Struct. 516, 31-41.]). For related literature, see: Lopes et al. (1987[Lopes, L. M. X., Bolzani, V. da S. & Trevisan, L. M. V. (1987). Phytochemistry, 26, 2781-2784.]); Bomm et al. (1999[Bomm, M. D., Zukerman-Schpector, J. & Lopes, L. M. X. (1999). Phytochemistry, 50, 455-461.]); Messiano et al. (2008[Messiano, G. B., Vieira, L., Machado, M. B., Lopes, L. M. X., De Bortoli, S. A. & Zukerman-Schpector, J. (2008). J. Agric. Food Chem. 56, 2655-2659.]); Nascimento et al. (2004[Nascimento, I. R., Murata, A. T., Bortoli, S. A. & Lopes, L. M. X. (2004). Pest Manag. Sci. 60, 413-416.]). For ring structure analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Spek (2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

[Scheme 1]

Experimental

Crystal data
  • C20H32O2

  • Mr = 304.46

  • Orthorhombic, P 21 21 21

  • a = 12.5122 (3) Å

  • b = 15.5439 (4) Å

  • c = 19.1969 (4) Å

  • V = 3733.57 (15) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 291 (2) K

  • 0.42 × 0.20 × 0.18 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: none

  • 48366 measured reflections

  • 6240 independent reflections

  • 3146 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.134

  • S = 1.00

  • 6240 reflections

  • 407 parameters

  • H-atom parameters constrained

  • Δρmax = 0.11 e Å−3

  • Δρmin = −0.12 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O101—H101⋯O202 0.82 1.82 2.625 (3) 168
O201—H201⋯O102 0.82 1.90 2.700 (2) 164
C212—H21R⋯O202i 0.96 2.60 3.519 (4) 159
Symmetry code: (i) [-x+{\script{5\over 2}}, -y+2, z+{\script{1\over 2}}].

Data collection: APEX2, COSMO and BIS (Bruker, 2006[Bruker (2006). APEX2, COSMO, BIS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2, COSMO, BIS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound (I), Fig. 1, was studied as a part of an on-going screen of natural insecticides from Aristolochia species, which has become a promising route for the discovery of new compounds and/or botanical preparations which could be used in crop protection against Anticarsia gemmatalis H. (Lepidoptera: Noctuidae). Larvae of this insect represent the major defoliator pest of soybean crops in Brazil.

There are two almost identical independent molecules in the asymmetric unit, in fact superimposition of them, excluding H atoms, gives a rmsd of 0.016 Å (Spek, 2003). The major difference between the molecules is manifested in the relative orientations of the carboxylic acid residues so that in one molecule the carbonyl-O102 atom is syn to the methyl-C118 group whereas the opposite is true for the second independent molecule. In each molecule the rings are trans fused and the cyclohexane ring is in an almost undistorted chair conformation. The cyclohexene ring is in a distorted half-boat conformation, the ring-puckering parameters (Cremer & Pople, 1975) are q2 = 0.400 (3) Å (0.406 (3) Å for the second molecule), q3 = -0.341 (3) Å (-0.336 (3) Å), Q = 0.525 (2) ° (0.527 (2) °), and ϕ2 = 106.6 (4)° (107.3 (4) °). The absolute configuration was established based on the [αD] = -41.1° (c 1.0, CHCl3) and the results reported in Bomm et al. (1999).

The independent molecules in (I) are connected via cooperative O—H···O contacts that form the eight-membered {···H—O—C=O}2 synthon, Table 1. The resultant dimeric aggregates are linked into a supramolecular chain along the c-direction via C212—H21R···O202 contacts, Fig. 2.

Related literature top

For related structures, see: Puliti & Mattia (2000). For related literature, see: Lopes et al. (1987); Bomm et al. (1999); Messiano et al. (2008); Nascimento et al. (2004). For ring structure analysis, see: Cremer & Pople (1975); Spek (2003).

Experimental top

Compound (I), (-)-kolavenic acid, was obtained from the hexane extract of the roots of Aristolochia malmeana Hoehne (Aristolochiaceae). Colorless crystals were obtained from the slow evaporation of a MeOH solution of (I) held at 283 K; m.p. 370–371 K. NMR (CDCl3, p.p.m.): δ 0.93 (1H, t, w1/2 = 7.0 Hz, H-1a), 1.36 (1H, m, H-1b), 1.99 (1H, m, H-2a), 1.94 (1H, m, H-2b), 5.13 (1H, br s, H-3), 1.66 (1H, dt, J = 13.0, 3.0 Hz, H-6a), 1.12 (1H, ddd, J = 13.0, 12.0, 4.2 Hz, H-6b), 1.33 (1H, m, H-7a), 1.39 (1H, m, H-7b), 1.37 (1H, m, H-8), 1.27 (1H, dd, J = 12.0, 1.5 Hz, H-10), 1.34 (1H, ddd, J = 14.0, 13.0, 4.5 Hz, H-11a), 1.48 (1H, ddd, J = 14.0, 12.5, 5.0 Hz, H-11b), 1.97 (1H, td, J = 13.0, 4.5 Hz, H-12a), 1.90 (1H, ddd, J = 13.0, 12.5, 5.0 Hz, H-12b), 5.62 (1H, dq, J = 2.5, 1.0 Hz, H-14), 2.11 (3H, br d, J = 1.0 Hz, H-16), 0.76 (3H, d, J = 6.0 Hz, H-17), 1.53 (3H, br s, H-18), 0.94 (3H, s, H-19), 0.68 (3H, s, H-20). [αD] = -41.1° in agreement with Bomm et al. (1999) and Messiano et al. (2008).

Refinement top

In the absence of significant anomalous scattering effects, Friedel pairs were averaged in the final refinement. The H atoms were refined in the riding-model approximation with C—H = 0.93 - 0.98 Å and (0.82 for O—H), and with Uiso(H) = 1.5Ueq(methyl-C) or 1.2Ueq(remaining-C and –O).

Computing details top

Data collection: APEX2, COSMO and BIS (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structures of the two independent molecules in (I) showing atom labelling scheme and displacement ellipsoids at the 35% probability level (arbitrary spheres for the H atoms).
[Figure 2] Fig. 2. View of a supramolecular chain in (I) with O—H···O and C—H···O interactions shown as orange-dashed lines. Color code: O (red), N (blue), C (grey) & H (green).
(E)-3-methyl-5-(1,2,4a,5-tetramethyl-1,2,3,4,4a,7,8,8a-octahydronaphthalen-1-yl)pent-2-enoic acid top
Crystal data top
C20H32O2F(000) = 1344
Mr = 304.46Dx = 1.083 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 9536 reflections
a = 12.5122 (3) Åθ = 2.3–21.8°
b = 15.5439 (4) ŵ = 0.07 mm1
c = 19.1969 (4) ÅT = 291 K
V = 3733.57 (15) Å3Irregular, colourless
Z = 80.42 × 0.20 × 0.18 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3146 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.052
Graphite monochromatorθmax = 30.5°, θmin = 2.7°
ϕ and ω scansh = 1717
48366 measured reflectionsk = 2221
6240 independent reflectionsl = 2723
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.134 w = 1/[σ2(Fo2) + (0.0656P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
6240 reflectionsΔρmax = 0.11 e Å3
407 parametersΔρmin = 0.12 e Å3
0 restraintsAbsolute structure: Friedel pairs were merged
Primary atom site location: structure-invariant direct methods
Crystal data top
C20H32O2V = 3733.57 (15) Å3
Mr = 304.46Z = 8
Orthorhombic, P212121Mo Kα radiation
a = 12.5122 (3) ŵ = 0.07 mm1
b = 15.5439 (4) ÅT = 291 K
c = 19.1969 (4) Å0.42 × 0.20 × 0.18 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3146 reflections with I > 2σ(I)
48366 measured reflectionsRint = 0.052
6240 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.00Δρmax = 0.11 e Å3
6240 reflectionsΔρmin = 0.12 e Å3
407 parametersAbsolute structure: Friedel pairs were merged
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1011.0346 (2)1.00268 (16)0.40732 (10)0.0971 (7)
H1011.05831.01090.44660.117*
O1020.92225 (17)0.92145 (12)0.46736 (8)0.0785 (5)
C1010.76320 (18)0.77650 (14)0.14588 (11)0.0507 (5)
C1020.65232 (18)0.81476 (17)0.12872 (11)0.0595 (6)
H1020.65140.87300.14840.071*
C1030.63223 (19)0.82452 (18)0.05042 (12)0.0629 (6)
H10C0.62960.76790.02930.076*
H10D0.56330.85170.04330.076*
C1040.71754 (19)0.87743 (17)0.01459 (11)0.0598 (6)
H10A0.71740.93510.03380.072*
H10B0.70090.88170.03460.072*
C1050.83006 (17)0.83772 (14)0.02341 (10)0.0517 (5)
C1060.9156 (2)0.89798 (18)0.00476 (12)0.0668 (7)
C1071.0092 (2)0.90785 (19)0.02659 (14)0.0747 (8)
H1071.05810.94480.00560.090*
C1081.0430 (2)0.86495 (19)0.09252 (15)0.0764 (8)
H10G1.04940.90790.12900.092*
H10H1.11280.83910.08580.092*
C1090.96454 (18)0.79603 (17)0.11559 (13)0.0628 (6)
H10E0.97500.78370.16460.075*
H10F0.97740.74360.08960.075*
C1100.85005 (16)0.82610 (14)0.10350 (10)0.0473 (5)
H1100.84820.88470.12230.057*
C1110.7674 (2)0.67820 (15)0.13196 (13)0.0672 (7)
H11E0.73900.66630.08650.101*
H11F0.72560.64870.16650.101*
H11G0.84010.65880.13430.101*
C1120.5582 (2)0.7661 (2)0.16212 (15)0.0902 (9)
H11N0.55480.70890.14340.135*
H11O0.49270.79580.15210.135*
H11P0.56840.76320.21160.135*
C1130.8360 (2)0.75442 (18)0.01978 (12)0.0678 (7)
H11H0.90040.72390.00840.102*
H11I0.83600.76850.06850.102*
H11J0.77530.71890.00940.102*
C1140.8941 (3)0.9435 (2)0.07248 (15)0.1023 (11)
H11Q0.95530.97720.08520.153*
H11R0.83310.98040.06730.153*
H11S0.88010.90180.10820.153*
C1150.7858 (2)0.78741 (15)0.22501 (11)0.0609 (6)
H11A0.73460.75250.25040.073*
H11B0.85620.76420.23460.073*
C1160.7812 (3)0.87882 (18)0.25429 (12)0.0834 (9)
H11C0.82470.91610.22530.100*
H11D0.70810.89940.25190.100*
C1170.8197 (3)0.88539 (18)0.32881 (11)0.0705 (7)
C1180.7538 (3)0.8379 (2)0.38179 (14)0.0987 (10)
H11K0.77050.85880.42760.148*
H11L0.76950.77750.37920.148*
H11M0.67930.84700.37240.148*
C1190.9048 (3)0.93132 (18)0.34285 (12)0.0740 (8)
H1190.93870.95510.30430.089*
C1200.9549 (2)0.95094 (17)0.41065 (12)0.0661 (7)
O2011.01800 (18)0.96623 (14)0.58806 (10)0.0910 (6)
H2011.00010.94860.54950.109*
O2021.13450 (18)1.03856 (14)0.52400 (10)0.0910 (6)
C2011.19128 (18)1.20921 (15)0.85454 (11)0.0546 (6)
C2021.2484 (2)1.15676 (16)0.91200 (12)0.0658 (7)
H2021.29471.11540.88800.079*
C2031.3211 (2)1.21238 (19)0.95685 (12)0.0782 (8)
H20E1.27781.25350.98230.094*
H20F1.35711.17610.99060.094*
C2041.4038 (2)1.26039 (17)0.91493 (12)0.0706 (7)
H20A1.45091.21920.89260.085*
H20B1.44681.29520.94620.085*
C2051.3545 (2)1.31906 (15)0.85873 (10)0.0560 (6)
C2061.4416 (2)1.35422 (15)0.81050 (13)0.0636 (6)
C2071.4261 (2)1.36223 (17)0.74262 (13)0.0719 (7)
H2071.48241.38440.71650.086*
C2081.3270 (2)1.33897 (19)0.70427 (12)0.0768 (8)
H20G1.34201.29080.67370.092*
H20H1.30541.38720.67550.092*
C2091.2348 (2)1.31491 (18)0.75260 (12)0.0658 (6)
H20C1.18241.28140.72720.079*
H20D1.20021.36670.76950.079*
C2101.27730 (17)1.26243 (14)0.81438 (10)0.0496 (5)
H2101.32371.21900.79310.060*
C2111.1011 (2)1.2658 (2)0.88417 (15)0.0793 (8)
H21H1.07771.30570.84920.119*
H21I1.12701.29690.92390.119*
H21J1.04221.23000.89790.119*
C2121.1724 (3)1.1040 (3)0.95738 (18)0.1120 (12)
H21Q1.13141.14200.98640.168*
H21R1.21291.06550.98610.168*
H21S1.12501.07150.92810.168*
C2131.3019 (3)1.39861 (18)0.89400 (14)0.0816 (8)
H21E1.35661.43480.91330.122*
H21F1.25501.37970.93050.122*
H21G1.26191.43040.86000.122*
C2141.5467 (3)1.3827 (2)0.84228 (17)0.0938 (10)
H21N1.58921.41080.80750.141*
H21O1.58441.33330.85960.141*
H21P1.53301.42180.87990.141*
C2151.1350 (2)1.14633 (17)0.80335 (13)0.0666 (7)
H21A1.07931.11680.82910.080*
H21B1.09981.18080.76800.080*
C2161.2006 (2)1.07826 (18)0.76594 (14)0.0746 (7)
H21C1.26201.10520.74410.089*
H21D1.22671.03670.79960.089*
C2171.1357 (2)1.03233 (16)0.71123 (14)0.0678 (7)
C2181.0479 (3)0.9751 (2)0.73784 (15)0.1064 (12)
H21K1.04570.92330.71070.160*
H21L0.98071.00450.73410.160*
H21M1.06130.96100.78570.160*
C2191.1563 (2)1.04597 (17)0.64412 (14)0.0721 (7)
H2191.21551.08050.63530.087*
C2201.1003 (2)1.01506 (17)0.58192 (14)0.0679 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1010.1228 (18)0.1026 (16)0.0661 (11)0.0288 (16)0.0021 (12)0.0042 (11)
O1020.1089 (14)0.0789 (12)0.0478 (8)0.0094 (11)0.0006 (9)0.0002 (8)
C1010.0526 (13)0.0479 (13)0.0516 (11)0.0024 (11)0.0030 (9)0.0041 (10)
C1020.0501 (13)0.0707 (16)0.0576 (12)0.0062 (13)0.0043 (10)0.0132 (11)
C1030.0501 (13)0.0779 (17)0.0608 (12)0.0097 (13)0.0028 (10)0.0154 (12)
C1040.0632 (15)0.0679 (16)0.0484 (11)0.0089 (13)0.0080 (10)0.0058 (11)
C1050.0519 (13)0.0542 (14)0.0489 (10)0.0026 (11)0.0019 (9)0.0062 (10)
C1060.0736 (18)0.0674 (17)0.0595 (13)0.0055 (14)0.0091 (12)0.0003 (11)
C1070.0674 (18)0.0759 (19)0.0808 (17)0.0213 (15)0.0112 (14)0.0013 (15)
C1080.0547 (15)0.087 (2)0.0875 (18)0.0099 (15)0.0005 (13)0.0076 (15)
C1090.0517 (14)0.0677 (17)0.0690 (13)0.0005 (13)0.0041 (11)0.0012 (12)
C1100.0466 (12)0.0445 (12)0.0508 (10)0.0026 (10)0.0005 (9)0.0047 (9)
C1110.0730 (17)0.0517 (15)0.0769 (15)0.0064 (13)0.0081 (13)0.0040 (12)
C1120.0582 (16)0.130 (3)0.0824 (18)0.0045 (18)0.0165 (14)0.0002 (18)
C1130.0678 (16)0.0763 (17)0.0595 (13)0.0024 (14)0.0094 (12)0.0217 (12)
C1140.116 (3)0.114 (3)0.0773 (18)0.026 (2)0.0037 (17)0.0291 (18)
C1150.0730 (16)0.0609 (15)0.0486 (11)0.0045 (13)0.0012 (10)0.0023 (10)
C1160.134 (3)0.0673 (17)0.0486 (12)0.0166 (18)0.0167 (14)0.0087 (11)
C1170.103 (2)0.0588 (16)0.0491 (12)0.0123 (17)0.0046 (13)0.0020 (11)
C1180.115 (2)0.126 (3)0.0552 (14)0.016 (2)0.0099 (15)0.0095 (16)
C1190.117 (2)0.0600 (16)0.0451 (11)0.0014 (18)0.0042 (13)0.0016 (11)
C1200.092 (2)0.0499 (14)0.0563 (13)0.0022 (15)0.0011 (13)0.0026 (11)
O2010.1098 (16)0.0939 (15)0.0694 (11)0.0434 (13)0.0103 (11)0.0026 (11)
O2020.1104 (16)0.0877 (14)0.0749 (11)0.0261 (13)0.0126 (11)0.0057 (10)
C2010.0578 (13)0.0531 (14)0.0528 (11)0.0057 (12)0.0021 (10)0.0010 (10)
C2020.0770 (17)0.0646 (16)0.0557 (12)0.0001 (14)0.0019 (12)0.0094 (11)
C2030.101 (2)0.088 (2)0.0464 (11)0.0010 (17)0.0109 (13)0.0033 (12)
C2040.0850 (17)0.0684 (16)0.0584 (12)0.0051 (15)0.0223 (13)0.0048 (12)
C2050.0695 (15)0.0471 (13)0.0513 (10)0.0029 (12)0.0058 (11)0.0102 (9)
C2060.0709 (16)0.0483 (14)0.0717 (15)0.0015 (13)0.0016 (12)0.0070 (11)
C2070.0831 (19)0.0599 (16)0.0726 (16)0.0003 (14)0.0096 (14)0.0064 (12)
C2080.088 (2)0.086 (2)0.0563 (13)0.0049 (17)0.0013 (13)0.0107 (13)
C2090.0720 (16)0.0679 (16)0.0577 (13)0.0086 (14)0.0099 (11)0.0063 (12)
C2100.0562 (13)0.0474 (13)0.0452 (10)0.0077 (11)0.0029 (9)0.0053 (9)
C2110.0693 (16)0.084 (2)0.0841 (16)0.0134 (16)0.0101 (14)0.0062 (15)
C2120.103 (2)0.129 (3)0.105 (2)0.019 (2)0.0017 (19)0.051 (2)
C2130.104 (2)0.0619 (16)0.0795 (16)0.0050 (16)0.0102 (16)0.0254 (13)
C2140.091 (2)0.085 (2)0.105 (2)0.0210 (19)0.0075 (18)0.0182 (18)
C2150.0614 (15)0.0675 (16)0.0710 (14)0.0013 (14)0.0095 (12)0.0035 (12)
C2160.0775 (18)0.0654 (17)0.0807 (16)0.0008 (15)0.0161 (14)0.0152 (13)
C2170.0700 (16)0.0535 (15)0.0798 (16)0.0062 (14)0.0103 (13)0.0049 (12)
C2180.141 (3)0.101 (2)0.0775 (18)0.054 (2)0.020 (2)0.0130 (17)
C2190.0713 (17)0.0640 (17)0.0810 (16)0.0178 (14)0.0026 (14)0.0170 (13)
C2200.0780 (18)0.0523 (15)0.0736 (16)0.0091 (14)0.0035 (14)0.0079 (12)
Geometric parameters (Å, º) top
O101—C1201.283 (3)O201—C2201.285 (3)
O101—H1010.8200O201—H2010.8200
O102—C1201.250 (3)O202—C2201.246 (3)
C101—C1021.545 (3)C201—C2111.540 (3)
C101—C1111.552 (3)C201—C2021.547 (3)
C101—C1151.554 (3)C201—C2151.555 (3)
C101—C1101.561 (3)C201—C2101.561 (3)
C102—C1031.532 (3)C202—C2031.522 (4)
C102—C1121.540 (4)C202—C2121.528 (4)
C102—H1020.9800C202—H2020.9800
C103—C1041.513 (4)C203—C2041.509 (4)
C103—H10C0.9700C203—H20E0.9700
C103—H10D0.9700C203—H20F0.9700
C104—C1051.546 (3)C204—C2051.542 (3)
C104—H10A0.9700C204—H20A0.9700
C104—H10B0.9700C204—H20B0.9700
C105—C1061.522 (4)C205—C2061.531 (3)
C105—C1131.539 (3)C205—C2131.555 (3)
C105—C1101.568 (3)C205—C2101.560 (3)
C106—C1071.325 (4)C206—C2071.323 (3)
C106—C1141.504 (4)C206—C2141.516 (4)
C107—C1081.492 (4)C207—C2081.487 (4)
C107—H1070.9300C207—H2070.9300
C108—C1091.519 (4)C208—C2091.526 (4)
C108—H10G0.9700C208—H20G0.9700
C108—H10H0.9700C208—H20H0.9700
C109—C1101.525 (3)C209—C2101.534 (3)
C109—H10E0.9700C209—H20C0.9700
C109—H10F0.9700C209—H20D0.9700
C110—H1100.9800C210—H2100.9800
C111—H11E0.9600C211—H21H0.9600
C111—H11F0.9600C211—H21I0.9600
C111—H11G0.9600C211—H21J0.9600
C112—H11N0.9600C212—H21Q0.9600
C112—H11O0.9600C212—H21R0.9600
C112—H11P0.9600C212—H21S0.9600
C113—H11H0.9600C213—H21E0.9600
C113—H11I0.9600C213—H21F0.9600
C113—H11J0.9600C213—H21G0.9600
C114—H11Q0.9600C214—H21N0.9600
C114—H11R0.9600C214—H21O0.9600
C114—H11S0.9600C214—H21P0.9600
C115—C1161.529 (4)C215—C2161.519 (3)
C115—H11A0.9700C215—H21A0.9700
C115—H11B0.9700C215—H21B0.9700
C116—C1171.513 (3)C216—C2171.507 (3)
C116—H11C0.9700C216—H21C0.9700
C116—H11D0.9700C216—H21D0.9700
C117—C1191.310 (4)C217—C2191.331 (4)
C117—C1181.503 (4)C217—C2181.503 (4)
C118—H11K0.9600C218—H21K0.9600
C118—H11L0.9600C218—H21L0.9600
C118—H11M0.9600C218—H21M0.9600
C119—C1201.476 (4)C219—C2201.465 (4)
C119—H1190.9300C219—H2190.9300
C120—O101—H101109.5C220—O201—H201109.5
C102—C101—C111111.9 (2)C211—C201—C202112.09 (19)
C102—C101—C115109.25 (18)C211—C201—C215105.1 (2)
C111—C101—C115105.63 (19)C202—C201—C215109.19 (19)
C102—C101—C110108.90 (17)C211—C201—C210112.66 (19)
C111—C101—C110111.90 (18)C202—C201—C210108.25 (18)
C115—C101—C110109.20 (18)C215—C201—C210109.47 (18)
C103—C102—C112109.4 (2)C203—C202—C212110.8 (2)
C103—C102—C101113.24 (18)C203—C202—C201112.3 (2)
C112—C102—C101114.1 (2)C212—C202—C201113.7 (2)
C103—C102—H102106.5C203—C202—H202106.5
C112—C102—H102106.5C212—C202—H202106.5
C101—C102—H102106.5C201—C202—H202106.5
C104—C103—C102112.6 (2)C204—C203—C202112.92 (19)
C104—C103—H10C109.1C204—C203—H20E109.0
C102—C103—H10C109.1C202—C203—H20E109.0
C104—C103—H10D109.1C204—C203—H20F109.0
C102—C103—H10D109.1C202—C203—H20F109.0
H10C—C103—H10D107.8H20E—C203—H20F107.8
C103—C104—C105112.06 (19)C203—C204—C205113.0 (2)
C103—C104—H10A109.2C203—C204—H20A109.0
C105—C104—H10A109.2C205—C204—H20A109.0
C103—C104—H10B109.2C203—C204—H20B109.0
C105—C104—H10B109.2C205—C204—H20B109.0
H10A—C104—H10B107.9H20A—C204—H20B107.8
C106—C105—C113107.00 (18)C206—C205—C204110.4 (2)
C106—C105—C104110.85 (19)C206—C205—C213106.3 (2)
C113—C105—C104108.70 (18)C204—C205—C213109.56 (19)
C106—C105—C110107.88 (18)C206—C205—C210108.19 (17)
C113—C105—C110115.05 (19)C204—C205—C210107.22 (19)
C104—C105—C110107.37 (16)C213—C205—C210115.1 (2)
C107—C106—C114119.8 (3)C207—C206—C214119.7 (3)
C107—C106—C105122.1 (2)C207—C206—C205121.7 (2)
C114—C106—C105118.1 (2)C214—C206—C205118.6 (2)
C106—C107—C108125.7 (2)C206—C207—C208125.9 (3)
C106—C107—H107117.1C206—C207—H207117.0
C108—C107—H107117.1C208—C207—H207117.0
C107—C108—C109112.3 (2)C207—C208—C209112.9 (2)
C107—C108—H10G109.2C207—C208—H20G109.0
C109—C108—H10G109.2C209—C208—H20G109.0
C107—C108—H10H109.2C207—C208—H20H109.0
C109—C108—H10H109.2C209—C208—H20H109.0
H10G—C108—H10H107.9H20G—C208—H20H107.8
C108—C109—C110110.3 (2)C208—C209—C210109.8 (2)
C108—C109—H10E109.6C208—C209—H20C109.7
C110—C109—H10E109.6C210—C209—H20C109.7
C108—C109—H10F109.6C208—C209—H20D109.7
C110—C109—H10F109.6C210—C209—H20D109.7
H10E—C109—H10F108.1H20C—C209—H20D108.2
C109—C110—C101115.04 (18)C209—C210—C205109.65 (19)
C109—C110—C105109.55 (17)C209—C210—C201115.13 (18)
C101—C110—C105117.18 (17)C205—C210—C201117.16 (17)
C109—C110—H110104.5C209—C210—H210104.4
C101—C110—H110104.5C205—C210—H210104.4
C105—C110—H110104.5C201—C210—H210104.4
C101—C111—H11E109.5C201—C211—H21H109.5
C101—C111—H11F109.5C201—C211—H21I109.5
H11E—C111—H11F109.5H21H—C211—H21I109.5
C101—C111—H11G109.5C201—C211—H21J109.5
H11E—C111—H11G109.5H21H—C211—H21J109.5
H11F—C111—H11G109.5H21I—C211—H21J109.5
C102—C112—H11N109.5C202—C212—H21Q109.5
C102—C112—H11O109.5C202—C212—H21R109.5
H11N—C112—H11O109.5H21Q—C212—H21R109.5
C102—C112—H11P109.5C202—C212—H21S109.5
H11N—C112—H11P109.5H21Q—C212—H21S109.5
H11O—C112—H11P109.5H21R—C212—H21S109.5
C105—C113—H11H109.5C205—C213—H21E109.5
C105—C113—H11I109.5C205—C213—H21F109.5
H11H—C113—H11I109.5H21E—C213—H21F109.5
C105—C113—H11J109.5C205—C213—H21G109.5
H11H—C113—H11J109.5H21E—C213—H21G109.5
H11I—C113—H11J109.5H21F—C213—H21G109.5
C106—C114—H11Q109.5C206—C214—H21N109.5
C106—C114—H11R109.5C206—C214—H21O109.5
H11Q—C114—H11R109.5H21N—C214—H21O109.5
C106—C114—H11S109.5C206—C214—H21P109.5
H11Q—C114—H11S109.5H21N—C214—H21P109.5
H11R—C114—H11S109.5H21O—C214—H21P109.5
C116—C115—C101116.98 (19)C216—C215—C201119.5 (2)
C116—C115—H11A108.1C216—C215—H21A107.5
C101—C115—H11A108.1C201—C215—H21A107.5
C116—C115—H11B108.1C216—C215—H21B107.5
C101—C115—H11B108.1C201—C215—H21B107.5
H11A—C115—H11B107.3H21A—C215—H21B107.0
C117—C116—C115113.5 (2)C217—C216—C215111.6 (2)
C117—C116—H11C108.9C217—C216—H21C109.3
C115—C116—H11C108.9C215—C216—H21C109.3
C117—C116—H11D108.9C217—C216—H21D109.3
C115—C116—H11D108.9C215—C216—H21D109.3
H11C—C116—H11D107.7H21C—C216—H21D108.0
C119—C117—C118125.1 (2)C219—C217—C218124.4 (2)
C119—C117—C116119.3 (3)C219—C217—C216119.6 (2)
C118—C117—C116115.6 (3)C218—C217—C216115.9 (2)
C117—C118—H11K109.5C217—C218—H21K109.5
C117—C118—H11L109.5C217—C218—H21L109.5
H11K—C118—H11L109.5H21K—C218—H21L109.5
C117—C118—H11M109.5C217—C218—H21M109.5
H11K—C118—H11M109.5H21K—C218—H21M109.5
H11L—C118—H11M109.5H21L—C218—H21M109.5
C117—C119—C120129.7 (2)C217—C219—C220130.1 (3)
C117—C119—H119115.1C217—C219—H219115.0
C120—C119—H119115.1C220—C219—H219115.0
O102—C120—O101121.8 (2)O202—C220—O201122.0 (2)
O102—C120—C119123.6 (3)O202—C220—C219117.8 (2)
O101—C120—C119114.6 (2)O201—C220—C219120.1 (2)
C111—C101—C102—C10375.5 (3)C211—C201—C202—C20373.9 (3)
C115—C101—C102—C103167.9 (2)C215—C201—C202—C203170.1 (2)
C110—C101—C102—C10348.7 (3)C210—C201—C202—C20351.0 (3)
C111—C101—C102—C11250.5 (3)C211—C201—C202—C21252.9 (3)
C115—C101—C102—C11266.1 (3)C215—C201—C202—C21263.1 (3)
C110—C101—C102—C112174.7 (2)C210—C201—C202—C212177.8 (2)
C112—C102—C103—C104175.9 (2)C212—C202—C203—C204175.3 (3)
C101—C102—C103—C10455.6 (3)C201—C202—C203—C20456.3 (3)
C102—C103—C104—C10559.0 (3)C202—C203—C204—C20557.8 (3)
C103—C104—C105—C106172.56 (19)C203—C204—C205—C206170.7 (2)
C103—C104—C105—C11370.1 (2)C203—C204—C205—C21372.6 (3)
C103—C104—C105—C11055.0 (2)C203—C204—C205—C21053.0 (3)
C113—C105—C106—C107100.2 (3)C204—C205—C206—C207141.0 (2)
C104—C105—C106—C107141.4 (3)C213—C205—C206—C207100.2 (3)
C110—C105—C106—C10724.1 (3)C210—C205—C206—C20724.0 (3)
C113—C105—C106—C11476.4 (3)C204—C205—C206—C21440.7 (3)
C104—C105—C106—C11442.0 (3)C213—C205—C206—C21478.1 (3)
C110—C105—C106—C114159.3 (2)C210—C205—C206—C214157.8 (2)
C114—C106—C107—C108178.1 (3)C214—C206—C207—C208178.7 (3)
C105—C106—C107—C1081.5 (4)C205—C206—C207—C2080.4 (4)
C106—C107—C108—C1099.1 (4)C206—C207—C208—C2097.9 (4)
C107—C108—C109—C11040.1 (3)C207—C208—C209—C21039.0 (3)
C108—C109—C110—C101161.0 (2)C208—C209—C210—C20564.0 (3)
C108—C109—C110—C10564.5 (3)C208—C209—C210—C201161.3 (2)
C102—C101—C110—C109179.40 (19)C206—C205—C210—C20954.8 (2)
C111—C101—C110—C10956.4 (3)C204—C205—C210—C209173.93 (19)
C115—C101—C110—C10960.2 (2)C213—C205—C210—C20963.9 (3)
C102—C101—C110—C10549.7 (2)C206—C205—C210—C201171.57 (18)
C111—C101—C110—C10574.5 (2)C204—C205—C210—C20152.4 (3)
C115—C101—C110—C105168.90 (19)C213—C205—C210—C20169.7 (3)
C106—C105—C110—C10954.5 (2)C211—C201—C210—C20958.6 (3)
C113—C105—C110—C10964.8 (2)C202—C201—C210—C209176.90 (19)
C104—C105—C110—C109174.01 (18)C215—C201—C210—C20958.0 (2)
C106—C105—C110—C101172.11 (18)C211—C201—C210—C20572.6 (2)
C113—C105—C110—C10168.6 (2)C202—C201—C210—C20552.0 (2)
C104—C105—C110—C10152.6 (2)C215—C201—C210—C205170.88 (19)
C102—C101—C115—C11656.7 (3)C211—C201—C215—C216178.0 (2)
C111—C101—C115—C116177.1 (2)C202—C201—C215—C21657.6 (3)
C110—C101—C115—C11662.3 (3)C210—C201—C215—C21660.8 (3)
C101—C115—C116—C117171.6 (2)C201—C215—C216—C217171.8 (2)
C115—C116—C117—C119116.5 (3)C215—C216—C217—C219109.5 (3)
C115—C116—C117—C11864.2 (4)C215—C216—C217—C21868.7 (3)
C118—C117—C119—C1202.4 (5)C218—C217—C219—C2203.3 (5)
C116—C117—C119—C120176.8 (3)C216—C217—C219—C220174.7 (3)
C117—C119—C120—O1022.9 (5)C217—C219—C220—O202178.5 (3)
C117—C119—C120—O101175.8 (3)C217—C219—C220—O2010.6 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O101—H101···O2020.821.822.625 (3)168
O201—H201···O1020.821.902.700 (2)164
C212—H21R···O202i0.962.603.519 (4)159
Symmetry code: (i) x+5/2, y+2, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H32O2
Mr304.46
Crystal system, space groupOrthorhombic, P212121
Temperature (K)291
a, b, c (Å)12.5122 (3), 15.5439 (4), 19.1969 (4)
V3)3733.57 (15)
Z8
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.42 × 0.20 × 0.18
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
48366, 6240, 3146
Rint0.052
(sin θ/λ)max1)0.714
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.134, 1.00
No. of reflections6240
No. of parameters407
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.11, 0.12
Absolute structureFriedel pairs were merged

Computer programs: APEX2, COSMO and BIS (Bruker, 2006), SAINT (Bruker, 2006), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O101—H101···O2020.821.822.625 (3)168
O201—H201···O1020.821.902.700 (2)164
C212—H21R···O202i0.962.603.519 (4)159
Symmetry code: (i) x+5/2, y+2, z+1/2.
 

Acknowledgements

We thank FAPESP, CNPq and CAPES for financial support. Professor R. A. Burrow of the Federal University of Santa Maria is gratefully acknowledged for the collection of the intensity data.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBomm, M. D., Zukerman-Schpector, J. & Lopes, L. M. X. (1999). Phytochemistry, 50, 455–461.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2006). APEX2, COSMO, BIS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLopes, L. M. X., Bolzani, V. da S. & Trevisan, L. M. V. (1987). Phytochemistry, 26, 2781–2784.  CrossRef CAS Web of Science Google Scholar
First citationMessiano, G. B., Vieira, L., Machado, M. B., Lopes, L. M. X., De Bortoli, S. A. & Zukerman-Schpector, J. (2008). J. Agric. Food Chem. 56, 2655–2659.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNascimento, I. R., Murata, A. T., Bortoli, S. A. & Lopes, L. M. X. (2004). Pest Manag. Sci. 60, 413–416.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPuliti, R. & Mattia, C. A. (2000). J. Mol. Struct. 516, 31–41.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds