metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra-n-butyl­ammonium iodido(pyrrolidine-1-carbodi­thio­ato-κ2S,S′)(tris-tert-but­oxy­silane­thiol­ato-κS)cadmate(II)

aDepartment of Inorganic Chemistry, Chemical Faculty, Gdańsk University of Technology, 11/12 G. Narutowicza Str., 80-952 Gdańsk, Poland
*Correspondence e-mail: anna@urethan.chem.pg.gda.pl

(Received 13 May 2008; accepted 16 May 2008; online 21 May 2008)

In the anion of the title compound, (C16H36N)[Cd(C5H8NS2)(C12H27O3SSi)I], the Cd atom is four-coordinated by S,S′-chelating dithio­carbamate, S–donating silanethiol­ate and iodide ligands in a distorted tetrahedral environment . Inter­molecular C—H⋯ S and C—H⋯I inter­actions between cations and anions are present. Two C atoms of a tert-butyl group are disordered over two positions; the site occupancies are ca 0.65 and 0.35.

Related literature

For related literature, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]); Battaglia & Corradi (1986[Battaglia, L. P. & Corradi, A. B. (1986). J. Chem. Soc. Dalton Trans. pp. 1513-1517.]); Clemente et al. (1987[Clemente, D. A., Faraglia, G., Sindellari, L. & Trincia, L. (1987). J. Chem. Soc. Dalton Trans. pp. 1823-1826.]); Kropidłowska et al. (2006a[Kropidłowska, A., Chojnacki, J. & Becker, B. (2006a). Acta Cryst. C62, m95-m97.],b[Kropidłowska, A., Chojnacki, J. & Becker, B. (2006b). Acta Cryst. E62, m457-m459.]); Kropidłowska, Chojnacki et al. (2008[Kropidłowska, A., Chojnacki, J., Fahmi, A. & Becker, B. (2008). Dalton Trans. Submitted.]); Kropidłowska, Rotaru et al. (2008[Kropidłowska, A., Rotaru, A., Strankowski, M., Becker, B. & Segal, E. (2008). J. Therm. Anal. Calorim. 91, 903-905.]); Wojnowski et al. (1992[Wojnowski, W., Becker, B., Walz, L., Peters, K., Peters, E.-M. & von Schnering, H. G. (1992). Polyhedron, 11, 607-612.]).

[Scheme 1]

Experimental

Crystal data
  • (C16H36N)[Cd(C5H8NS2)(C12H27O3SSi)I]

  • Mr = 907.49

  • Monoclinic, P 21 /c

  • a = 14.8881 (9) Å

  • b = 16.3973 (9) Å

  • c = 18.6471 (11) Å

  • β = 105.519 (5)°

  • V = 4386.3 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.40 mm−1

  • T = 120 (2) K

  • 0.34 × 0.08 × 0.05 mm

Data collection
  • Oxford Diffraction KM-4-CCD diffractometer

  • Absorption correction: analytical [CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Poland, Wrocław, Poland.]); analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.744, Tmax = 0.943

  • 32652 measured reflections

  • 8628 independent reflections

  • 5398 reflections with I > 2σ(I)

  • Rint = 0.065

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.088

  • S = 0.86

  • 8628 reflections

  • 423 parameters

  • H-atom parameters constrained

  • Δρmax = 1.01 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17A⋯I1i 0.99 3.16 3.830 (4) 126
C30—H30B⋯I1ii 0.99 3.15 3.960 (4) 139
C31—H31B⋯S3 0.99 2.99 3.931 (7) 160
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Poland, Wrocław, Poland.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Poland, Wrocław, Poland.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The study of metal complexes with S-donor ligands is a well established field. Current interest in such systems stems from the fact that they may serve as potential precursors of metal sulfides. Our recent investigations are therefore focused on the synthesis of compounds with different S-donors (among them one with S—Si bond) ligating to the same metallic centre (Kropidłowska, Chojnacki, et al., 2008; Kropidłowska, Rotaru, et al., 2008). The synthesis and analysis of products obtained in [Cd{SSi(OtBu)3}2]2 (Wojnowski, et al., 1992) | (-)S2CNR2 (dtc) | R'4NX reaction system have so far proved, that besides the desired complexes with sulfur rich kernel (Kropidłowska, Chojnacki, et al., 2008) some other ionic compounds, e.g., (Et4N)[Cd(S2NEt2)2I] (Kropidłowska, et al., 2006a) or (Bu4N)2[CdBr4]×2C7H8 (Kropidłowska, et al., 2006b) may also be formed.

In the present paper we describe the product of a reaction between cadmium tri-tert-butoxysilanethiolate, ammonium 1-pyrrolidinylcarbodithioate and tetraethylammonium iodide carried out in toluene/propanol-2 mixture. Its crystal structure was determined, demonstrating that a new iodocadmate, [Cd{SSi(OtBu)3}(S2CNC4H9)I](-)[Et4N](+) (I), with additional silanethiolate and 1-pyrrolidinylcarbodithioate ligands was obtained. The molecular structure of I with atom numbering scheme is shown in Figure 1. The compound represents a novel type of complex with mixed S-donor ligands. Up to now structures (Allen, 2002) of only two similar compounds have been determined, namely for Pt(II) - FISMAV (Clemente et al., 1987) and Bi(III) - DUDWII (Battaglia & Corradi,1986) where dtc ligand and other S-donor (S-methyl dtc and thiourea respectively) are accompanied by a halogenide.

In the complex [Cd{SSi(OtBu)3}(S2CNC4H9)I](-) anion Cd atoms are four-coordinated in a CdS3I core. The arrangement of donor atoms can be primarily regarded as distorted (because of the presence of the chelating agent) tetrahedron with the widest S1—Cd1—S2 (124.78°) angle. Because of the distance (2.782 Å) the additional interaction between Cd1 and O2 is questionable (compare e.g. PAGBAA (Wojnowski et al., 1992)). A weak C—H···S interaction between cation and one of the dtc sulfur atoms (S3) can be assumed with d(H···S) 2.99Å (Table 1). What more, also C—H···I short contacts between iodine and some methylene groups from both dtc ligand and cation, with d(H···I) 3.16Å and 3.15Å respectively, may be taken into account (Figure 2). It is worthy to note, that in the unit cell of I cations and anions are arranged in the form of alternating layers (Figure 3).

It is hard to state how iodide ligand enters cadmium coordination sphere. Most probably species possessing both S-donors undergo this reaction. Related investigations are now in progress.

Related literature top

For related literature, see: Allen (2002); Battaglia & Corradi (1986); Clemente et al. (1987); Kropidłowska et al. (2006a,b); Kropidłowska et al., Chojnacki et al. (2008); Kropidłowska et al., Rotaru et al. (2008); Wojnowski et al. (1992).

Experimental top

Ammonium 1-pyrrolidinylcarbodithioate (0.029 g, 0.177 mmol) and equimolar amount of tetra-n-butylammoniumiodide (0.066 g, 0.178 mmol) were dissolved in 15 cm3 of toluene/propanol-2 (5:1, v/v) mixture. Next, cadmium tri-tert-butoxysilanethiolate (0.11 g, 0.089 mmol, (Wojnowski et al., 1992)) was dissolved in 5 cm3of hot toluene/propanol-2 mixture and the solution was added to dithiocarbamate solution. The reagents were stirred and heated under reflux for 4 h under argon and then left for decantation. Clear solution was drained to a Schlenk tube and left at 5°C to crystallize the products. After a week needle-like crystals were collected.

Refinement top

All H atoms were placed in calculated positions and refined as riding on their carrier atoms with respective Uiso(H) values: C—H = 0.98 Å (CH3) and Uiso(H) = 1.5 Ueq(C), C—H = 0.99 Å (CH2) and Uĩso(H) = 1.2 Ueq(C). Atoms C32 and C33 within one of n-butyl groups (C30—C33) are disordered over two positions with probabilities 0.65/0.35.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure and atom-numbering scheme for [Cd{SSi(OtBu)3}(S2CNC4H9)I](-)[Et4N](+) (I) with displacement ellipsoids drawn at 50% probability level. Atoms C32 and C33 are disordered over two positions - only major set is shown. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. Interactions and short contacts present within the unit cell of I - view along the a axis.
[Figure 3] Fig. 3. The network of interactions in the crystal lattice of I view along the a axis.
[Figure 4] Fig. 4. The crystal lattice of I. Color codes: blue-cations; green - anions.
Tetra-n-butylammonium iodido(pyrrolidine-1-carbodithioato- κ2S,S')(tri-tert-butoxysilanethiolato-κS)cadmate(II) top
Crystal data top
(C16H36N)[Cd(C5H8NS2)(C12H27O3SSi)I]Z = 4
Mr = 907.49F(000) = 1880
Monoclinic, P21/cDx = 1.374 Mg m3
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 14.8881 (9) Åθ = 2.5–32.6°
b = 16.3973 (9) ŵ = 1.40 mm1
c = 18.6471 (11) ÅT = 120 K
β = 105.519 (5)°Needle, colourless
V = 4386.3 (5) Å30.34 × 0.08 × 0.05 mm
Data collection top
Oxford Diffraction KM-4-CCD
diffractometer
8628 independent reflections
Graphite monochromator5398 reflections with I > 2σ(I)
Detector resolution: 8.1883 pixels mm-1Rint = 0.065
ω scansθmax = 26°, θmin = 2.4°
Absorption correction: analytical
[CrysAlis RED (Oxford Diffraction, 2006); analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by Clark & Reid (1995)]
h = 1718
Tmin = 0.744, Tmax = 0.943k = 2019
32652 measured reflectionsl = 2223
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 0.86 w = 1/[σ2(Fo2) + (0.0471P)2]
where P = (Fo2 + 2Fc2)/3
8628 reflections(Δ/σ)max = 0.002
423 parametersΔρmax = 1.01 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
(C16H36N)[Cd(C5H8NS2)(C12H27O3SSi)I]V = 4386.3 (5) Å3
Mr = 907.49Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.8881 (9) ŵ = 1.40 mm1
b = 16.3973 (9) ÅT = 120 K
c = 18.6471 (11) Å0.34 × 0.08 × 0.05 mm
β = 105.519 (5)°
Data collection top
Oxford Diffraction KM-4-CCD
diffractometer
8628 independent reflections
Absorption correction: analytical
[CrysAlis RED (Oxford Diffraction, 2006); analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by Clark & Reid (1995)]
5398 reflections with I > 2σ(I)
Tmin = 0.744, Tmax = 0.943Rint = 0.065
32652 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 0.86Δρmax = 1.01 e Å3
8628 reflectionsΔρmin = 0.44 e Å3
423 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cd10.30998 (2)0.104413 (19)0.278712 (17)0.02783 (9)
N10.3153 (2)0.3675 (2)0.29473 (19)0.0284 (9)
O10.14159 (19)0.11475 (17)0.31904 (16)0.0316 (7)
O20.1439 (2)0.01702 (18)0.23839 (16)0.0334 (7)
O30.0676 (2)0.01545 (18)0.35510 (16)0.0337 (7)
S20.22367 (8)0.23808 (7)0.22960 (6)0.0290 (3)
S10.28545 (8)0.02356 (7)0.38426 (6)0.0299 (3)
S30.41572 (8)0.23419 (7)0.33244 (6)0.0301 (3)
Si10.15373 (8)0.01594 (8)0.32351 (7)0.0288 (3)
I10.39336 (2)0.034354 (18)0.179160 (17)0.03680 (10)
C10.1167 (3)0.1721 (3)0.3691 (3)0.0353 (11)
C20.1662 (4)0.1504 (3)0.4499 (3)0.0458 (13)
H2A0.23310.14420.45530.069*
H2B0.15610.1940.48280.069*
H2C0.14090.09910.46330.069*
C30.1497 (4)0.2547 (3)0.3498 (3)0.0466 (13)
H3A0.11950.26730.29750.07*
H3B0.13340.29660.38170.07*
H3C0.21750.25360.35770.07*
C40.0115 (3)0.1730 (3)0.3562 (3)0.0487 (14)
H4A0.01010.11810.3640.073*
H4B0.00510.2110.39110.073*
H4C0.01810.19050.3050.073*
C50.0752 (3)0.0009 (3)0.1681 (3)0.0376 (12)
C60.0197 (4)0.0133 (5)0.1797 (3)0.074 (2)
H6A0.02060.06450.20670.111*
H6B0.06610.0160.13130.111*
H6C0.03440.03220.20860.111*
C70.1083 (4)0.0747 (4)0.1348 (3)0.0630 (17)
H7A0.17360.06720.13490.094*
H7B0.07010.08210.08360.094*
H7C0.10270.1230.16430.094*
C80.0763 (5)0.0739 (4)0.1197 (3)0.076 (2)
H8A0.05580.12180.14240.114*
H8B0.03410.0650.07010.114*
H8C0.13970.0830.11530.114*
C90.0421 (3)0.0913 (3)0.3841 (2)0.0337 (11)
C100.0733 (4)0.1643 (3)0.3458 (3)0.0437 (13)
H10A0.14150.16550.35790.066*
H10B0.05080.21480.36320.066*
H10C0.04760.15960.29180.066*
C110.0879 (3)0.0931 (3)0.4676 (2)0.0427 (13)
H11A0.06570.04680.49140.064*
H11B0.07180.14420.48850.064*
H11C0.15580.08960.47660.064*
C120.0637 (3)0.0905 (3)0.3688 (3)0.0479 (14)
H12A0.09220.09380.3150.072*
H12B0.08370.13730.39330.072*
H12C0.08340.03990.38810.072*
C130.3184 (3)0.2873 (3)0.2869 (2)0.0261 (10)
C140.2327 (3)0.4177 (3)0.2626 (3)0.0347 (11)
H14A0.17610.39290.27150.042*
H14B0.22320.42470.20830.042*
C150.2549 (3)0.4988 (3)0.3030 (3)0.0487 (14)
H15A0.22520.54460.27070.058*
H15B0.23360.49940.34890.058*
C160.3595 (3)0.5039 (3)0.3208 (3)0.0474 (14)
H16A0.38450.54080.36350.057*
H16B0.37950.52390.27740.057*
C170.3925 (3)0.4161 (3)0.3402 (3)0.0349 (11)
H17A0.45120.4050.32660.042*
H17B0.40210.40490.39390.042*
N20.4647 (2)0.19938 (19)0.59242 (18)0.0249 (8)
C180.4401 (3)0.1098 (2)0.5800 (2)0.0289 (10)
H18A0.49860.0780.58920.035*
H18B0.40570.10190.52720.035*
C190.3819 (3)0.0751 (3)0.6284 (3)0.0341 (11)
H19A0.32980.11270.62810.041*
H19B0.42080.06990.68030.041*
C200.3430 (3)0.0091 (3)0.5992 (3)0.0338 (11)
H20A0.30510.03020.63140.041*
H20B0.30110.00240.54840.041*
C210.4168 (3)0.0712 (3)0.5966 (3)0.0421 (12)
H21A0.46120.07550.64580.063*
H21B0.44970.05420.56010.063*
H21C0.38730.12440.58220.063*
C220.5240 (3)0.2197 (2)0.5404 (2)0.0277 (10)
H22A0.57570.17980.5490.033*
H22B0.48550.21210.48860.033*
C230.5655 (3)0.3042 (3)0.5468 (2)0.0332 (11)
H23A0.60560.31280.59790.04*
H23B0.51490.34520.53730.04*
C240.6231 (3)0.3158 (3)0.4912 (2)0.0357 (11)
H24A0.6690.27080.49730.043*
H24B0.58140.31230.44010.043*
C250.6744 (4)0.3961 (3)0.4999 (3)0.0544 (15)
H25A0.72050.39770.54850.082*
H25B0.62990.44090.49650.082*
H25C0.7060.40180.46040.082*
C260.5175 (3)0.2158 (3)0.6728 (2)0.0271 (10)
H26A0.47720.19980.70490.033*
H26B0.52840.27520.67890.033*
C270.6106 (3)0.1726 (3)0.7009 (2)0.0327 (11)
H27A0.65190.18730.66930.039*
H27B0.60080.11280.69770.039*
C280.6570 (4)0.1966 (3)0.7818 (3)0.0413 (12)
H28A0.61270.18620.81190.05*
H28B0.7120.16120.80120.05*
C290.6878 (4)0.2841 (3)0.7919 (3)0.0500 (14)
H29A0.63290.31970.78130.075*
H29B0.72560.2970.75770.075*
H29C0.72490.29270.84330.075*
C300.3781 (3)0.2521 (3)0.5773 (3)0.0354 (11)
H30A0.34680.24220.61720.042*
H30B0.39760.310.58060.042*
C310.3079 (4)0.2388 (3)0.5032 (3)0.0605 (16)
H31A0.2880.1810.49750.073*
H31B0.33510.25330.46190.073*
C320.2223 (7)0.2961 (6)0.5028 (6)0.043 (2)0.646 (11)
H32A0.16470.27310.46930.052*0.646 (11)
H32B0.21370.29940.55350.052*0.646 (11)
C330.2390 (6)0.3765 (7)0.4776 (5)0.057 (3)0.646 (11)
H33A0.2460.37310.42690.086*0.646 (11)
H33B0.29620.39890.51080.086*0.646 (11)
H33C0.18630.41210.47810.086*0.646 (11)
C32A0.2498 (10)0.3141 (12)0.4648 (9)0.043 (2)0.354 (11)
H32C0.28910.36320.46720.052*0.354 (11)
H32D0.21630.30260.41230.052*0.354 (11)
C33A0.1826 (15)0.3225 (15)0.5139 (10)0.064 (6)0.354 (11)
H33D0.14080.36880.49680.097*0.354 (11)
H33E0.21840.33160.56560.097*0.354 (11)
H33F0.14580.27240.51090.097*0.354 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.03032 (19)0.02514 (18)0.02964 (18)0.00049 (15)0.01080 (14)0.00300 (14)
N10.027 (2)0.027 (2)0.031 (2)0.0019 (17)0.0088 (17)0.0000 (16)
O10.0297 (17)0.0344 (18)0.0331 (18)0.0072 (14)0.0127 (14)0.0026 (14)
O20.0301 (17)0.044 (2)0.0260 (17)0.0020 (15)0.0079 (14)0.0019 (14)
O30.0327 (18)0.0352 (19)0.0368 (18)0.0021 (14)0.0157 (14)0.0017 (14)
S20.0277 (6)0.0257 (6)0.0322 (6)0.0001 (5)0.0053 (5)0.0009 (5)
S10.0329 (6)0.0317 (7)0.0246 (6)0.0063 (5)0.0067 (5)0.0031 (5)
S30.0291 (6)0.0280 (6)0.0304 (6)0.0029 (5)0.0032 (5)0.0043 (5)
Si10.0270 (7)0.0339 (8)0.0271 (7)0.0037 (6)0.0098 (5)0.0004 (5)
I10.0454 (2)0.02957 (17)0.04242 (19)0.00608 (15)0.02381 (15)0.00383 (14)
C10.041 (3)0.025 (3)0.044 (3)0.005 (2)0.018 (2)0.004 (2)
C20.056 (3)0.040 (3)0.045 (3)0.005 (3)0.019 (3)0.009 (2)
C30.045 (3)0.040 (3)0.057 (3)0.009 (3)0.018 (3)0.004 (3)
C40.039 (3)0.041 (3)0.075 (4)0.009 (2)0.029 (3)0.001 (3)
C50.030 (3)0.049 (3)0.030 (3)0.001 (2)0.002 (2)0.002 (2)
C60.034 (3)0.142 (6)0.045 (3)0.011 (4)0.007 (3)0.019 (4)
C70.062 (4)0.072 (4)0.048 (4)0.007 (3)0.002 (3)0.024 (3)
C80.084 (5)0.087 (5)0.041 (4)0.001 (4)0.013 (3)0.015 (3)
C90.033 (3)0.039 (3)0.035 (3)0.003 (2)0.018 (2)0.004 (2)
C100.056 (3)0.034 (3)0.046 (3)0.006 (3)0.023 (3)0.000 (2)
C110.048 (3)0.047 (3)0.037 (3)0.001 (3)0.019 (2)0.001 (2)
C120.047 (3)0.052 (3)0.047 (3)0.005 (3)0.017 (3)0.010 (3)
C130.030 (2)0.024 (2)0.030 (2)0.0016 (19)0.017 (2)0.0008 (19)
C140.034 (3)0.028 (3)0.045 (3)0.001 (2)0.015 (2)0.001 (2)
C150.046 (3)0.036 (3)0.066 (4)0.001 (2)0.018 (3)0.007 (3)
C160.047 (3)0.035 (3)0.065 (4)0.002 (2)0.024 (3)0.012 (3)
C170.033 (3)0.034 (3)0.041 (3)0.005 (2)0.015 (2)0.007 (2)
N20.030 (2)0.0176 (19)0.028 (2)0.0002 (15)0.0099 (16)0.0040 (15)
C180.036 (3)0.019 (2)0.032 (3)0.004 (2)0.011 (2)0.0033 (19)
C190.041 (3)0.030 (3)0.037 (3)0.003 (2)0.021 (2)0.002 (2)
C200.037 (3)0.033 (3)0.032 (3)0.003 (2)0.012 (2)0.002 (2)
C210.047 (3)0.032 (3)0.050 (3)0.003 (2)0.017 (3)0.004 (2)
C220.038 (3)0.027 (2)0.020 (2)0.002 (2)0.011 (2)0.0016 (18)
C230.045 (3)0.025 (3)0.029 (3)0.004 (2)0.009 (2)0.0035 (19)
C240.038 (3)0.038 (3)0.030 (3)0.006 (2)0.007 (2)0.004 (2)
C250.068 (4)0.050 (3)0.048 (3)0.022 (3)0.020 (3)0.007 (3)
C260.037 (3)0.027 (2)0.022 (2)0.004 (2)0.015 (2)0.0053 (19)
C270.044 (3)0.021 (2)0.035 (3)0.001 (2)0.015 (2)0.002 (2)
C280.046 (3)0.041 (3)0.035 (3)0.001 (2)0.006 (2)0.002 (2)
C290.056 (4)0.050 (3)0.040 (3)0.006 (3)0.008 (3)0.012 (2)
C300.039 (3)0.025 (3)0.045 (3)0.001 (2)0.015 (2)0.007 (2)
C310.047 (3)0.045 (3)0.078 (4)0.014 (3)0.003 (3)0.017 (3)
C320.035 (5)0.057 (6)0.042 (6)0.006 (4)0.018 (4)0.008 (4)
C330.048 (6)0.075 (9)0.045 (5)0.002 (5)0.006 (4)0.005 (5)
C32A0.035 (5)0.057 (6)0.042 (6)0.006 (4)0.018 (4)0.008 (4)
C33A0.061 (14)0.098 (17)0.041 (10)0.006 (12)0.025 (10)0.014 (10)
Geometric parameters (Å, º) top
Cd1—S12.4798 (11)C17—H17A0.99
Cd1—S22.5815 (11)C17—H17B0.99
Cd1—S32.6770 (11)N2—C221.513 (5)
Cd1—I12.7459 (4)N2—C301.516 (5)
N1—C131.326 (5)N2—C181.517 (5)
N1—C141.467 (5)N2—C261.518 (5)
N1—C171.468 (5)C18—C191.518 (6)
O1—C11.441 (5)C18—H18A0.99
O1—Si11.630 (3)C18—H18B0.99
O2—C51.460 (5)C19—C201.539 (6)
O2—Si11.646 (3)C19—H19A0.99
O3—C91.446 (5)C19—H19B0.99
O3—Si11.631 (3)C20—C211.509 (6)
S2—C131.726 (4)C20—H20A0.99
S1—Si12.0880 (16)C20—H20B0.99
S3—C131.709 (4)C21—H21A0.98
C1—C31.517 (6)C21—H21B0.98
C1—C41.519 (6)C21—H21C0.98
C1—C21.532 (6)C22—C231.509 (6)
C2—H2A0.98C22—H22A0.99
C2—H2B0.98C22—H22B0.99
C2—H2C0.98C23—C241.524 (6)
C3—H3A0.98C23—H23A0.99
C3—H3B0.98C23—H23B0.99
C3—H3C0.98C24—C251.509 (6)
C4—H4A0.98C24—H24A0.99
C4—H4B0.98C24—H24B0.99
C4—H4C0.98C25—H25A0.98
C5—C61.500 (7)C25—H25B0.98
C5—C71.503 (7)C25—H25C0.98
C5—C81.526 (7)C26—C271.519 (6)
C6—H6A0.98C26—H26A0.99
C6—H6B0.98C26—H26B0.99
C6—H6C0.98C27—C281.532 (6)
C7—H7A0.98C27—H27A0.99
C7—H7B0.98C27—H27B0.99
C7—H7C0.98C28—C291.502 (7)
C8—H8A0.98C28—H28A0.99
C8—H8B0.98C28—H28B0.99
C8—H8C0.98C29—H29A0.98
C9—C121.524 (6)C29—H29B0.98
C9—C111.525 (6)C29—H29C0.98
C9—C101.529 (6)C30—C311.510 (7)
C10—H10A0.98C30—H30A0.99
C10—H10B0.98C30—H30B0.99
C10—H10C0.98C31—C32A1.566 (18)
C11—H11A0.98C31—C321.581 (10)
C11—H11B0.98C31—H31A0.99
C11—H11C0.98C31—H31B0.99
C12—H12A0.98C32—C331.444 (14)
C12—H12B0.98C32—H32A0.99
C12—H12C0.98C32—H32B0.99
C14—C151.521 (6)C33—H33A0.98
C14—H14A0.99C33—H33B0.98
C14—H14B0.99C33—H33C0.98
C15—C161.505 (7)C32A—C33A1.53 (2)
C15—H15A0.99C32A—H32C0.99
C15—H15B0.99C32A—H32D0.99
C16—C171.533 (6)C33A—H33D0.98
C16—H16A0.99C33A—H33E0.98
C16—H16B0.99C33A—H33F0.98
S1—Cd1—S2124.78 (4)C16—C17—H17A111.2
S1—Cd1—S3108.95 (4)N1—C17—H17B111.2
S2—Cd1—S369.20 (3)C16—C17—H17B111.2
S1—Cd1—I1120.14 (3)H17A—C17—H17B109.1
S2—Cd1—I1112.80 (3)C22—N2—C30111.6 (3)
S3—Cd1—I1104.99 (3)C22—N2—C18105.9 (3)
C13—N1—C14124.2 (4)C30—N2—C18111.4 (3)
C13—N1—C17123.8 (4)C22—N2—C26110.9 (3)
C14—N1—C17111.9 (3)C30—N2—C26105.8 (3)
C1—O1—Si1131.3 (3)C18—N2—C26111.2 (3)
C5—O2—Si1131.3 (3)N2—C18—C19115.2 (3)
C9—O3—Si1135.8 (3)N2—C18—H18A108.5
C13—S2—Cd186.03 (14)C19—C18—H18A108.5
Si1—S1—Cd192.96 (5)N2—C18—H18B108.5
C13—S3—Cd183.34 (14)C19—C18—H18B108.5
O1—Si1—O3104.18 (15)H18A—C18—H18B107.5
O1—Si1—O2107.28 (16)C18—C19—C20110.3 (4)
O3—Si1—O2111.67 (16)C18—C19—H19A109.6
O1—Si1—S1114.29 (12)C20—C19—H19A109.6
O3—Si1—S1114.92 (12)C18—C19—H19B109.6
O2—Si1—S1104.45 (12)C20—C19—H19B109.6
O1—C1—C3105.9 (4)H19A—C19—H19B108.1
O1—C1—C4109.7 (4)C21—C20—C19114.1 (4)
C3—C1—C4109.8 (4)C21—C20—H20A108.7
O1—C1—C2110.3 (4)C19—C20—H20A108.7
C3—C1—C2109.8 (4)C21—C20—H20B108.7
C4—C1—C2111.2 (4)C19—C20—H20B108.7
C1—C2—H2A109.5H20A—C20—H20B107.6
C1—C2—H2B109.5C20—C21—H21A109.5
H2A—C2—H2B109.5C20—C21—H21B109.5
C1—C2—H2C109.5H21A—C21—H21B109.5
H2A—C2—H2C109.5C20—C21—H21C109.5
H2B—C2—H2C109.5H21A—C21—H21C109.5
C1—C3—H3A109.5H21B—C21—H21C109.5
C1—C3—H3B109.5C23—C22—N2116.6 (3)
H3A—C3—H3B109.5C23—C22—H22A108.1
C1—C3—H3C109.5N2—C22—H22A108.1
H3A—C3—H3C109.5C23—C22—H22B108.1
H3B—C3—H3C109.5N2—C22—H22B108.1
C1—C4—H4A109.5H22A—C22—H22B107.3
C1—C4—H4B109.5C22—C23—C24110.7 (4)
H4A—C4—H4B109.5C22—C23—H23A109.5
C1—C4—H4C109.5C24—C23—H23A109.5
H4A—C4—H4C109.5C22—C23—H23B109.5
H4B—C4—H4C109.5C24—C23—H23B109.5
O2—C5—C6111.1 (4)H23A—C23—H23B108.1
O2—C5—C7107.7 (4)C25—C24—C23113.3 (4)
C6—C5—C7112.0 (5)C25—C24—H24A108.9
O2—C5—C8104.7 (4)C23—C24—H24A108.9
C6—C5—C8110.8 (5)C25—C24—H24B108.9
C7—C5—C8110.2 (5)C23—C24—H24B108.9
C5—C6—H6A109.5H24A—C24—H24B107.7
C5—C6—H6B109.5C24—C25—H25A109.5
H6A—C6—H6B109.5C24—C25—H25B109.5
C5—C6—H6C109.5H25A—C25—H25B109.5
H6A—C6—H6C109.5C24—C25—H25C109.5
H6B—C6—H6C109.5H25A—C25—H25C109.5
C5—C7—H7A109.5H25B—C25—H25C109.5
C5—C7—H7B109.5N2—C26—C27116.2 (3)
H7A—C7—H7B109.5N2—C26—H26A108.2
C5—C7—H7C109.5C27—C26—H26A108.2
H7A—C7—H7C109.5N2—C26—H26B108.2
H7B—C7—H7C109.5C27—C26—H26B108.2
C5—C8—H8A109.5H26A—C26—H26B107.4
C5—C8—H8B109.5C26—C27—C28110.5 (4)
H8A—C8—H8B109.5C26—C27—H27A109.6
C5—C8—H8C109.5C28—C27—H27A109.6
H8A—C8—H8C109.5C26—C27—H27B109.6
H8B—C8—H8C109.5C28—C27—H27B109.6
O3—C9—C12106.5 (4)H27A—C27—H27B108.1
O3—C9—C11108.0 (4)C29—C28—C27114.3 (4)
C12—C9—C11110.4 (4)C29—C28—H28A108.7
O3—C9—C10110.9 (3)C27—C28—H28A108.7
C12—C9—C10110.3 (4)C29—C28—H28B108.7
C11—C9—C10110.6 (4)C27—C28—H28B108.7
C9—C10—H10A109.5H28A—C28—H28B107.6
C9—C10—H10B109.5C28—C29—H29A109.5
H10A—C10—H10B109.5C28—C29—H29B109.5
C9—C10—H10C109.5H29A—C29—H29B109.5
H10A—C10—H10C109.5C28—C29—H29C109.5
H10B—C10—H10C109.5H29A—C29—H29C109.5
C9—C11—H11A109.5H29B—C29—H29C109.5
C9—C11—H11B109.5C31—C30—N2115.7 (4)
H11A—C11—H11B109.5C31—C30—H30A108.4
C9—C11—H11C109.5N2—C30—H30A108.4
H11A—C11—H11C109.5C31—C30—H30B108.4
H11B—C11—H11C109.5N2—C30—H30B108.4
C9—C12—H12A109.5H30A—C30—H30B107.4
C9—C12—H12B109.5C30—C31—C32A117.8 (8)
H12A—C12—H12B109.5C30—C31—C32106.1 (5)
C9—C12—H12C109.5C30—C31—H31A110.5
H12A—C12—H12C109.5C32A—C31—H31A126.3
H12B—C12—H12C109.5C32—C31—H31A110.5
N1—C13—S3120.1 (3)C30—C31—H31B110.5
N1—C13—S2119.0 (3)C32A—C31—H31B75.3
S3—C13—S2120.9 (2)C32—C31—H31B110.5
N1—C14—C15103.9 (4)H31A—C31—H31B108.7
N1—C14—H14A111C33—C32—C31109.6 (9)
C15—C14—H14A111C33—C32—H32A109.8
N1—C14—H14B111C31—C32—H32A109.8
C15—C14—H14B111C33—C32—H32B109.8
H14A—C14—H14B109C31—C32—H32B109.8
C16—C15—C14103.5 (4)H32A—C32—H32B108.2
C16—C15—H15A111.1C33A—C32A—C3199.6 (14)
C14—C15—H15A111.1C33A—C32A—H32C111.9
C16—C15—H15B111.1C31—C32A—H32C111.9
C14—C15—H15B111.1C33A—C32A—H32D111.9
H15A—C15—H15B109C31—C32A—H32D111.9
C15—C16—C17104.4 (4)H32C—C32A—H32D109.6
C15—C16—H16A110.9C32A—C33A—H33D109.5
C17—C16—H16A110.9C32A—C33A—H33E109.5
C15—C16—H16B110.9H33D—C33A—H33E109.5
C17—C16—H16B110.9C32A—C33A—H33F109.5
H16A—C16—H16B108.9H33D—C33A—H33F109.5
N1—C17—C16102.8 (4)H33E—C33A—H33F109.5
N1—C17—H17A111.2
S1—Cd1—S2—C1394.76 (14)Cd1—S3—C13—S27.3 (2)
S3—Cd1—S2—C134.40 (14)Cd1—S2—C13—N1173.1 (3)
I1—Cd1—S2—C13102.47 (14)Cd1—S2—C13—S37.5 (2)
S2—Cd1—S1—Si171.18 (6)C13—N1—C14—C15165.6 (4)
S3—Cd1—S1—Si1148.54 (5)C17—N1—C14—C1511.2 (5)
I1—Cd1—S1—Si190.42 (5)N1—C14—C15—C1629.8 (5)
S1—Cd1—S3—C13116.52 (14)C14—C15—C16—C1737.3 (5)
S2—Cd1—S3—C134.46 (14)C13—N1—C17—C16171.6 (4)
I1—Cd1—S3—C13113.57 (14)C14—N1—C17—C1611.6 (5)
C1—O1—Si1—O340.7 (4)C15—C16—C17—N130.1 (5)
C1—O1—Si1—O2159.2 (3)C22—N2—C18—C19178.6 (4)
C1—O1—Si1—S185.6 (4)C30—N2—C18—C1959.8 (5)
C9—O3—Si1—O1168.0 (4)C26—N2—C18—C1958.0 (5)
C9—O3—Si1—O276.5 (4)N2—C18—C19—C20167.2 (4)
C9—O3—Si1—S142.2 (4)C18—C19—C20—C2158.8 (5)
C5—O2—Si1—O147.7 (4)C30—N2—C22—C2363.9 (5)
C5—O2—Si1—O365.9 (4)C18—N2—C22—C23174.6 (4)
C5—O2—Si1—S1169.4 (3)C26—N2—C22—C2353.8 (5)
Cd1—S1—Si1—O1123.88 (12)N2—C22—C23—C24180.0 (4)
Cd1—S1—Si1—O3115.73 (13)C22—C23—C24—C25174.2 (4)
Cd1—S1—Si1—O26.96 (13)C22—N2—C26—C2756.0 (4)
Si1—O1—C1—C3160.4 (3)C30—N2—C26—C27177.3 (4)
Si1—O1—C1—C481.2 (5)C18—N2—C26—C2761.6 (4)
Si1—O1—C1—C241.6 (5)N2—C26—C27—C28178.3 (4)
Si1—O2—C5—C634.7 (6)C26—C27—C28—C2967.5 (5)
Si1—O2—C5—C788.3 (5)C22—N2—C30—C3166.4 (5)
Si1—O2—C5—C8154.3 (4)C18—N2—C30—C3151.9 (5)
Si1—O3—C9—C12153.6 (3)C26—N2—C30—C31172.9 (4)
Si1—O3—C9—C1187.8 (5)N2—C30—C31—C32A147.3 (7)
Si1—O3—C9—C1033.6 (6)N2—C30—C31—C32176.6 (5)
C14—N1—C13—S3175.3 (3)C30—C31—C32—C3385.9 (8)
C17—N1—C13—S31.2 (5)C32A—C31—C32—C3329.8 (12)
C14—N1—C13—S25.4 (5)C30—C31—C32A—C33A74.3 (14)
C17—N1—C13—S2178.2 (3)C32—C31—C32A—C33A4.1 (11)
Cd1—S3—C13—N1173.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17A···I1i0.993.163.830 (4)126
C30—H30B···I1ii0.993.153.960 (4)139
C31—H31B···S30.992.993.931 (7)160
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula(C16H36N)[Cd(C5H8NS2)(C12H27O3SSi)I]
Mr907.49
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)14.8881 (9), 16.3973 (9), 18.6471 (11)
β (°) 105.519 (5)
V3)4386.3 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.40
Crystal size (mm)0.34 × 0.08 × 0.05
Data collection
DiffractometerOxford Diffraction KM-4-CCD
diffractometer
Absorption correctionAnalytical
[CrysAlis RED (Oxford Diffraction, 2006); analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by Clark & Reid (1995)]
Tmin, Tmax0.744, 0.943
No. of measured, independent and
observed [I > 2σ(I)] reflections
32652, 8628, 5398
Rint0.065
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.088, 0.86
No. of reflections8628
No. of parameters423
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.01, 0.44

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17A···I1i0.993.163.830 (4)126
C30—H30B···I1ii0.993.153.960 (4)139
C31—H31B···S30.992.993.931 (7)160
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1/2, z+1/2.
 

Acknowledgements

The research was supported by the Polish Ministry of Education and Science (grant No. 1 T09 A 117 30). AK acknowledges financial support provided by the Foundation for Polish Science (FNP).

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBattaglia, L. P. & Corradi, A. B. (1986). J. Chem. Soc. Dalton Trans. pp. 1513–1517.  CSD CrossRef Web of Science Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationClemente, D. A., Faraglia, G., Sindellari, L. & Trincia, L. (1987). J. Chem. Soc. Dalton Trans. pp. 1823–1826.  CSD CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKropidłowska, A., Chojnacki, J. & Becker, B. (2006a). Acta Cryst. C62, m95–m97.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKropidłowska, A., Chojnacki, J. & Becker, B. (2006b). Acta Cryst. E62, m457–m459.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKropidłowska, A., Chojnacki, J., Fahmi, A. & Becker, B. (2008). Dalton Trans. Submitted.  Google Scholar
First citationKropidłowska, A., Rotaru, A., Strankowski, M., Becker, B. & Segal, E. (2008). J. Therm. Anal. Calorim. 91, 903–905.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Poland, Wrocław, Poland.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWojnowski, W., Becker, B., Walz, L., Peters, K., Peters, E.-M. & von Schnering, H. G. (1992). Polyhedron, 11, 607–612.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds