supplementary materials


pk2096 scheme

Acta Cryst. (2008). E64, o1115    [ doi:10.1107/S1600536808014761 ]

2-Methyl-1,1,3,3-tetraphenylpropan-2-ol

D.-X. Shi, L.-J. Zhang, Q. Zhang and J.-R. Li

Abstract top

The title compound, C28H26O, was synthesized by condensation of diphenylmethyllithium and ethyl acetate. In one diphenylmethyl group, the two benzene rings are rotated by 65.0 (3)° with respect to each other, while in the other diphenylmethyl group, the dihedral angle between the two benzene rings is 84.1 (3)°.

Comment top

Diphenylmethane derivatives are potentially useful precursors to a variety of medicinal agents (Lednicer et al.,1990). In our approach to the preparation of diphenylacetone by reaction of diphenylmethyllithium with ethyl acetate (Bunce & Dowdy, 1990), the title compound, 2-methyl-1,1,3,3-tetraphenylpropan-2-ol, was formed as a double addition product.

There are two diphenymethyl groups in the title compound. In one of these, the two benzene rings are inclined at an angle of 115.0 (3)°, and in the other the dihedral angle between the two benzene rings is 84.1 (3)° which is somewhat different from the corresponding angles found in 3,4,4-trichloro-1-[4-(diphenylmethyl)-piperazine-1-yl]- 2-nitro-1-(propylsulfanyl)-buta-1,3-diene, viz. 80.6 (1)° (Ibis & Deniz, 2007). The plane (C4/C2/O1) and plane (C1/C2/C3) are rotated 92.4 (3)° with respect to each other.

Related literature top

For related literature, see: Bunce & Dowdy (1990); Ibis & Deniz (2007); Lednicer et al. (1990).

Experimental top

To a stirred solution of ethyl acetate (20 mmol) in dry THF (30 ml) a solution of diphenylmethyllithium (40 mmol) in THF (30 ml) was added dropwise. After stirring at room temperature for 20 min to ensure complete reaction, the mixture was cooled and quenched with HCl (1M, 50 ml). The mixture was transferred to a separatory funnel and extrated with ether (40 ml) 3 times. Then, the ether was washed with saturated aqueous Na2CO3, water and dried with sodium sulfate. Evaporation of the solvent and recrystallization from petroleum ether yielded precipitate as fine colorless needles. M.p. 406–408 K; IR (KBr): 3563(O—H), 3026,2938 (C—H) cm-1; 1H-NMR(CDCl3, p.p.m.): 1.30 (3H, s), 1.69 (1H, s), 4.13 (2H, s),7.21–7.45 (20H, m); 13C-NMR(CDCl3, p.p.m.): 25.7, 60.5, 71.4,126.5, 128.2, 130.2, 141.2; The product (100 mg) was dissolved in ethyl acetate (2 ml) and petroleum ether (5 ml) and the solution was kept at room temperature for 5 d yielding colorless single crystals.

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding with C-H = 0.95 Å (CarH), 0.98 Å (RCH3) or 1.00 Å (R3CH) and Uiso(H) values of either 1.2 Ueq or 1.5 Ueq (RCH3). The OH hydrogen was found in a difference Fourier map and refined (O-H = 0.90 Å) with Uiso(H) constrained to 1.5 Ueq (O).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2006).

Figures top
[Figure 1] Fig. 1. The molecular structure, drawn with 30% probability ellipsoids
[Figure 2] Fig. 2. The crystal structure, viewed along a axis
2-Methyl-1,1,3,3-tetraphenylpropan-2-ol top
Crystal data top
C28H26OF000 = 808
Mr = 378.49Dx = 1.217 Mg m3
Monoclinic, P21/nMo Kα radiation
λ = 0.71070 Å
Hall symbol: -P 2ynCell parameters from 4487 reflections
a = 8.4313 (4) Åθ = 2.2–27.9º
b = 23.8539 (11) ŵ = 0.07 mm1
c = 10.3420 (5) ÅT = 113 (2) K
β = 96.624 (3)ºPrism, colorless
V = 2066.09 (17) Å30.22 × 0.20 × 0.18 mm
Z = 4
Data collection top
Rigaku Saturn CCD
diffractometer
3633 independent reflections
Radiation source: rotating anode3442 reflections with I > 2σ(I)
Monochromator: confocal multilayer opticsRint = 0.050
Detector resolution: 14.63 pixels mm-1θmax = 25.0º
T = 113(2) Kθmin = 2.2º
ω scansh = 10→10
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 28→28
Tmin = 0.980, Tmax = 0.985l = 12→11
15409 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of
independent and constrained refinement
R[F2 > 2σ(F2)] = 0.053  w = 1/[σ2(Fo2) + (0.0381P)2 + 0.9679P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.116(Δ/σ)max = 0.001
S = 1.11Δρmax = 0.19 e Å3
3633 reflectionsΔρmin = 0.20 e Å3
267 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0182 (16)
Secondary atom site location: difference Fourier map
Crystal data top
C28H26OV = 2066.09 (17) Å3
Mr = 378.49Z = 4
Monoclinic, P21/nMo Kα
a = 8.4313 (4) ŵ = 0.07 mm1
b = 23.8539 (11) ÅT = 113 (2) K
c = 10.3420 (5) Å0.22 × 0.20 × 0.18 mm
β = 96.624 (3)º
Data collection top
Rigaku Saturn CCD
diffractometer
3633 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
3442 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.985Rint = 0.050
15409 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.053267 parameters
wR(F2) = 0.116H atoms treated by a mixture of
independent and constrained refinement
S = 1.11Δρmax = 0.19 e Å3
3633 reflectionsΔρmin = 0.20 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.31548 (15)0.05491 (5)0.07175 (11)0.0266 (3)
H10.261 (3)0.0232 (9)0.082 (2)0.040*
C10.47972 (19)0.12873 (7)0.18234 (16)0.0200 (4)
H1A0.52150.14060.27260.024*
C20.3887 (2)0.07256 (7)0.19928 (16)0.0210 (4)
C30.2473 (2)0.08319 (7)0.28398 (16)0.0207 (4)
H30.17150.10800.22890.025*
C40.5084 (2)0.02774 (7)0.25298 (18)0.0257 (4)
H4A0.45070.00570.27660.039*
H4B0.57370.04230.33020.039*
H4C0.57750.01790.18650.039*
C50.3781 (2)0.17823 (7)0.12541 (16)0.0209 (4)
C60.3655 (2)0.22646 (7)0.20063 (17)0.0242 (4)
H60.41240.22680.28870.029*
C70.2853 (2)0.27396 (8)0.14873 (19)0.0312 (5)
H70.27850.30640.20110.037*
C80.2156 (2)0.27379 (8)0.02062 (19)0.0309 (5)
H80.16090.30600.01510.037*
C90.2263 (2)0.22615 (8)0.05520 (18)0.0283 (4)
H90.17810.22590.14290.034*
C100.3073 (2)0.17876 (7)0.00380 (16)0.0234 (4)
H100.31450.14660.05690.028*
C110.6273 (2)0.12517 (7)0.10844 (16)0.0209 (4)
C120.6302 (2)0.09609 (7)0.00935 (16)0.0247 (4)
H120.54110.07390.04250.030*
C130.7628 (2)0.09956 (7)0.07790 (17)0.0258 (4)
H130.76400.07920.15670.031*
C140.8932 (2)0.13250 (7)0.03209 (17)0.0259 (4)
H140.98230.13520.08020.031*
C150.8925 (2)0.16146 (7)0.08431 (18)0.0255 (4)
H150.98120.18410.11610.031*
C160.7610 (2)0.15716 (7)0.15446 (17)0.0236 (4)
H160.76240.17640.23510.028*
C170.2875 (2)0.11566 (7)0.41090 (16)0.0217 (4)
C180.1949 (2)0.16277 (7)0.43236 (18)0.0280 (4)
H180.10900.17290.36900.034*
C190.2261 (3)0.19528 (8)0.54486 (19)0.0348 (5)
H190.16230.22730.55690.042*
C200.3501 (3)0.18077 (8)0.63886 (19)0.0350 (5)
H200.37350.20330.71430.042*
C210.4394 (2)0.13327 (8)0.62203 (18)0.0318 (5)
H210.52150.12230.68790.038*
C220.4095 (2)0.10121 (8)0.50852 (16)0.0261 (4)
H220.47310.06910.49760.031*
C230.1510 (2)0.02965 (7)0.30277 (16)0.0210 (4)
C240.1924 (2)0.00805 (7)0.40487 (17)0.0258 (4)
H240.28270.00040.46610.031*
C250.1038 (2)0.05649 (8)0.41854 (18)0.0294 (4)
H250.13500.08180.48780.035*
C260.0301 (2)0.06799 (8)0.33105 (18)0.0296 (4)
H260.09100.10090.34060.035*
C270.0739 (2)0.03107 (8)0.22989 (19)0.0287 (4)
H270.16510.03880.16970.034*
C280.0153 (2)0.01748 (7)0.21599 (17)0.0252 (4)
H280.01650.04260.14660.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0300 (7)0.0285 (7)0.0213 (7)0.0063 (6)0.0031 (5)0.0030 (5)
C10.0198 (9)0.0214 (9)0.0188 (8)0.0009 (7)0.0027 (7)0.0011 (7)
C20.0238 (9)0.0214 (9)0.0177 (8)0.0001 (7)0.0021 (7)0.0016 (7)
C30.0212 (9)0.0208 (9)0.0205 (9)0.0019 (7)0.0037 (7)0.0013 (7)
C40.0252 (10)0.0236 (9)0.0290 (10)0.0027 (7)0.0056 (8)0.0040 (7)
C50.0180 (9)0.0234 (9)0.0221 (9)0.0016 (7)0.0057 (7)0.0019 (7)
C60.0245 (9)0.0240 (9)0.0245 (9)0.0012 (7)0.0041 (7)0.0024 (7)
C70.0361 (11)0.0231 (10)0.0362 (11)0.0036 (8)0.0116 (9)0.0011 (8)
C80.0329 (11)0.0273 (10)0.0339 (11)0.0088 (8)0.0104 (8)0.0071 (8)
C90.0274 (10)0.0332 (11)0.0250 (10)0.0058 (8)0.0064 (8)0.0054 (8)
C100.0239 (9)0.0246 (9)0.0224 (9)0.0033 (7)0.0058 (7)0.0011 (7)
C110.0215 (9)0.0196 (9)0.0217 (9)0.0031 (7)0.0027 (7)0.0034 (7)
C120.0244 (9)0.0252 (9)0.0248 (9)0.0015 (7)0.0037 (7)0.0022 (7)
C130.0274 (10)0.0260 (10)0.0244 (9)0.0017 (8)0.0052 (8)0.0009 (7)
C140.0234 (9)0.0264 (10)0.0292 (10)0.0017 (7)0.0089 (8)0.0041 (8)
C150.0217 (9)0.0227 (9)0.0322 (10)0.0014 (7)0.0032 (8)0.0001 (7)
C160.0237 (9)0.0238 (9)0.0231 (9)0.0007 (7)0.0017 (7)0.0011 (7)
C170.0240 (9)0.0215 (9)0.0210 (9)0.0042 (7)0.0081 (7)0.0002 (7)
C180.0326 (11)0.0239 (10)0.0294 (10)0.0018 (8)0.0113 (8)0.0005 (8)
C190.0460 (13)0.0260 (10)0.0362 (11)0.0046 (9)0.0212 (10)0.0065 (8)
C200.0457 (12)0.0347 (11)0.0272 (10)0.0174 (9)0.0155 (9)0.0111 (8)
C210.0343 (11)0.0390 (11)0.0224 (9)0.0122 (9)0.0044 (8)0.0006 (8)
C220.0287 (10)0.0262 (10)0.0242 (9)0.0040 (8)0.0057 (8)0.0011 (7)
C230.0224 (9)0.0196 (9)0.0219 (9)0.0017 (7)0.0060 (7)0.0017 (7)
C240.0279 (10)0.0277 (10)0.0222 (9)0.0009 (8)0.0045 (7)0.0005 (7)
C250.0358 (11)0.0264 (10)0.0277 (10)0.0007 (8)0.0105 (8)0.0035 (8)
C260.0295 (10)0.0269 (10)0.0347 (11)0.0051 (8)0.0139 (8)0.0030 (8)
C270.0232 (10)0.0292 (10)0.0342 (10)0.0040 (8)0.0052 (8)0.0049 (8)
C280.0237 (9)0.0256 (9)0.0263 (10)0.0024 (7)0.0032 (7)0.0013 (7)
Geometric parameters (Å, °) top
O1—C21.453 (2)C13—C141.389 (3)
O1—H10.90 (2)C13—H130.9500
C1—C51.536 (2)C14—C151.388 (3)
C1—C111.536 (2)C14—H140.9500
C1—C21.564 (2)C15—C161.397 (2)
C1—H1A1.0000C15—H150.9500
C2—C41.530 (2)C16—H160.9500
C2—C31.579 (2)C17—C221.399 (2)
C3—C171.528 (2)C17—C181.400 (2)
C3—C231.538 (2)C18—C191.398 (3)
C3—H31.0000C18—H180.9500
C4—H4A0.9800C19—C201.387 (3)
C4—H4B0.9800C19—H190.9500
C4—H4C0.9800C20—C211.383 (3)
C5—C101.399 (2)C20—H200.9500
C5—C61.400 (2)C21—C221.399 (3)
C6—C71.394 (3)C21—H210.9500
C6—H60.9500C22—H220.9500
C7—C81.386 (3)C23—C241.400 (2)
C7—H70.9500C23—C281.401 (2)
C8—C91.390 (3)C24—C251.392 (3)
C8—H80.9500C24—H240.9500
C9—C101.394 (2)C25—C261.390 (3)
C9—H90.9500C25—H250.9500
C10—H100.9500C26—C271.385 (3)
C11—C161.398 (2)C26—H260.9500
C11—C121.405 (2)C27—C281.398 (2)
C12—C131.394 (2)C27—H270.9500
C12—H120.9500C28—H280.9500
C2—O1—H1108.2 (13)C14—C13—C12120.65 (16)
C5—C1—C11107.46 (13)C14—C13—H13119.7
C5—C1—C2116.24 (14)C12—C13—H13119.7
C11—C1—C2116.40 (13)C15—C14—C13119.67 (16)
C5—C1—H1A105.2C15—C14—H14120.2
C11—C1—H1A105.2C13—C14—H14120.2
C2—C1—H1A105.2C14—C15—C16119.77 (17)
O1—C2—C4108.69 (13)C14—C15—H15120.1
O1—C2—C1108.02 (13)C16—C15—H15120.1
C4—C2—C1109.12 (14)C15—C16—C11121.34 (16)
O1—C2—C3106.33 (13)C15—C16—H16119.3
C4—C2—C3114.80 (13)C11—C16—H16119.3
C1—C2—C3109.65 (13)C22—C17—C18117.40 (16)
C17—C3—C23112.37 (13)C22—C17—C3124.53 (16)
C17—C3—C2116.80 (14)C18—C17—C3118.06 (16)
C23—C3—C2112.33 (13)C19—C18—C17121.51 (18)
C17—C3—H3104.6C19—C18—H18119.2
C23—C3—H3104.6C17—C18—H18119.2
C2—C3—H3104.6C20—C19—C18119.93 (18)
C2—C4—H4A109.5C20—C19—H19120.0
C2—C4—H4B109.5C18—C19—H19120.0
H4A—C4—H4B109.5C21—C20—C19119.59 (18)
C2—C4—H4C109.5C21—C20—H20120.2
H4A—C4—H4C109.5C19—C20—H20120.2
H4B—C4—H4C109.5C20—C21—C22120.35 (19)
C10—C5—C6118.16 (16)C20—C21—H21119.8
C10—C5—C1122.05 (15)C22—C21—H21119.8
C6—C5—C1119.58 (15)C17—C22—C21121.15 (18)
C7—C6—C5121.22 (17)C17—C22—H22119.4
C7—C6—H6119.4C21—C22—H22119.4
C5—C6—H6119.4C24—C23—C28117.65 (16)
C8—C7—C6119.91 (17)C24—C23—C3122.67 (15)
C8—C7—H7120.0C28—C23—C3119.68 (15)
C6—C7—H7120.0C25—C24—C23121.34 (17)
C7—C8—C9119.59 (17)C25—C24—H24119.3
C7—C8—H8120.2C23—C24—H24119.3
C9—C8—H8120.2C26—C25—C24120.16 (17)
C8—C9—C10120.59 (17)C26—C25—H25119.9
C8—C9—H9119.7C24—C25—H25119.9
C10—C9—H9119.7C27—C26—C25119.49 (17)
C9—C10—C5120.51 (16)C27—C26—H26120.3
C9—C10—H10119.7C25—C26—H26120.3
C5—C10—H10119.7C26—C27—C28120.31 (18)
C16—C11—C12118.10 (16)C26—C27—H27119.8
C16—C11—C1117.90 (15)C28—C27—H27119.8
C12—C11—C1123.70 (15)C27—C28—C23121.03 (17)
C13—C12—C11120.46 (16)C27—C28—H28119.5
C13—C12—H12119.8C23—C28—H28119.5
C11—C12—H12119.8
C5—C1—C2—O160.36 (17)C11—C12—C13—C141.0 (3)
C11—C1—C2—O167.83 (17)C12—C13—C14—C151.1 (3)
C5—C1—C2—C4178.36 (13)C13—C14—C15—C160.1 (3)
C11—C1—C2—C450.16 (19)C14—C15—C16—C111.5 (3)
C5—C1—C2—C355.11 (18)C12—C11—C16—C151.6 (3)
C11—C1—C2—C3176.70 (13)C1—C11—C16—C15172.30 (15)
O1—C2—C3—C17165.43 (13)C23—C3—C17—C2278.1 (2)
C4—C2—C3—C1774.36 (19)C2—C3—C17—C2253.8 (2)
C1—C2—C3—C1748.89 (19)C23—C3—C17—C18101.00 (18)
O1—C2—C3—C2362.63 (17)C2—C3—C17—C18127.07 (16)
C4—C2—C3—C2357.59 (19)C22—C17—C18—C192.0 (3)
C1—C2—C3—C23179.17 (13)C3—C17—C18—C19178.79 (16)
C11—C1—C5—C1064.1 (2)C17—C18—C19—C200.6 (3)
C2—C1—C5—C1068.3 (2)C18—C19—C20—C211.7 (3)
C11—C1—C5—C6110.57 (17)C19—C20—C21—C222.6 (3)
C2—C1—C5—C6116.99 (17)C18—C17—C22—C211.1 (2)
C10—C5—C6—C70.3 (3)C3—C17—C22—C21179.75 (16)
C1—C5—C6—C7174.63 (16)C20—C21—C22—C171.2 (3)
C5—C6—C7—C80.4 (3)C17—C3—C23—C2446.2 (2)
C6—C7—C8—C90.0 (3)C2—C3—C23—C2487.94 (19)
C7—C8—C9—C100.4 (3)C17—C3—C23—C28133.29 (16)
C8—C9—C10—C50.5 (3)C2—C3—C23—C2892.59 (18)
C6—C5—C10—C90.2 (2)C28—C23—C24—C251.2 (3)
C1—C5—C10—C9174.93 (15)C3—C23—C24—C25179.32 (16)
C5—C1—C11—C1687.47 (18)C23—C24—C25—C260.9 (3)
C2—C1—C11—C16140.18 (16)C24—C25—C26—C270.4 (3)
C5—C1—C11—C1286.06 (19)C25—C26—C27—C280.2 (3)
C2—C1—C11—C1246.3 (2)C26—C27—C28—C230.5 (3)
C16—C11—C12—C130.3 (3)C24—C23—C28—C271.0 (2)
C1—C11—C12—C13173.18 (16)C3—C23—C28—C27179.51 (15)
references
References top

Bunce, R. A. & Dowdy, E. D. (1990). Synth. Commun. 20, 3007–3014.

Ibis, C. & Deniz, N. G. (2007). Acta Cryst. E63, o1091–o1092.

Lednicer, D., Mitscher, L. A. & Georg, G. I. (1990). The Organic Chemistry of Drug Synthesis, Vol. 4, New York: J Wiley & Sons.

Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.

Rigaku/MSC (2006). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas. USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.