organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 2-(5-bromo-2-methyl­naphtho[2,1-b]furan-1-yl)acetate

aDepartment of Chemistry, The University of Adelaide, 5005 South Australia, Australia, bDepartment of Wine and Horticulture, The University of Adelaide, Waite Campus, Glen Osmond 5064, South Australia, Australia, and cDepartment of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA
*Correspondence e-mail: edward.tiekink@utsa.edu

(Received 20 May 2008; accepted 22 May 2008; online 30 May 2008)

The three fused six-, six- and five-membered rings in the title compound, C16H13BrO3, are coplanar, the CH2C(=O)OCH3 residue being twisted out of this plane [dihedral angle = −26.9 (4)°]. Centrosymmetric dimers are found in the crystal structure stabilized by C—H⋯O inter­actions involving the furan O atom.

Related literature

For related literature, see: Chatterjea et al. (1979[Chatterjea, J. N., Lal, S., Jha, U., Rycroft, D. S. & Carnduff, J. (1979). J. Chem. Res. Synop. pp. 356-356.]); Einhorn et al. (1983[Einhorn, J., Demerseman, P., Royer, R. & Cavier, R. (1983). Eur. J. Med. Chem. 18, 175-180.]); Monte et al. (1996[Monte, A. P., Marona-Lewicka, D., Parker, M. A., Wainscott, D. B., Nelson, D. L. & Nichols, D. E. (1996). J. Med. Chem. 39, 2953-2961.]); Jevric et al. (2008[Jevric, M., Taylor, D. K. & Tiekink, E. R. T. (2008). Acta Cryst. E64, o1167.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13BrO3

  • Mr = 333.17

  • Monoclinic, P 21 /c

  • a = 17.050 (2) Å

  • b = 14.5064 (17) Å

  • c = 5.3660 (7) Å

  • β = 96.443 (3)°

  • V = 1318.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.12 mm−1

  • T = 223 (2) K

  • 0.68 × 0.18 × 0.16 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, U. S. A.]) Tmin = 0.492, Tmax = 1.000 (expected range = 0.299–0.607)

  • 10676 measured reflections

  • 3817 independent reflections

  • 2967 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.136

  • S = 1.13

  • 3817 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.77 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O3i 0.94 2.58 3.468 (4) 157
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, U. S. A.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, U. S. A.]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, M., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435-435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Little has been done on observing aromatic electrophillic substitutions on polycyclic aromatic systems related to 1 shown in Fig. 3 (Chatterjea et al., 1979). Previous work showed that substitution should proceed at position five in the ring system of 1 (Chatterjea et al., 1979). Treatment of 1 with bromine in acetic acid according to a literature procedure (Einhorn et al., 1983 & Monte et al., 1996) gave the title compound (I) as the sole isolatable product. 1H NMR analysis of (I) showed five aromatic proton signals, two of which experienced two large ortho couplings and one a singlet (δ 7.81). This coupling pattern indicated that an aromatic electrophilic substitution had occurred on the ring adjoining the furan. However, although all signals were unobscured it was not possible to assign the peri proton as no detectable cross-peak in the ROESY spectrum was observed. X-ray crystallography showed that the position of the bromine substitution was in accordance with previous literature (Chatterjea et al., 1979).

Compound (I), Fig. 1, is comprised of three fused rings; two six-membered rings (A & B) and one five-membered ring (C). The respective A/B, A/C & B/C dihedral angles between their least-squares planes are 1.88 (13), 4.16 (15) & 2.48 (14)°. The CH2C(=O)OCH3 residue is twisted out of the tricyclic system, as seen in the value of the C1/C11/C12/O12 torsion angle of -26.9 (4)°. The crystal packing features centrosymmetric dimers consolidated by C—H···O contacts involving the furan-O atom; Table 1 and Fig. 2.

The structure ofthe related compound 2-(2-methylnaphtho[2,1-b]furan-1-yl)acetic acid has been reported in the preceding paper (Jevric et al., 2008).

Related literature top

For related literature, see: Chatterjea et al. (1979); Einhorn et al. (1983); Monte et al. (1996).

Experimental top

Compound (I) was formed (Einhorn et al., 1983 & Monte et al., 1996) in 88% yield as a colourless solid recrystallized from n-heptane; m.p.: 391 - 393 K. Rf = 0.24 (12% acetone in hexane). IR (CH2Cl2, cm-1) 1741, 1618, 1577, 1521. 1H NMR (d6-benzene, 600 MHz) δ 2.00 (s, 3H), 3.21 (s, 3H), 3.41 (s, 2H), 7.27 (ddd, J = 7.0, 7.0, 1.2 Hz, 1H), 7.38 (ddd, J = 7.0, 7.0, 1.2 Hz, 1H), 7.81 (s, 1H), 8.36 (dd, J = 7.0, 1.2 Hz, 1H), 8.46 (dd, J = 7.0, 1.2 Hz, 1H) p.p.m.. 13C NMR (CDCl3, 50 MHz) δ 11.9, 31.4, 52.3, 109.5, 116.5, 118.1, 122.3, 123.1, 125.2, 126.9, 128.3, 128.4, 128.8, 150.7, 152.9, 171.3 p.p.m.. MS m/z (%): 332 (M+, 100), 273 (93), 259 (25), 194 (37), 165 (62). HRMS, C16H13BrO3: calcd, 332.0049; found 332.0062.

Refinement top

All H atoms were included in calculated positions and treated as riding atoms: C—H = 0.94 - 0.98 Å, and with Uiso(H) = 1.5 or 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of compound (I) showing the atom-labelling scheme and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing of compound (I) viewed in projection down the c axis, highlighting the stacking of the dimeric aggregates. Colour scheme olive (Br), red (O), grey (C), and green (H). The C—H···O contacts are shown as orange dashed lines.
[Figure 3] Fig. 3. The formation of the title compound.
Methyl 2-(5-bromo-2-methylnaphtho[2,1-b]furan-1-yl)acetate top
Crystal data top
C16H13BrO3F(000) = 672
Mr = 333.17Dx = 1.678 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 2984 reflections
a = 17.050 (2) Åθ = 2.4–29.7°
b = 14.5064 (17) ŵ = 3.12 mm1
c = 5.3660 (7) ÅT = 223 K
β = 96.443 (3)°Plate, pale-yellow
V = 1318.8 (3) Å30.68 × 0.18 × 0.16 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
3817 independent reflections
Radiation source: fine-focus sealed tube2967 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω scansθmax = 30.1°, θmin = 1.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 2323
Tmin = 0.492, Tmax = 1.0k = 1420
10676 measured reflectionsl = 77
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0586P)2 + 0.71P]
where P = (Fo2 + 2Fc2)/3
3817 reflections(Δ/σ)max < 0.001
183 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.77 e Å3
Crystal data top
C16H13BrO3V = 1318.8 (3) Å3
Mr = 333.17Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.050 (2) ŵ = 3.12 mm1
b = 14.5064 (17) ÅT = 223 K
c = 5.3660 (7) Å0.68 × 0.18 × 0.16 mm
β = 96.443 (3)°
Data collection top
Bruker SMART CCD
diffractometer
3817 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2967 reflections with I > 2σ(I)
Tmin = 0.492, Tmax = 1.0Rint = 0.035
10676 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.13Δρmax = 0.47 e Å3
3817 reflectionsΔρmin = 0.77 e Å3
183 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br50.04963 (2)0.33514 (2)0.16830 (6)0.04284 (14)
O30.10671 (11)0.56263 (13)0.5779 (4)0.0285 (4)
O120.33445 (13)0.68019 (14)0.3251 (4)0.0321 (4)
O130.44151 (12)0.62588 (17)0.5516 (4)0.0379 (5)
C10.23909 (16)0.56919 (18)0.6116 (5)0.0242 (5)
C20.17380 (16)0.60179 (18)0.7005 (5)0.0258 (5)
C3A0.13162 (16)0.50429 (18)0.4058 (5)0.0262 (5)
C40.08136 (18)0.45375 (19)0.2380 (5)0.0308 (6)
H40.02630.45540.23880.037*
C50.11641 (18)0.40163 (19)0.0720 (5)0.0307 (6)
C5A0.19934 (18)0.39606 (18)0.0699 (5)0.0293 (6)
C60.2347 (2)0.34180 (19)0.1028 (6)0.0384 (7)
H60.20270.30840.22510.046*
C70.3142 (2)0.3368 (2)0.0963 (6)0.0422 (8)
H70.33680.30050.21460.051*
C80.3627 (2)0.3850 (2)0.0844 (6)0.0371 (7)
H80.41780.38020.08990.044*
C90.33055 (18)0.43933 (19)0.2536 (5)0.0306 (6)
H90.36390.47190.37440.037*
C9A0.24847 (17)0.44736 (18)0.2501 (5)0.0268 (5)
C9B0.21225 (16)0.50423 (17)0.4179 (5)0.0242 (5)
C110.32098 (16)0.59630 (19)0.7023 (5)0.0259 (5)
H11A0.35020.54160.76700.031*
H11B0.31990.63990.84130.031*
C120.36339 (16)0.63946 (18)0.5035 (5)0.0258 (5)
C130.4870 (2)0.6604 (3)0.3638 (8)0.0546 (10)
H13A0.47100.62950.20580.082*
H13B0.54250.64890.41410.082*
H13C0.47820.72620.34380.082*
C210.16031 (19)0.66841 (19)0.8973 (6)0.0315 (6)
H21A0.14190.63621.03800.047*
H21B0.12090.71290.83130.047*
H21C0.20930.70010.95260.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br50.0624 (3)0.0341 (2)0.02918 (18)0.01456 (14)0.00759 (14)0.00306 (11)
O30.0299 (10)0.0309 (10)0.0251 (9)0.0050 (8)0.0054 (7)0.0038 (8)
O120.0351 (11)0.0337 (11)0.0268 (10)0.0006 (8)0.0003 (8)0.0070 (8)
O130.0265 (10)0.0498 (13)0.0375 (12)0.0037 (9)0.0032 (9)0.0119 (10)
C10.0328 (14)0.0211 (11)0.0183 (11)0.0022 (10)0.0018 (9)0.0015 (9)
C20.0310 (13)0.0232 (12)0.0231 (12)0.0028 (10)0.0025 (10)0.0012 (9)
C3A0.0322 (14)0.0246 (12)0.0221 (11)0.0042 (10)0.0047 (10)0.0012 (10)
C40.0345 (15)0.0304 (14)0.0267 (13)0.0095 (11)0.0005 (11)0.0013 (11)
C50.0427 (16)0.0240 (12)0.0238 (12)0.0093 (11)0.0036 (11)0.0019 (10)
C5A0.0463 (16)0.0208 (12)0.0206 (12)0.0010 (11)0.0035 (11)0.0027 (9)
C60.064 (2)0.0249 (14)0.0262 (14)0.0001 (13)0.0036 (13)0.0017 (11)
C70.069 (2)0.0293 (15)0.0304 (15)0.0110 (15)0.0131 (15)0.0013 (12)
C80.0463 (17)0.0279 (14)0.0382 (16)0.0105 (13)0.0101 (13)0.0048 (12)
C90.0400 (15)0.0239 (13)0.0283 (13)0.0031 (11)0.0058 (11)0.0036 (10)
C9A0.0383 (15)0.0198 (12)0.0227 (12)0.0002 (10)0.0052 (10)0.0030 (9)
C9B0.0333 (14)0.0191 (11)0.0198 (11)0.0032 (10)0.0010 (10)0.0022 (9)
C110.0298 (13)0.0262 (13)0.0207 (11)0.0016 (10)0.0020 (10)0.0021 (9)
C120.0294 (13)0.0232 (12)0.0239 (12)0.0003 (10)0.0009 (10)0.0032 (9)
C130.0363 (18)0.079 (3)0.051 (2)0.0019 (17)0.0130 (16)0.0162 (19)
C210.0381 (15)0.0305 (14)0.0265 (13)0.0039 (12)0.0068 (11)0.0034 (11)
Geometric parameters (Å, º) top
Br5—C51.887 (3)C6—H60.9400
O3—C3A1.355 (3)C7—C81.390 (5)
O3—C21.377 (3)C7—H70.9400
O12—C121.184 (3)C8—C91.362 (4)
O13—C121.343 (3)C8—H80.9400
O13—C131.429 (4)C9—C9A1.402 (4)
C1—C21.345 (4)C9—H90.9400
C1—C9B1.439 (3)C9A—C9B1.413 (4)
C1—C111.479 (4)C11—C121.492 (4)
C2—C211.468 (4)C11—H11A0.9800
C3A—C9B1.369 (4)C11—H11B0.9800
C3A—C41.382 (4)C13—H13A0.9700
C4—C51.357 (4)C13—H13B0.9700
C4—H40.9400C13—H13C0.9700
C5—C5A1.417 (4)C21—H21A0.9700
C5A—C61.403 (4)C21—H21B0.9700
C5A—C9A1.417 (4)C21—H21C0.9700
C6—C71.354 (6)
C3A—O3—C2106.0 (2)C8—C9—H9119.5
C12—O13—C13114.7 (2)C9A—C9—H9119.5
C2—C1—C9B106.1 (2)C9—C9A—C9B123.1 (3)
C2—C1—C11125.3 (2)C9—C9A—C5A118.6 (3)
C9B—C1—C11128.6 (2)C9B—C9A—C5A118.3 (3)
C1—C2—O3111.2 (2)C3A—C9B—C9A118.6 (2)
C1—C2—C21133.6 (3)C3A—C9B—C1105.7 (2)
O3—C2—C21115.2 (2)C9A—C9B—C1135.7 (3)
O3—C3A—C9B111.0 (2)C1—C11—C12113.1 (2)
O3—C3A—C4123.8 (3)C1—C11—H11A109.0
C9B—C3A—C4125.2 (3)C12—C11—H11A109.0
C5—C4—C3A115.9 (3)C1—C11—H11B109.0
C5—C4—H4122.1C12—C11—H11B109.0
C3A—C4—H4122.1H11A—C11—H11B107.8
C4—C5—C5A123.4 (3)O12—C12—O13122.9 (3)
C4—C5—Br5117.2 (2)O12—C12—C11126.6 (3)
C5A—C5—Br5119.4 (2)O13—C12—C11110.6 (2)
C6—C5A—C9A118.7 (3)O13—C13—H13A109.5
C6—C5A—C5122.7 (3)O13—C13—H13B109.5
C9A—C5A—C5118.6 (3)H13A—C13—H13B109.5
C7—C6—C5A121.1 (3)O13—C13—H13C109.5
C7—C6—H6119.5H13A—C13—H13C109.5
C5A—C6—H6119.5H13B—C13—H13C109.5
C6—C7—C8120.4 (3)C2—C21—H21A109.5
C6—C7—H7119.8C2—C21—H21B109.5
C8—C7—H7119.8H21A—C21—H21B109.5
C9—C8—C7120.2 (3)C2—C21—H21C109.5
C9—C8—H8119.9H21A—C21—H21C109.5
C7—C8—H8119.9H21B—C21—H21C109.5
C8—C9—C9A121.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O3i0.942.583.468 (4)157
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC16H13BrO3
Mr333.17
Crystal system, space groupMonoclinic, P21/c
Temperature (K)223
a, b, c (Å)17.050 (2), 14.5064 (17), 5.3660 (7)
β (°) 96.443 (3)
V3)1318.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)3.12
Crystal size (mm)0.68 × 0.18 × 0.16
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.492, 1.0
No. of measured, independent and
observed [I > 2σ(I)] reflections
10676, 3817, 2967
Rint0.035
(sin θ/λ)max1)0.706
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.136, 1.13
No. of reflections3817
No. of parameters183
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.77

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O3i0.942.583.468 (4)157
Symmetry code: (i) x, y+1, z+1.
 

Footnotes

Additional correspondence e-mail: dennis.taylor@adelaide.edu.au.

Acknowledgements

We are grateful to the Australian Research Council for financial support.

References

First citationAltomare, A., Cascarano, M., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435–435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, U. S. A.  Google Scholar
First citationChatterjea, J. N., Lal, S., Jha, U., Rycroft, D. S. & Carnduff, J. (1979). J. Chem. Res. Synop. pp. 356–356.  Google Scholar
First citationEinhorn, J., Demerseman, P., Royer, R. & Cavier, R. (1983). Eur. J. Med. Chem. 18, 175–180.  CAS Google Scholar
First citationJevric, M., Taylor, D. K. & Tiekink, E. R. T. (2008). Acta Cryst. E64, o1167.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationMonte, A. P., Marona-Lewicka, D., Parker, M. A., Wainscott, D. B., Nelson, D. L. & Nichols, D. E. (1996). J. Med. Chem. 39, 2953–2961.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds