organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 6| June 2008| Pages o1040-o1041

(4R,5S)-5-Benzyl-4-iso­propyl-1,3,4-oxadiazinan-2-one

aCB 4160, Department of Chemistry, Illinois State University, Normal, IL 61790, USA
*Correspondence e-mail: ferrence@illinoisstate.edu

(Received 1 May 2008; accepted 2 May 2008; online 10 May 2008)

The title compound, C13H18N2O2, is an N4-isopropyl-L-phenyl­alanine-based oxadiazinanone. Although the two mol­ecules in the asymmetric unit are oriented appropriately for hydrogen bonding, the distance between the donor and acceptor atoms is large enough to support only weak, if any, hydrogen bonding. The absolute configuration is known based on the known starting compounds in the synthetic procedure.

Related literature

For related literature, see: Burgeson et al. (2004[Burgeson, J. R., Renner, M. K., Hardt, I., Ferrence, G. M., Standard, J. M. & Hitchcock, S. R. (2004). J. Org. Chem. 69, 727-734.]); Casper, Blackburn et al. (2002[Casper, D. M., Blackburn, J. R., Maroules, C. D., Brady, T., Esken, J. M., Ferrence, G. M., Standard, J. M. & Hitchcock, S. R. (2002). J. Org. Chem. 67, 8871-8876.]); Casper, Burgeson et al. (2002[Casper, D. M., Burgeson, J. R., Esken, J. M., Ferrence, G. M. & Hitchcock, S. R. (2002). Org. Lett. 4, 3739-3742.]); Casper & Hitchcock (2003[Casper, D. M. & Hitchcock, S. R. (2003). Tetrahedron Asymmetry, 14, 517-521.]); Dore et al. (2006[Dore, D. D., Burgeson, J. R., Davis, R. A. & Hitchcock, S. R. (2006). Tetrahedron:Asymmetry. 17, 2386-2392.]); Ferrence et al. (2003[Ferrence, G. M., Esken, J. M., Blackburn, J. R. & Hitchcock, S. R. (2003). Acta Cryst. E59, o212-o214.]); Hitchcock et al. (2004[Hitchcock, S. R., Casper, D. M., Vaughn, J. F., Finefield, J. M., Ferrence, G. M. & Esken, J. M. (2004). J. Org. Chem. 69, 714-718.]); Hitchcock et al. (2001[Hitchcock, S. R., Nora, G. P., Casper, D. M., Squire, M. D., Maroules, C. D., Ferrence, G. M., Szczepura, L. F. & Standard, J. M. (2001). Tetrahedron, 57, 9789-9798.]); Squire et al. (2005[Squire, M. D., Davis, R. A., Chianakas, K. A., Ferrence, G. M., Standard, J. M. & Hitchcock, S. R. (2005). Tetrahedron Asymmetry, 16, 1047-1053.]); Szczepura et al. (2004[Szczepura, L. F., Hitchcock, S. R. & Nora, G. P. (2004). Acta Cryst. E60, o1467-o1469.]); Bruno et al. (2004[Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133-2144.]).

[Scheme 1]

Experimental

Crystal data
  • C13H18N2O2

  • Mr = 234.29

  • Orthorhombic, P 21 21 21

  • a = 9.6423 (14) Å

  • b = 11.4974 (17) Å

  • c = 22.600 (3) Å

  • V = 2505.5 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 (2) K

  • 0.43 × 0.23 × 0.23 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan SADABS in SAINT-Plus (Bruker, 2003[Bruker (2003). SMART-Plus and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.965, Tmax = 0.981

  • 25602 measured reflections

  • 3499 independent reflections

  • 3403 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.133

  • S = 1.32

  • 3499 reflections

  • 307 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART-Plus and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2003[Bruker (2003). SMART-Plus and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

The synthesis (Hitchcock et al., 2001), conformational analysis (Casper, Blackburn et al., 2002; Burgeson et al. 2004), and asymmetric applications (Casper & Hitchcock, 2003; Casper, Burgeson et al., 2002; Ferrence et al. 2003; Hitchcock et al. 2004; Hitchcock et al. 2001; Squire et al. 2005; Szczepura et al. 2004) of 3,4,5,6-tetrahydro-2H-1,3,4-oxadiazinan-2-ones have only thoroughly been studied in the last ten years. We have been interested in synthesizing new oxadiazinanones for use as chiral auxillaries in aldol addition reactions. We synthesized the title compound in order to study the conformation that the heterocycle adopts. Herein we report the single-crystal X-ray structure analysis of the N4-isopropyl-L-phenylalanine based oxiadiazinanone.

Other oxadiazinanones have been reported and studied, but the title compound is one of few studied that is not substituted at the N3 position. Other oxadiazinanone structures (Burgeson et al., 2004; Casper, Blackburn et al., 2002; Casper, Burgeson et al., 2002; Ferrence et al., 2003; Hitchcock et al., 2001, 2004) are substituted with a carbonyl at the N3 position. These N3 substituted oxadiazinanones adopt a twist-boat conformation, as does the title compound. This is also consistent with related oxadiazinanones not substituted at the N3 position (Szczepura et al., 2004). The C7B—C5B—N4B—C14B torsion angle is 159.1 (2)°, and the C7A—C5A—N4A—C14A torsion angle is 155.5 (2)°. Previously reported oxadiazinanones with no substitution at the N3 position have torsion angles between 161.79–163.16°. A Mogul (Bruno et al. 2004) geometry check showed all non-H bond angles and distances to be normal. The molecular structure (Fig. 1.) of I includes two independent molecules in the asymmetric unit. The oxadiazinanone moieties are essentially isostructural. The primary difference between the two molecules is the orientation of the benzyl group attached to C5A/B (Figs. 2. and 3.). The respective -56.9 (3)° N4A—C5A—C7B—C8A and -175.5 (2)° N4A—C5A—C7B—C8A torsion angles quantify this difference.

Hydrogen-bonding interactions usually appear to play a key role in the crystal packing of oxadiazinanones (Szczepura et al., 2004). However, it may be that the optimal crystal packing simply happens to yield an arrangement of molecules which are suggestive of a hydrogen bonding motif. That is packing forces other than formation of the weak H-bonding fortuitously lead to the motif. In the title compound, the 2.83 Å N3A—O17B and 2.89 Å N3B—O17A donor to acceptor separations are large enough to support only weak, if any, hydrogen bonding (Fig 4.). This interaction is further illustrated in the Jmol enhanced figure (Fig. 5).

Related literature top

For related literature, see: Burgeson et al. (2004); Casper, Blackburn et al. (2002); Casper, Burgeson et al. (2002); Casper & Hitchcock (2003); Dore et al. (2006); Ferrence et al. (2003); Hitchcock et al. (2004); Hitchcock et al. (2001); Squire et al. (2005); Szczepura et al. (2004); Bruno et al. (2004).

Experimental top

The title compound was prepared as previously reported (Dore et al. (2006)).

Refinement top

All non-H atoms were refined anisotropically without disorder. All H atoms were initially identified through difference Fourier syntheses then removed and included in the refinement in the riding-model approximation (C–H = 0.95, 0.98, 0.99 and 1.00 Å for Ar–H, CH3 and CH2 and CH; N–H = 0.88 Å; Uiso(H) = 1.2Ueq(C) except for methyl groups, where Uiso(H) = 1.5Ueq(C)). In the absence of significant anomalous scattering effects, Friedel pairs were merged.

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999) and publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of compound (I), with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A Mercury view of the asymmetric unit of (I) highlighting the 2.83 Å N3A—O17B and 2.89 Å N3B—O17A donor to acceptor separations which support only weak, if any, hydrogen bonding.
[Figure 3] Fig. 3. A Mercury overlay of the two independent molecules in the asymmetric unit of (I) with H atoms shown in light blue.
[Figure 4] Fig. 4. A Mercury overlay of the two independent molecules in the asymmetric unit of (I) with one molecule shown in blue and one shown in violet.
[Figure 5] Fig. 5. Jmol enhanced figure of I. The default view shows the basic unit-cell contents. The pair of molecules forming the asymmetric unit and the putative H-bonding pair of molecules may be highlighted when viewing the active enhanced figure.
(4R,5S)-5-Benzyl-4-isopropyl-1,3,4-oxadiazinan-2-one top
Crystal data top
C13H18N2O2F(000) = 1008
Mr = 234.29Dx = 1.242 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 8817 reflections
a = 9.6423 (14) Åθ = 2.3–30.5°
b = 11.4974 (17) ŵ = 0.09 mm1
c = 22.600 (3) ÅT = 100 K
V = 2505.5 (6) Å3Block, colourless
Z = 80.43 × 0.23 × 0.23 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
3499 independent reflections
Radiation source: sealed tube3403 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ω scansθmax = 28.3°, θmin = 1.8°
Absorption correction: multi-scan
SADABS in SAINT-Plus (Bruker, 2003)
h = 1212
Tmin = 0.965, Tmax = 0.981k = 1515
25602 measured reflectionsl = 2930
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.060 w = 1/[σ2(Fo2) + (0.0413P)2 + 1.6549P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.133(Δ/σ)max < 0.001
S = 1.32Δρmax = 0.37 e Å3
3499 reflectionsΔρmin = 0.25 e Å3
307 parameters
Crystal data top
C13H18N2O2V = 2505.5 (6) Å3
Mr = 234.29Z = 8
Orthorhombic, P212121Mo Kα radiation
a = 9.6423 (14) ŵ = 0.09 mm1
b = 11.4974 (17) ÅT = 100 K
c = 22.600 (3) Å0.43 × 0.23 × 0.23 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
3499 independent reflections
Absorption correction: multi-scan
SADABS in SAINT-Plus (Bruker, 2003)
3403 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.981Rint = 0.041
25602 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 1.32Δρmax = 0.37 e Å3
3499 reflectionsΔρmin = 0.25 e Å3
307 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.5275 (2)0.74524 (18)0.71574 (9)0.0200 (4)
C2A0.5986 (3)0.7897 (3)0.76134 (13)0.0176 (6)
O17A0.6692 (2)0.87684 (18)0.75304 (9)0.0213 (4)
N3A0.5897 (2)0.7389 (2)0.81457 (10)0.0170 (5)
H3A0.65120.76030.84120.02*
N4A0.4904 (2)0.6534 (2)0.83257 (10)0.0154 (5)
C5A0.3806 (3)0.6483 (2)0.78779 (12)0.0165 (5)
H5A0.32650.57520.79430.02*
C6A0.4435 (3)0.6429 (3)0.72638 (13)0.0191 (6)
H6A10.50150.57230.72270.023*
H6A20.36870.63850.69640.023*
C7A0.2806 (3)0.7517 (3)0.79456 (13)0.0206 (6)
H7A10.33170.82470.78650.025*
H7A20.20590.74470.76470.025*
C8A0.2163 (3)0.7588 (3)0.85530 (13)0.0189 (6)
C9A0.0827 (3)0.7173 (3)0.86541 (14)0.0232 (6)
H9A0.0310.6860.83330.028*
C10A0.0233 (3)0.7206 (3)0.92131 (15)0.0263 (7)
H10A0.06810.69210.92730.032*
C11A0.0976 (3)0.7656 (3)0.96826 (14)0.0251 (7)
H11A0.05840.76691.00680.03*
C12A0.2293 (3)0.8086 (3)0.95870 (15)0.0281 (7)
H12A0.28020.84070.99080.034*
C13A0.2878 (3)0.8053 (3)0.90287 (15)0.0249 (7)
H13A0.37860.83540.89710.03*
C14A0.5541 (3)0.5392 (2)0.84671 (13)0.0180 (6)
H14A0.57230.49530.80930.022*
C15A0.6894 (3)0.5566 (3)0.88013 (14)0.0250 (7)
H15A0.75470.59990.85520.037*
H15B0.72910.48080.89020.037*
H15C0.67140.60060.91650.037*
C16A0.4514 (4)0.4714 (3)0.88512 (15)0.0285 (7)
H16A0.36440.46060.86330.043*
H16B0.43310.51490.92160.043*
H16C0.49080.39520.8950.043*
O1B0.8672 (2)0.98233 (18)0.94720 (9)0.0218 (5)
C2B0.7980 (3)0.9425 (2)0.89999 (13)0.0175 (5)
O17B0.7047 (2)0.87193 (19)0.90751 (9)0.0221 (5)
N3B0.8282 (3)0.9856 (2)0.84613 (11)0.0187 (5)
H3B0.78240.9550.81630.022*
N4B0.9257 (3)1.0754 (2)0.83144 (11)0.0177 (5)
C5B0.9584 (3)1.1386 (2)0.88641 (13)0.0188 (6)
H5B1.04511.18410.87920.023*
C6B0.9879 (3)1.0537 (2)0.93632 (14)0.0200 (6)
H6B11.06761.00360.92560.024*
H6B21.01231.09710.97270.024*
C7B0.8430 (3)1.2258 (3)0.90152 (14)0.0216 (6)
H7B10.82721.27790.86730.026*
H7B20.75581.18320.90940.026*
C8B0.8812 (3)1.2979 (2)0.95530 (14)0.0205 (6)
C9B0.9766 (4)1.3882 (3)0.95059 (15)0.0261 (7)
H9B1.01291.40840.91290.031*
C10B1.0197 (4)1.4496 (3)1.00054 (16)0.0291 (7)
H10B1.08451.51140.99680.035*
C11B0.9680 (4)1.4202 (3)1.05520 (17)0.0325 (8)
H11B0.99781.46131.08940.039*
C12B0.8727 (4)1.3309 (3)1.06053 (16)0.0341 (8)
H12B0.83681.31081.09830.041*
C13B0.8296 (4)1.2707 (3)1.01068 (15)0.0286 (7)
H13B0.76361.20991.01460.034*
C14B1.0493 (3)1.0225 (3)0.80199 (13)0.0207 (6)
H14B1.09730.96920.83030.025*
C15B1.0028 (4)0.9540 (3)0.74778 (15)0.0255 (6)
H15D0.93940.89190.760.038*
H15E1.0840.91980.72830.038*
H15F0.95531.00620.72010.038*
C16B1.1483 (4)1.1180 (3)0.78295 (15)0.0320 (8)
H16D1.17881.16190.81780.048*
H16E1.1011.17050.75540.048*
H16F1.2291.08330.76340.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0219 (10)0.0205 (10)0.0176 (9)0.0022 (9)0.0014 (8)0.0017 (8)
C2A0.0151 (12)0.0162 (13)0.0215 (14)0.0042 (11)0.0003 (11)0.0015 (11)
O17A0.0237 (10)0.0186 (10)0.0217 (10)0.0034 (9)0.0026 (9)0.0017 (9)
N3A0.0147 (11)0.0186 (11)0.0178 (11)0.0011 (10)0.0048 (9)0.0007 (9)
N4A0.0146 (11)0.0122 (10)0.0193 (11)0.0005 (9)0.0011 (9)0.0018 (9)
C5A0.0141 (12)0.0171 (12)0.0182 (13)0.0037 (11)0.0020 (10)0.0000 (11)
C6A0.0199 (14)0.0189 (13)0.0185 (14)0.0034 (12)0.0037 (11)0.0001 (11)
C7A0.0178 (13)0.0234 (15)0.0207 (14)0.0031 (12)0.0033 (11)0.0025 (12)
C8A0.0175 (13)0.0149 (13)0.0243 (14)0.0059 (11)0.0035 (11)0.0008 (11)
C9A0.0196 (14)0.0234 (14)0.0267 (15)0.0036 (13)0.0054 (12)0.0021 (13)
C10A0.0217 (15)0.0255 (15)0.0317 (16)0.0036 (13)0.0020 (13)0.0049 (13)
C11A0.0286 (16)0.0246 (15)0.0221 (14)0.0080 (14)0.0000 (13)0.0029 (12)
C12A0.0248 (15)0.0331 (18)0.0265 (16)0.0082 (14)0.0089 (13)0.0110 (14)
C13A0.0147 (13)0.0271 (16)0.0329 (17)0.0028 (12)0.0013 (12)0.0063 (13)
C14A0.0232 (14)0.0139 (12)0.0169 (13)0.0039 (11)0.0021 (11)0.0013 (10)
C15A0.0276 (16)0.0234 (15)0.0239 (15)0.0076 (13)0.0055 (13)0.0013 (12)
C16A0.0364 (18)0.0229 (15)0.0262 (15)0.0040 (14)0.0032 (14)0.0086 (13)
O1B0.0249 (11)0.0187 (10)0.0218 (10)0.0014 (9)0.0009 (9)0.0005 (9)
C2B0.0183 (13)0.0134 (12)0.0207 (13)0.0045 (11)0.0003 (11)0.0028 (11)
O17B0.0254 (11)0.0210 (10)0.0197 (10)0.0059 (9)0.0037 (9)0.0019 (8)
N3B0.0194 (12)0.0183 (12)0.0185 (11)0.0044 (10)0.0018 (10)0.0001 (9)
N4B0.0174 (11)0.0136 (10)0.0222 (12)0.0026 (9)0.0005 (9)0.0021 (9)
C5B0.0183 (13)0.0146 (12)0.0233 (14)0.0044 (11)0.0033 (11)0.0017 (11)
C6B0.0190 (13)0.0160 (12)0.0249 (15)0.0004 (11)0.0045 (12)0.0010 (11)
C7B0.0202 (13)0.0159 (13)0.0286 (15)0.0020 (11)0.0040 (12)0.0003 (12)
C8B0.0190 (13)0.0141 (13)0.0284 (15)0.0063 (11)0.0065 (12)0.0013 (11)
C9B0.0283 (16)0.0179 (14)0.0319 (17)0.0011 (13)0.0076 (14)0.0023 (13)
C10B0.0257 (16)0.0160 (14)0.046 (2)0.0012 (13)0.0127 (15)0.0024 (14)
C11B0.0362 (19)0.0232 (15)0.0382 (19)0.0108 (15)0.0117 (16)0.0114 (14)
C12B0.0343 (18)0.0376 (19)0.0305 (17)0.0087 (16)0.0041 (15)0.0045 (15)
C13B0.0257 (15)0.0237 (17)0.0365 (18)0.0026 (14)0.0035 (14)0.0045 (14)
C14B0.0161 (13)0.0246 (14)0.0215 (14)0.0050 (12)0.0007 (11)0.0062 (12)
C15B0.0250 (14)0.0223 (14)0.0291 (15)0.0023 (13)0.0086 (12)0.0022 (13)
C16B0.0276 (16)0.045 (2)0.0236 (16)0.0147 (16)0.0054 (13)0.0039 (15)
Geometric parameters (Å, º) top
O1A—C2A1.339 (3)O1B—C2B1.339 (3)
O1A—C6A1.449 (3)O1B—C6B1.444 (4)
C2A—O17A1.226 (4)C2B—O17B1.223 (4)
C2A—N3A1.340 (4)C2B—N3B1.346 (4)
N3A—N4A1.431 (3)N3B—N4B1.435 (3)
N3A—H3A0.88N3B—H3B0.88
N4A—C5A1.466 (3)N4B—C5B1.474 (4)
N4A—C14A1.484 (3)N4B—C14B1.494 (4)
C5A—C6A1.516 (4)C5B—C6B1.519 (4)
C5A—C7A1.538 (4)C5B—C7B1.536 (4)
C5A—H5A1C5B—H5B1
C6A—H6A10.99C6B—H6B10.99
C6A—H6A20.99C6B—H6B20.99
C7A—C8A1.508 (4)C7B—C8B1.517 (4)
C7A—H7A10.99C7B—H7B10.99
C7A—H7A20.99C7B—H7B20.99
C8A—C13A1.385 (4)C8B—C13B1.383 (5)
C8A—C9A1.393 (4)C8B—C9B1.391 (4)
C9A—C10A1.388 (4)C9B—C10B1.394 (5)
C9A—H9A0.95C9B—H9B0.95
C10A—C11A1.381 (5)C10B—C11B1.374 (5)
C10A—H10A0.95C10B—H10B0.95
C11A—C12A1.380 (5)C11B—C12B1.383 (5)
C11A—H11A0.95C11B—H11B0.95
C12A—C13A1.383 (5)C12B—C13B1.386 (5)
C12A—H12A0.95C12B—H12B0.95
C13A—H13A0.95C13B—H13B0.95
C14A—C15A1.521 (4)C14B—C16B1.517 (4)
C14A—C16A1.530 (4)C14B—C15B1.524 (5)
C14A—H14A1C14B—H14B1
C15A—H15A0.98C15B—H15D0.98
C15A—H15B0.98C15B—H15E0.98
C15A—H15C0.98C15B—H15F0.98
C16A—H16A0.98C16B—H16D0.98
C16A—H16B0.98C16B—H16E0.98
C16A—H16C0.98C16B—H16F0.98
C2A—O1A—C6A117.9 (2)C2B—O1B—C6B117.4 (2)
O17A—C2A—O1A118.6 (3)O17B—C2B—O1B118.9 (3)
O17A—C2A—N3A121.9 (3)O17B—C2B—N3B121.9 (3)
O1A—C2A—N3A119.5 (3)O1B—C2B—N3B119.1 (3)
C2A—N3A—N4A126.7 (2)C2B—N3B—N4B128.0 (2)
C2A—N3A—H3A116.7C2B—N3B—H3B116
N4A—N3A—H3A116.7N4B—N3B—H3B116
N3A—N4A—C5A108.3 (2)N3B—N4B—C5B107.4 (2)
N3A—N4A—C14A113.1 (2)N3B—N4B—C14B109.5 (2)
C5A—N4A—C14A114.3 (2)C5B—N4B—C14B114.0 (2)
N4A—C5A—C6A110.2 (2)N4B—C5B—C6B110.4 (2)
N4A—C5A—C7A110.7 (2)N4B—C5B—C7B110.8 (2)
C6A—C5A—C7A111.9 (2)C6B—C5B—C7B113.0 (3)
N4A—C5A—H5A108N4B—C5B—H5B107.5
C6A—C5A—H5A108C6B—C5B—H5B107.5
C7A—C5A—H5A108C7B—C5B—H5B107.5
O1A—C6A—C5A110.1 (2)O1B—C6B—C5B109.9 (2)
O1A—C6A—H6A1109.6O1B—C6B—H6B1109.7
C5A—C6A—H6A1109.6C5B—C6B—H6B1109.7
O1A—C6A—H6A2109.6O1B—C6B—H6B2109.7
C5A—C6A—H6A2109.6C5B—C6B—H6B2109.7
H6A1—C6A—H6A2108.2H6B1—C6B—H6B2108.2
C8A—C7A—C5A112.9 (2)C8B—C7B—C5B111.1 (2)
C8A—C7A—H7A1109C8B—C7B—H7B1109.4
C5A—C7A—H7A1109C5B—C7B—H7B1109.4
C8A—C7A—H7A2109C8B—C7B—H7B2109.4
C5A—C7A—H7A2109C5B—C7B—H7B2109.4
H7A1—C7A—H7A2107.8H7B1—C7B—H7B2108
C13A—C8A—C9A117.8 (3)C13B—C8B—C9B118.4 (3)
C13A—C8A—C7A121.5 (3)C13B—C8B—C7B120.9 (3)
C9A—C8A—C7A120.7 (3)C9B—C8B—C7B120.5 (3)
C10A—C9A—C8A121.4 (3)C8B—C9B—C10B120.8 (3)
C10A—C9A—H9A119.3C8B—C9B—H9B119.6
C8A—C9A—H9A119.3C10B—C9B—H9B119.6
C11A—C10A—C9A119.7 (3)C11B—C10B—C9B119.7 (3)
C11A—C10A—H10A120.1C11B—C10B—H10B120.2
C9A—C10A—H10A120.1C9B—C10B—H10B120.2
C12A—C11A—C10A119.4 (3)C10B—C11B—C12B120.1 (3)
C12A—C11A—H11A120.3C10B—C11B—H11B119.9
C10A—C11A—H11A120.3C12B—C11B—H11B119.9
C11A—C12A—C13A120.6 (3)C11B—C12B—C13B119.9 (3)
C11A—C12A—H12A119.7C11B—C12B—H12B120
C13A—C12A—H12A119.7C13B—C12B—H12B120
C12A—C13A—C8A121.0 (3)C8B—C13B—C12B121.0 (3)
C12A—C13A—H13A119.5C8B—C13B—H13B119.5
C8A—C13A—H13A119.5C12B—C13B—H13B119.5
N4A—C14A—C15A110.2 (2)N4B—C14B—C16B109.5 (3)
N4A—C14A—C16A107.8 (2)N4B—C14B—C15B109.5 (2)
C15A—C14A—C16A109.9 (2)C16B—C14B—C15B109.3 (3)
N4A—C14A—H14A109.7N4B—C14B—H14B109.5
C15A—C14A—H14A109.7C16B—C14B—H14B109.5
C16A—C14A—H14A109.7C15B—C14B—H14B109.5
C14A—C15A—H15A109.5C14B—C15B—H15D109.5
C14A—C15A—H15B109.5C14B—C15B—H15E109.5
H15A—C15A—H15B109.5H15D—C15B—H15E109.5
C14A—C15A—H15C109.5C14B—C15B—H15F109.5
H15A—C15A—H15C109.5H15D—C15B—H15F109.5
H15B—C15A—H15C109.5H15E—C15B—H15F109.5
C14A—C16A—H16A109.5C14B—C16B—H16D109.5
C14A—C16A—H16B109.5C14B—C16B—H16E109.5
H16A—C16A—H16B109.5H16D—C16B—H16E109.5
C14A—C16A—H16C109.5C14B—C16B—H16F109.5
H16A—C16A—H16C109.5H16D—C16B—H16F109.5
H16B—C16A—H16C109.5H16E—C16B—H16F109.5
C6A—O1A—C2A—O17A179.4 (2)C6B—O1B—C2B—O17B172.3 (2)
C6A—O1A—C2A—N3A0.1 (4)C6B—O1B—C2B—N3B11.2 (4)
O17A—C2A—N3A—N4A166.0 (3)O17B—C2B—N3B—N4B174.2 (3)
O1A—C2A—N3A—N4A13.3 (4)O1B—C2B—N3B—N4B2.2 (4)
C2A—N3A—N4A—C5A12.3 (4)C2B—N3B—N4B—C5B17.0 (4)
C2A—N3A—N4A—C14A115.5 (3)C2B—N3B—N4B—C14B107.2 (3)
N3A—N4A—C5A—C6A47.0 (3)N3B—N4B—C5B—C6B46.5 (3)
C14A—N4A—C5A—C6A80.2 (3)C14B—N4B—C5B—C6B75.0 (3)
N3A—N4A—C5A—C7A77.3 (3)N3B—N4B—C5B—C7B79.5 (3)
C14A—N4A—C5A—C7A155.5 (2)C14B—N4B—C5B—C7B159.1 (2)
C2A—O1A—C6A—C5A35.5 (3)C2B—O1B—C6B—C5B41.9 (3)
N4A—C5A—C6A—O1A60.1 (3)N4B—C5B—C6B—O1B61.0 (3)
C7A—C5A—C6A—O1A63.5 (3)C7B—C5B—C6B—O1B63.7 (3)
N4A—C5A—C7A—C8A56.9 (3)N4B—C5B—C7B—C8B175.5 (2)
C6A—C5A—C7A—C8A179.9 (2)C6B—C5B—C7B—C8B60.0 (3)
C5A—C7A—C8A—C13A79.7 (4)C5B—C7B—C8B—C13B99.3 (3)
C5A—C7A—C8A—C9A99.6 (3)C5B—C7B—C8B—C9B76.3 (3)
C13A—C8A—C9A—C10A0.9 (5)C13B—C8B—C9B—C10B0.3 (5)
C7A—C8A—C9A—C10A178.4 (3)C7B—C8B—C9B—C10B175.4 (3)
C8A—C9A—C10A—C11A0.2 (5)C8B—C9B—C10B—C11B0.4 (5)
C9A—C10A—C11A—C12A1.1 (5)C9B—C10B—C11B—C12B0.6 (5)
C10A—C11A—C12A—C13A1.0 (5)C10B—C11B—C12B—C13B0.2 (5)
C11A—C12A—C13A—C8A0.2 (5)C9B—C8B—C13B—C12B0.7 (5)
C9A—C8A—C13A—C12A1.1 (5)C7B—C8B—C13B—C12B175.0 (3)
C7A—C8A—C13A—C12A178.3 (3)C11B—C12B—C13B—C8B0.5 (5)
N3A—N4A—C14A—C15A40.3 (3)N3B—N4B—C14B—C16B176.4 (2)
C5A—N4A—C14A—C15A164.9 (2)C5B—N4B—C14B—C16B63.2 (3)
N3A—N4A—C14A—C16A160.2 (2)N3B—N4B—C14B—C15B56.5 (3)
C5A—N4A—C14A—C16A75.2 (3)C5B—N4B—C14B—C15B176.9 (2)

Experimental details

Crystal data
Chemical formulaC13H18N2O2
Mr234.29
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)9.6423 (14), 11.4974 (17), 22.600 (3)
V3)2505.5 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.43 × 0.23 × 0.23
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
SADABS in SAINT-Plus (Bruker, 2003)
Tmin, Tmax0.965, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
25602, 3499, 3403
Rint0.041
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.133, 1.32
No. of reflections3499
No. of parameters307
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.25

Computer programs: SMART (Bruker, 2003), SAINT-Plus (Bruker, 2003), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999) and publCIF (Westrip, 2008).

Selected geometric parameters (Å, º) top
C2A—N3A1.340 (4)C2B—N3B1.346 (4)
C14A—N4A—C5A—C7A155.5 (2)C14B—N4B—C5B—C7B159.1 (2)
 

Acknowledgements

This material is based upon work supported by the US National Science Foundation (CHE-0348158 to GMF) and the American Chemical Society Petroleum Research Fund (to SRH & GMF). GMF thanks Adam Beitelman (ISU) and Matthias Zeller, Youngstown State University Structure & Chemical Instrumentation Facility, for the data collection and useful discussions. The diffractometer was funded by NSF grant 0087210, Ohio Board of Regents grant CAP-491, and YSU.

References

First citationBruker (2003). SMART-Plus and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBurgeson, J. R., Renner, M. K., Hardt, I., Ferrence, G. M., Standard, J. M. & Hitchcock, S. R. (2004). J. Org. Chem. 69, 727–734.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCasper, D. M., Blackburn, J. R., Maroules, C. D., Brady, T., Esken, J. M., Ferrence, G. M., Standard, J. M. & Hitchcock, S. R. (2002). J. Org. Chem. 67, 8871–8876.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCasper, D. M., Burgeson, J. R., Esken, J. M., Ferrence, G. M. & Hitchcock, S. R. (2002). Org. Lett. 4, 3739–3742.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCasper, D. M. & Hitchcock, S. R. (2003). Tetrahedron Asymmetry, 14, 517–521.  Web of Science CrossRef CAS Google Scholar
First citationDore, D. D., Burgeson, J. R., Davis, R. A. & Hitchcock, S. R. (2006). Tetrahedron:Asymmetry. 17, 2386–2392.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFerrence, G. M., Esken, J. M., Blackburn, J. R. & Hitchcock, S. R. (2003). Acta Cryst. E59, o212–o214.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHitchcock, S. R., Casper, D. M., Vaughn, J. F., Finefield, J. M., Ferrence, G. M. & Esken, J. M. (2004). J. Org. Chem. 69, 714–718.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHitchcock, S. R., Nora, G. P., Casper, D. M., Squire, M. D., Maroules, C. D., Ferrence, G. M., Szczepura, L. F. & Standard, J. M. (2001). Tetrahedron, 57, 9789–9798.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSquire, M. D., Davis, R. A., Chianakas, K. A., Ferrence, G. M., Standard, J. M. & Hitchcock, S. R. (2005). Tetrahedron Asymmetry, 16, 1047–1053.  Web of Science CSD CrossRef CAS Google Scholar
First citationSzczepura, L. F., Hitchcock, S. R. & Nora, G. P. (2004). Acta Cryst. E60, o1467–o1469.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 6| June 2008| Pages o1040-o1041
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds