organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 6| June 2008| Pages o1045-o1046

Propane-1,2-di­ammonium bis­­(6-carb­oxy­pyridine-2-carboxyl­ate) dihydrate

aFaculty of Chemistry, Tarbiat Moallem University, 49 Mofateh Avenue, Tehran, Iran, and bDepartment of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj, Iran
*Correspondence e-mail: haghabozorg@yahoo.com

(Received 22 April 2008; accepted 5 May 2008; online 10 May 2008)

The reaction of propane-1,2-diamine (pn) and pyridine-2,6-dicarboxylic acid (pydcH2) in a 1:2 molar ratio in aqueous solution resulted in the formation of the title compound, C3H12N22+·2C7H4NO4·2H2O or (pnH2)(pydcH)2·2H2O. The structure contains two monoanionic deprotonated forms of pyridine-2,6-dicarboxylic acid molecules (pydcH), a diprotonated propane-1,2-diamine (pnH2)2+, and two water mol­ecules. A significant ππ stacking inter­action is observed between the pyridyl rings of the (pydcH) fragments, with a face-to-face distance of 3.6194 (9) Å. In the crystal structure, a wide range of non-covalent inter­actions consisting of ion pairing, hydrogen bonding [of the types of O—H⋯O, N—H⋯O, N—H⋯N and C—H⋯O, with DA distances in the range 2.454 (2)–3.222 (2)Å] and ππ stacking inter­actions [centroid–centroid distance = 3.6194 (9) Å] connect the components into a supra­molecular structure.

Related literature

For related literature, see: Aghabozorg et al. (2007[Aghabozorg, H., Ghadermazi, M., Sheshmani, S. & Attar Gharamaleki, J. (2007). Acta Cryst. E63, o2985-o2986.], 2008[Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. In the press.]); Aghabozorg, Ghadermazi & Attar Gharamaleki (2006[Aghabozorg, H., Ghadermazi, M. & Attar Gharamaleki, J. (2006). Acta Cryst. E62, o3174-o3176.]); Aghabozorg, Ghadermazi & Ramezanipour (2006[Aghabozorg, H., Ghadermazi, M. & Ramezanipour, F. (2006). Acta Cryst. E62, o1143-o1146.]).

[Scheme 1]

Experimental

Crystal data
  • C3H12N22+·2C7H4NO4·2H2O

  • Mr = 444.40

  • Triclinic, [P \overline 1]

  • a = 7.5587 (3) Å

  • b = 11.0388 (5) Å

  • c = 12.5821 (6) Å

  • α = 98.533 (1)°

  • β = 99.844 (1)°

  • γ = 106.410 (1)°

  • V = 970.52 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 100 (2) K

  • 0.11 × 0.10 × 0.06 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.984, Tmax = 0.993

  • 10335 measured reflections

  • 4242 independent reflections

  • 3220 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.104

  • S = 1.04

  • 4242 reflections

  • 280 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O8i 0.87 1.61 2.479 (2) 175
O1W—H1A⋯O7ii 0.87 1.78 2.649 (2) 177
O1W—H1B⋯O2Wiii 0.87 1.90 2.751 (2) 166
O2W—H2A⋯O4iii 0.87 2.00 2.855 (2) 169
O2W—H2B⋯O4 0.87 1.94 2.776 (2) 160
N3—H3B⋯N1iv 0.91 2.16 2.971 (2) 149
N3—H3C⋯O6v 0.91 1.92 2.819 (2) 172
N3—H3D⋯O1Wiii 0.91 1.88 2.790 (2) 176
N4—H4B⋯O1Wv 0.91 1.97 2.854 (2) 163
N4—H4C⋯N2vi 0.91 2.13 3.017 (2) 166
N4—H4D⋯O2vii 0.91 2.01 2.884 (2) 160
O5—H5⋯O3viii 0.87 1.59 2.454 (2) 178
C16—H16A⋯O5vi 1.00 2.54 3.182 (2) 122
C16—H16A⋯O6v 1.00 2.58 3.222 (2) 122
Symmetry codes: (i) x, y+1, z-1; (ii) x, y, z-1; (iii) -x+1, -y+1, -z+1; (iv) -x+1, -y+2, -z+1; (v) -x, -y+1, -z+1; (vi) x, y+1, z; (vii) x, y, z+1; (viii) x-1, y-1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently, we have defined a plan to prepare water soluble proton-transfer compounds as novel self assembled systems that can function as suitable ligands in the synthesis of metal complexes. In this regard, we have reported cases in which proton transfers from pyridine-2,6-dicarboxylic acid, pydcH2, and benzene-1,2,4,5-tetracarboxylic acid, btcH4, to propane-1,3-diamine (tn) and 1,10-phenanthroline, (phen). These resulted in the formation of some novel proton transfer compounds such as (pnH2)(pydc).(pydcH2).2.5H2O (Aghabozorg, Ghadermazi, Ramezanipour, 2006), (pnH2)2(btc).2H2O (Aghabozorg, et al., 2007) and (phenH)4(btcH3)2(btcH2) (Aghabozorg, Ghadermazi, Attar Gharamaleki, 2006). For more details and related literature see our recent review article (Aghabozorg, et al., 2008).

The molecular structure of the title compound is shown in Fig. 1. The crystal structure shows that a single proton from each of the carboxyl groups was transferred to the propane-1,2-diamine molecule (pn), rendering it a dication. Thus, the negative charges of two monoanionic 6-carboxypyridine-2-carboxylate groups, (pydcH)-, are neutralized by a doubly protonated propane-1,2-diammonium, (pnH2)2+, fragment.

An alternating π-π stacking interaction exits between the two aromatic rings of (pydcH)- with centroid-centroid distance of 3.6194 (9) Å [-x, 1 - y, 1 - z] (Fig. 2).

The C–O distances for this compound support the existence of both ionic and non-ionic acid moieties. The long bond distances of C6–O1 [1.2982 (19) Å] and C13–O5 [1.2936 (19) Å] imply the presence of neutral form of carboxylic acids, whereas the relatively short bond distances of C6–O2 [1.2239 (19) Å] and C13–O6 [1.2260 (19) Å] confirm the presence of double bonds.

A number of O—H···O, N—H···O, N–H···N and C—H···O hydrogen bonds, with D···A distances ranging from 2.454 (2) to 3.222 (2) Å, are observed in the crystal structure of the title compound (Table 1). The shortest hydrogen bond is O5—H5···O3viii (x - 1, y - 1, z) with D···A = 2.454 (2) Å, a strong interaction. Water molecules in this structure increase the number of hydrogen bonding interactions. Ion pairing, π-π stacking and van der Waals interactions are also effective in the packing of the crystal structure. These interactions result in the formation of a supramolecular structure (Fig. 3).

Related literature top

For related literature, see: Aghabozorg et al. (2007, 2008); Aghabozorg, Ghadermazi & Attar Gharamaleki (2006); Aghabozorg, Ghadermazi & Ramezanipour (2006).

Experimental top

Solutions of propane-1,2-diamine (40 mg, 1 mmol) in THF (10 ml) and pyridine-2,6-dicarboxylic acid (360 mg, 2 mmol) in H2O (10 ml) were added to each other in a 1:2 molar ratio, and the reaction mixture was heated at about 40°C for 2 h. Yellow crystals of the title compound were obtained from the solution after three weeks at room temperature.

Refinement top

The hydrogen atoms of NH3 and OH groups, and also H atoms of water molecules were found in difference Fourier synthesis. The H(C) atom positions were calculated. All H(N) and H(O) atoms were refined in isotropic approximation in rigid model, the H(C) atoms were refined in isotropic approximatiom in riding model with with the Uiso(H) parameters equal to 1.2 Ueq(Xi) for OH, CH and CH2 gropus and 1.5 Ueq(Xii) for NH3 and CH3 group, where U(Xi) and U(Ni) are respectively the equivalent thermal parameters of the atoms to which corresponding H atoms are bonded.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 (Bruker, 2007); data reduction: APEX2 (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A view of π-π stacking interactions between the two aromatic rings of (pydcH)- fragments with centroid-centroid distance of 3.6194 (9) Å [-x, 1 -y, 1 -z].
[Figure 3] Fig. 3. The crystal packing of the title compound with hydrogen bonds shown as dashed lines as viewed approximately down a.
propane-1,2-diammonium bis(6-carboxypyridine-2-carboxylate) dihydrate top
Crystal data top
C3H12N22+·2C7H4NO4·2(H2O)Z = 2
Mr = 444.40F(000) = 468
Triclinic, P1Dx = 1.521 Mg m3
a = 7.5587 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.0388 (5) ÅCell parameters from 2295 reflections
c = 12.5821 (6) Åθ = 3–27°
α = 98.533 (1)°µ = 0.13 mm1
β = 99.844 (1)°T = 100 K
γ = 106.410 (1)°Prism, light yellow
V = 970.52 (7) Å30.11 × 0.10 × 0.06 mm
Data collection top
Bruker SMART APEXII
diffractometer
4242 independent reflections
Radiation source: fine-focus sealed tube3220 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 27.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.984, Tmax = 0.993k = 1414
10335 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: mixed
wR(F2) = 0.104H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.05P)2 + 0.22P]
where P = (Fo2 + 2Fc2)/3
4242 reflections(Δ/σ)max < 0.001
280 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C3H12N22+·2C7H4NO4·2(H2O)γ = 106.410 (1)°
Mr = 444.40V = 970.52 (7) Å3
Triclinic, P1Z = 2
a = 7.5587 (3) ÅMo Kα radiation
b = 11.0388 (5) ŵ = 0.13 mm1
c = 12.5821 (6) ÅT = 100 K
α = 98.533 (1)°0.11 × 0.10 × 0.06 mm
β = 99.844 (1)°
Data collection top
Bruker SMART APEXII
diffractometer
4242 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3220 reflections with I > 2σ(I)
Tmin = 0.984, Tmax = 0.993Rint = 0.033
10335 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.04Δρmax = 0.36 e Å3
4242 reflectionsΔρmin = 0.34 e Å3
280 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.30330 (16)0.96417 (11)0.10525 (9)0.0158 (3)
H10.27281.01220.06100.019*
O20.12513 (17)0.79720 (11)0.03137 (9)0.0171 (3)
O30.62921 (18)0.89335 (11)0.43063 (10)0.0234 (3)
O40.58090 (17)0.69734 (11)0.46855 (9)0.0176 (3)
N10.38792 (19)0.80055 (12)0.23258 (11)0.0117 (3)
C10.4249 (2)0.71578 (15)0.29333 (13)0.0120 (3)
C20.3517 (2)0.58307 (15)0.25576 (13)0.0139 (3)
H2C0.37690.52670.30230.017*
C30.2419 (2)0.53364 (16)0.14993 (14)0.0150 (3)
H3A0.19180.44310.12200.018*
C40.2069 (2)0.61941 (16)0.08566 (14)0.0145 (3)
H4A0.13500.58880.01180.017*
C50.2784 (2)0.75089 (15)0.13067 (13)0.0117 (3)
C60.2292 (2)0.84218 (15)0.06044 (13)0.0126 (3)
C70.5543 (2)0.77185 (15)0.40738 (14)0.0139 (3)
O50.17333 (17)0.01198 (11)0.61266 (10)0.0175 (3)
H50.24120.03120.54800.021*
O60.18863 (17)0.17699 (11)0.53087 (9)0.0180 (3)
O70.41198 (17)0.28482 (12)1.04946 (10)0.0210 (3)
O80.20387 (17)0.08880 (11)0.97111 (9)0.0171 (3)
N20.08176 (19)0.17610 (13)0.79041 (11)0.0114 (3)
C80.0191 (2)0.22487 (15)0.70500 (13)0.0121 (3)
C90.0797 (2)0.35514 (16)0.70194 (13)0.0138 (3)
H9A0.03170.38530.63970.017*
C100.2115 (2)0.44020 (16)0.79162 (14)0.0154 (4)
H10A0.25590.52990.79230.019*
C110.2769 (2)0.39153 (16)0.87986 (13)0.0139 (3)
H11A0.36700.44780.94250.017*
C120.2104 (2)0.26003 (15)0.87667 (13)0.0111 (3)
C130.1263 (2)0.13271 (15)0.60740 (13)0.0130 (3)
C140.2828 (2)0.20755 (15)0.97451 (13)0.0132 (3)
N30.41675 (19)0.91821 (13)0.68441 (11)0.0129 (3)
H3B0.50700.99600.69400.019*
H3C0.34990.89380.61320.019*
H3D0.47300.85830.70040.019*
C150.2867 (2)0.92892 (17)0.75906 (14)0.0180 (4)
H15A0.29531.02070.78060.022*
H15B0.32820.89960.82690.022*
C160.0823 (2)0.85019 (15)0.70690 (14)0.0145 (3)
H16A0.04510.87520.63520.017*
C170.0413 (3)0.70574 (17)0.68557 (16)0.0230 (4)
H17A0.09310.66310.65100.034*
H17B0.07190.67910.75550.034*
H17C0.11840.68120.63630.034*
N40.03197 (19)0.88970 (13)0.78355 (11)0.0130 (3)
H4B0.15640.84350.75660.019*
H4C0.01680.97540.78940.019*
H4D0.00780.87430.85120.019*
O1W0.41860 (16)0.26610 (11)0.25748 (9)0.0162 (3)
H1B0.48970.33580.30490.019*
H1A0.41980.27190.18940.019*
O2W0.33952 (17)0.54108 (12)0.57226 (10)0.0204 (3)
H2B0.39330.58140.52600.024*
H2A0.34850.46360.55980.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0200 (6)0.0109 (6)0.0138 (6)0.0032 (5)0.0022 (5)0.0045 (5)
O20.0199 (6)0.0167 (6)0.0112 (6)0.0044 (5)0.0032 (5)0.0026 (5)
O30.0325 (8)0.0109 (6)0.0166 (6)0.0008 (5)0.0103 (6)0.0018 (5)
O40.0226 (7)0.0144 (6)0.0135 (6)0.0041 (5)0.0012 (5)0.0055 (5)
N10.0114 (7)0.0118 (7)0.0106 (6)0.0026 (5)0.0014 (5)0.0020 (5)
C10.0105 (8)0.0130 (8)0.0126 (8)0.0033 (6)0.0029 (6)0.0030 (6)
C20.0152 (8)0.0120 (8)0.0155 (8)0.0053 (6)0.0027 (7)0.0049 (6)
C30.0156 (8)0.0108 (8)0.0170 (8)0.0032 (6)0.0030 (7)0.0005 (6)
C40.0133 (8)0.0151 (8)0.0125 (8)0.0040 (7)0.0001 (6)0.0002 (6)
C50.0092 (7)0.0131 (8)0.0125 (8)0.0029 (6)0.0024 (6)0.0028 (6)
C60.0102 (8)0.0153 (8)0.0120 (8)0.0030 (6)0.0030 (6)0.0029 (6)
C70.0156 (8)0.0120 (8)0.0139 (8)0.0047 (6)0.0024 (7)0.0025 (6)
O50.0208 (6)0.0129 (6)0.0130 (6)0.0027 (5)0.0052 (5)0.0006 (5)
O60.0221 (7)0.0159 (6)0.0121 (6)0.0045 (5)0.0040 (5)0.0030 (5)
O70.0225 (7)0.0188 (7)0.0135 (6)0.0003 (5)0.0056 (5)0.0032 (5)
O80.0211 (6)0.0132 (6)0.0144 (6)0.0040 (5)0.0017 (5)0.0042 (5)
N20.0108 (7)0.0140 (7)0.0094 (6)0.0042 (5)0.0017 (5)0.0020 (5)
C80.0110 (8)0.0145 (8)0.0106 (8)0.0045 (6)0.0023 (6)0.0015 (6)
C90.0138 (8)0.0164 (9)0.0128 (8)0.0052 (7)0.0035 (6)0.0058 (6)
C100.0156 (8)0.0123 (8)0.0184 (9)0.0035 (7)0.0041 (7)0.0046 (6)
C110.0111 (8)0.0142 (8)0.0133 (8)0.0016 (6)0.0011 (6)0.0001 (6)
C120.0096 (7)0.0125 (8)0.0110 (8)0.0031 (6)0.0033 (6)0.0014 (6)
C130.0137 (8)0.0140 (8)0.0118 (8)0.0053 (6)0.0027 (6)0.0027 (6)
C140.0144 (8)0.0132 (8)0.0128 (8)0.0054 (7)0.0035 (7)0.0024 (6)
N30.0131 (7)0.0123 (7)0.0127 (7)0.0035 (5)0.0014 (6)0.0032 (5)
C150.0154 (9)0.0192 (9)0.0162 (8)0.0026 (7)0.0038 (7)0.0004 (7)
C160.0136 (8)0.0149 (8)0.0144 (8)0.0044 (7)0.0029 (7)0.0013 (6)
C170.0234 (10)0.0160 (9)0.0278 (10)0.0036 (7)0.0090 (8)0.0007 (7)
N40.0129 (7)0.0123 (7)0.0121 (7)0.0033 (5)0.0003 (5)0.0019 (5)
O1W0.0175 (6)0.0152 (6)0.0134 (6)0.0030 (5)0.0006 (5)0.0027 (5)
O2W0.0261 (7)0.0168 (6)0.0190 (6)0.0065 (5)0.0062 (5)0.0051 (5)
Geometric parameters (Å, º) top
O1—C61.2982 (19)C9—H9A0.9500
O1—H10.8700C10—C111.380 (2)
O2—C61.2239 (19)C10—H10A0.9500
O3—C71.266 (2)C11—C121.387 (2)
O4—C71.240 (2)C11—H11A0.9500
N1—C51.343 (2)C12—C141.520 (2)
N1—C11.351 (2)N3—C151.487 (2)
C1—C21.387 (2)N3—H3B0.9100
C1—C71.521 (2)N3—H3C0.9100
C2—C31.382 (2)N3—H3D0.9100
C2—H2C0.9500C15—C161.516 (2)
C3—C41.384 (2)C15—H15A0.9900
C3—H3A0.9500C15—H15B0.9900
C4—C51.388 (2)C16—N41.496 (2)
C4—H4A0.9500C16—C171.509 (2)
C5—C61.516 (2)C16—H16A1.0000
O5—C131.2936 (19)C17—H17A0.9800
O5—H50.8701C17—H17B0.9800
O6—C131.2260 (19)C17—H17C0.9800
O7—C141.244 (2)N4—H4B0.9100
O8—C141.2684 (19)N4—H4C0.9100
N2—C81.346 (2)N4—H4D0.9100
N2—C121.347 (2)O1W—H1B0.8700
C8—C91.389 (2)O1W—H1A0.8699
C8—C131.512 (2)O2W—H2B0.8700
C9—C101.386 (2)O2W—H2A0.8700
C6—O1—H1111.7C11—C12—C14119.22 (14)
C5—N1—C1116.90 (13)O6—C13—O5125.65 (15)
N1—C1—C2122.99 (15)O6—C13—C8118.45 (14)
N1—C1—C7117.01 (14)O5—C13—C8115.90 (14)
C2—C1—C7119.99 (14)O7—C14—O8126.73 (15)
C3—C2—C1119.31 (15)O7—C14—C12117.09 (14)
C3—C2—H2C120.3O8—C14—C12116.18 (14)
C1—C2—H2C120.3C15—N3—H3B109.5
C2—C3—C4118.32 (15)C15—N3—H3C109.5
C2—C3—H3A120.8H3B—N3—H3C109.5
C4—C3—H3A120.8C15—N3—H3D109.5
C3—C4—C5119.02 (15)H3B—N3—H3D109.5
C3—C4—H4A120.5H3C—N3—H3D109.5
C5—C4—H4A120.5N3—C15—C16112.99 (14)
N1—C5—C4123.36 (15)N3—C15—H15A109.0
N1—C5—C6118.79 (14)C16—C15—H15A109.0
C4—C5—C6117.85 (14)N3—C15—H15B109.0
O2—C6—O1125.56 (15)C16—C15—H15B109.0
O2—C6—C5119.01 (14)H15A—C15—H15B107.8
O1—C6—C5115.43 (13)N4—C16—C17110.23 (14)
O4—C7—O3125.45 (15)N4—C16—C15106.01 (13)
O4—C7—C1118.87 (14)C17—C16—C15115.19 (15)
O3—C7—C1115.66 (14)N4—C16—H16A108.4
C13—O5—H5106.7C17—C16—H16A108.4
C8—N2—C12117.06 (14)C15—C16—H16A108.4
N2—C8—C9123.62 (15)C16—C17—H17A109.5
N2—C8—C13118.08 (14)C16—C17—H17B109.5
C9—C8—C13118.30 (14)H17A—C17—H17B109.5
C10—C9—C8118.53 (15)C16—C17—H17C109.5
C10—C9—H9A120.7H17A—C17—H17C109.5
C8—C9—H9A120.7H17B—C17—H17C109.5
C11—C10—C9118.47 (15)C16—N4—H4B109.5
C11—C10—H10A120.8C16—N4—H4C109.5
C9—C10—H10A120.8H4B—N4—H4C109.5
C10—C11—C12119.66 (15)C16—N4—H4D109.5
C10—C11—H11A120.2H4B—N4—H4D109.5
C12—C11—H11A120.2H4C—N4—H4D109.5
N2—C12—C11122.65 (15)H1B—O1W—H1A113.3
N2—C12—C14118.13 (14)H2B—O2W—H2A106.8
C5—N1—C1—C21.5 (2)C12—N2—C8—C13179.63 (14)
C5—N1—C1—C7178.02 (14)N2—C8—C9—C100.2 (2)
N1—C1—C2—C32.7 (3)C13—C8—C9—C10179.40 (15)
C7—C1—C2—C3176.84 (15)C8—C9—C10—C110.1 (2)
C1—C2—C3—C40.9 (2)C9—C10—C11—C120.2 (2)
C2—C3—C4—C51.8 (2)C8—N2—C12—C110.4 (2)
C1—N1—C5—C41.4 (2)C8—N2—C12—C14179.70 (14)
C1—N1—C5—C6178.54 (14)C10—C11—C12—N20.5 (2)
C3—C4—C5—N13.1 (3)C10—C11—C12—C14179.77 (15)
C3—C4—C5—C6176.86 (15)N2—C8—C13—O6177.64 (15)
N1—C5—C6—O2178.03 (15)C9—C8—C13—O62.0 (2)
C4—C5—C6—O21.9 (2)N2—C8—C13—O52.6 (2)
N1—C5—C6—O11.7 (2)C9—C8—C13—O5177.79 (14)
C4—C5—C6—O1178.34 (14)N2—C12—C14—O7174.56 (15)
N1—C1—C7—O4175.02 (15)C11—C12—C14—O76.1 (2)
C2—C1—C7—O45.4 (2)N2—C12—C14—O85.7 (2)
N1—C1—C7—O36.2 (2)C11—C12—C14—O8173.67 (15)
C2—C1—C7—O3173.32 (15)N3—C15—C16—N4170.15 (13)
C12—N2—C8—C90.1 (2)N3—C15—C16—C1767.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O8i0.871.612.479 (2)175
O1W—H1A···O7ii0.871.782.649 (2)177
O1W—H1B···O2Wiii0.871.902.751 (2)166
O2W—H2A···O4iii0.872.002.855 (2)169
O2W—H2B···O40.871.942.776 (2)160
N3—H3B···N1iv0.912.162.971 (2)149
N3—H3C···O6v0.911.922.819 (2)172
N3—H3D···O1Wiii0.911.882.790 (2)176
N4—H4B···O1Wv0.911.972.854 (2)163
N4—H4C···N2vi0.912.133.017 (2)166
N4—H4D···O2vii0.912.012.884 (2)160
O5—H5···O3viii0.871.592.454 (2)178
C16—H16A···O5vi1.002.543.182 (2)122
C16—H16A···O6v1.002.583.222 (2)122
Symmetry codes: (i) x, y+1, z1; (ii) x, y, z1; (iii) x+1, y+1, z+1; (iv) x+1, y+2, z+1; (v) x, y+1, z+1; (vi) x, y+1, z; (vii) x, y, z+1; (viii) x1, y1, z.

Experimental details

Crystal data
Chemical formulaC3H12N22+·2C7H4NO4·2(H2O)
Mr444.40
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.5587 (3), 11.0388 (5), 12.5821 (6)
α, β, γ (°)98.533 (1), 99.844 (1), 106.410 (1)
V3)970.52 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.11 × 0.10 × 0.06
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.984, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
10335, 4242, 3220
Rint0.033
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.104, 1.04
No. of reflections4242
No. of parameters280
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.34

Computer programs: APEX2 (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O8i0.871.612.479 (2)175
O1W—H1A···O7ii0.871.782.649 (2)177
O1W—H1B···O2Wiii0.871.902.751 (2)166
O2W—H2A···O4iii0.872.002.855 (2)169
O2W—H2B···O40.871.942.776 (2)160
N3—H3B···N1iv0.912.162.971 (2)149
N3—H3C···O6v0.911.922.819 (2)172
N3—H3D···O1Wiii0.911.882.790 (2)176
N4—H4B···O1Wv0.911.972.854 (2)163
N4—H4C···N2vi0.912.133.017 (2)166
N4—H4D···O2vii0.912.012.884 (2)160
O5—H5···O3viii0.871.592.454 (2)178
C16—H16A···O5vi1.002.543.182 (2)122
C16—H16A···O6v1.002.583.222 (2)122
Symmetry codes: (i) x, y+1, z1; (ii) x, y, z1; (iii) x+1, y+1, z+1; (iv) x+1, y+2, z+1; (v) x, y+1, z+1; (vi) x, y+1, z; (vii) x, y, z+1; (viii) x1, y1, z.
 

References

First citationAghabozorg, H., Ghadermazi, M. & Attar Gharamaleki, J. (2006). Acta Cryst. E62, o3174–o3176.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Ghadermazi, M. & Ramezanipour, F. (2006). Acta Cryst. E62, o1143–o1146.  CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Ghadermazi, M., Sheshmani, S. & Attar Gharamaleki, J. (2007). Acta Cryst. E63, o2985–o2986.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. In the press.  Google Scholar
First citationBruker (2007). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 6| June 2008| Pages o1045-o1046
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds