organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[(di­methyl-λ4-sulfanyl­­idene)oxonium] hexa­bromidotellurate(IV) di­methyl sulfoxide disolvate

aUniversity of Wisconsin–Fox Valley, Menasha, Wisconsin 54952, USA, and bMarquette University, Milwaukee, Wisconsin 53201, USA
*Correspondence e-mail: martin.rudd@uwc.edu

(Received 3 April 2008; accepted 22 May 2008; online 30 May 2008)

The structure of the title salt, 2C2H7OS+·Br6Te2−·2C2H6OS, displays O—H⋯O hydrogen bonding between one protonated dimethyl sulfoxide mol­ecule and a neighboring dimethyl sulfoxide mol­ecule, and an octa­hedral geometry for the Te atom; the latter is situated on a center of inversion.

Related literature

For the structure of the related compound [(dmso-H)2][TeCl6], see: Laitinen et al. (2002[Laitinen, R. S., Pietikäinen, J., Maaninen, A., Oilunkaniemi, R. & Valkonen, J. (2002). Polyhedron, 21, 1089-1095.]); Viossat et al. (1981[Viossat, B., Khodadad, P. & Rodier, N. (1981). J. Mol. Struct. 71, 237-241.]). For related literature, see Abriel (1987[Abriel, W. (1987). Z. Naturforsch. Teil B, 43, 415-420.]); Abriel & du Bois (1989[Abriel, W. & du Bois, A. (1989). Acta Cryst. C45, 2002-2003.]); Borgias et al. (1985[Borgias, B. A., Scarrow, R. C., Seidler, M. D. & Weiner, W. P. (1985). Acta Cryst. C41, 476-479.]); Jaswal et al. (1990[Jaswal, J. S., Rettig, S. J. & James, B. R. (1990). Can. J. Chem. 68, 1808-1817.]); Keefer et al. (1988[Keefer, L. J., Hrabie, J. A., Ohannesian, L., Flippen-Anderson, J. L. & George, C. (1988). J. Am. Chem. Soc. 110, 3701-3708.]).

[Scheme 1]

Experimental

Crystal data
  • 2C2H7OS+·Br6Te2−·2C2H6OS

  • Mr = 921.59

  • Triclinic, [P \overline 1]

  • a = 8.0087 (2) Å

  • b = 9.2428 (2) Å

  • c = 10.5249 (3) Å

  • α = 66.280 (1)°

  • β = 70.732 (1)°

  • γ = 66.340 (1)°

  • V = 639.98 (3) Å3

  • Z = 1

  • Cu Kα radiation

  • μ = 23.30 mm−1

  • T = 100 (2) K

  • 0.23 × 0.20 × 0.16 mm

Data collection
  • Bruker APEX2 CCD detector diffractometer

  • Absorption correction: numerical [based on real shape of the crystal; absorption correction followed by the application of SADABS (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])] Tmin = 0.075, Tmax = 0.118

  • 5232 measured reflections

  • 2112 independent reflections

  • 2112 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.056

  • S = 1.15

  • 2112 reflections

  • 159 parameters

  • All H-atom parameters refined

  • Δρmax = 1.02 e Å−3

  • Δρmin = −0.68 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯O1 0.83 (7) 1.62 (8) 2.448 (4) 175 (7)

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: XS in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Bruker, 1998[Bruker (1998). XP. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: XCIF in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The structure of (I) consists of two units of two H+ hydrogen bonded dimethylsulfoxide molecules, Fig. 1, and a centrosymmetric hexabromotellurate(IV) anion, Fig. 2. At 2.448 (4) Å, the O1···O2 distance is relatively short, and is consistent with the presence of a moderately strong hydrogen bond (Keefer et al., 1988). The IR spectrum reveals peaks typical for the [(dmso)2H]+ cation with a strong band at 731 cm-1. This is in line with similar samples in which the same cation has been analyzed (Jaswal et al., 1990). A closely related tellurium complex, [(dmso)2H]2[TeCl6] has been structurally reported at room temperature (Viossat et al., 1981) and at low temperature (Laitinen et al., 2002). The cation in the latter experiment shows a O1···O2 distance of 2.435 (3) Å and the authors describe this as a "relatively strong hydrogen bond".

The hexabromotellurate(IV) anion in (I) shows an approximately octahedral geometry as expected. A review of some related structures shows that there are packing factors that slightly distort the geometry. One example where [TeBr6]2- shows deviations away from the regular octahedral geometry indicates that there is a 0.024Å difference between the longest and shortest bond Te—Br bond lengths (Borgias et al., 1985). In that report, the Te atom is located in a general position. In other literature, the Te is located at a center of inversion and displays a larger angular deviation from 90° [87.56 (3) - 92.44 (3)°] (Abriel & du Bois, 1989) which is greater than those reported here [less than 0.9° away from 90°]. A review of structural data for MX6E2- compounds (M = Se, Te and X = Cl, Br, I) was published to provide an explanation of the stereochemistry of the lone pair electrons (Abriel, 1987).

The unit cell shows, Fig. 3, the pairs of hydrogen bonded dmso molecule and dmso-H ions and anions, Table 1.

Related literature top

For the structure of thw related compound [(dmso-H)2][TeCl6], see: Laitinen et al. (2002); Viossat et al. (1981). For related literature, see Abriel (1987); Abriel & du Bois (1989); Borgias et al. (1985); Jaswal et al. (1990); Keefer et al. (1988).

Experimental top

Compound (I) was prepared by the slow cooling to room temperature of a hot solution (333 K) of tellurium dioxide (0.30 g, 0.19 mmol) dissolved in hydrobromic acid (1 mL) to which dimethylsulfoxide (5 mL) had been added. After 2 weeks, a crop of orange crystals formed although they are prone to solvent loss and decomposition. Analysis found: C 10.57; H 2.91; C8H26Br6O4S4Te requires: C 10.42, H 2.84. The IR spectrum showed strong bands at 3392, 1056, 731 cm-1.

Refinement top

The maximum and minimum electron density peaks of 1.01 and -0.68 e Å-3, respectively, are located 0.88 and 1.53 Å, respectively, from the Te atom. Hydrogen atoms positions were refined freely with C-H = 0.83 (7) - 1.03 (6) Å.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SADABS (Bruker, 2005); program(s) used to solve structure: XS in SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Bruker, 1998); software used to prepare material for publication: XCIF in SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Numbering Scheme for [(DMSO)2H]+ (the hydrogen bond is shown as a dashed line). Displacement ellipsoids are shown at the 50% level.
[Figure 2] Fig. 2. Numbering Scheme for [TeBr6]2-. Displacement ellipsoids are shown at the 50% level.
[Figure 3] Fig. 3. Hydrogen-bond formation and projection of the unit cell content of [(DMSO)2H]2[TeBr6]. Symmetry operators: Te1A [x, y+1, z]; O1A and O2A [1-x, 1-y, -z]; O1B and O2B [x, y, z+1]
Bis[(dimethyl-λ4-sulfanylidene)oxonium] hexabromidotellurate(IV) dimethyl sulfoxide disolvate top
Crystal data top
2C2H7OS+·Br6Te2·2C2H6OSZ = 1
Mr = 921.59F(000) = 432
Triclinic, P1Dx = 2.391 Mg m3
Hall symbol: -P 1Melting point: 343 K
a = 8.0087 (2) ÅCu Kα radiation, λ = 1.54178 Å
b = 9.2428 (2) ÅCell parameters from 4736 reflections
c = 10.5249 (3) Åθ = 5–66°
α = 66.280 (1)°µ = 23.30 mm1
β = 70.732 (1)°T = 100 K
γ = 66.340 (1)°Block, orange
V = 639.98 (3) Å30.23 × 0.20 × 0.16 mm
Data collection top
Bruker APEX2 CCD detector
diffractometer
2112 independent reflections
Radiation source: fine-focus sealed tube2112 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scansθmax = 66.8°, θmin = 4.7°
Absorption correction: numerical
[based on real shape of the crystal; absorption correction followed by the application of SADABS (Bruker, 2005)]
h = 89
Tmin = 0.075, Tmax = 0.118k = 910
5232 measured reflectionsl = 012
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021All H-atom parameters refined
wR(F2) = 0.056 w = 1/[σ2(Fo2) + (0.0268P)2 + 1.1408P]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max = 0.004
2112 reflectionsΔρmax = 1.02 e Å3
159 parametersΔρmin = 0.68 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00507 (17)
Crystal data top
2C2H7OS+·Br6Te2·2C2H6OSγ = 66.340 (1)°
Mr = 921.59V = 639.98 (3) Å3
Triclinic, P1Z = 1
a = 8.0087 (2) ÅCu Kα radiation
b = 9.2428 (2) ŵ = 23.30 mm1
c = 10.5249 (3) ÅT = 100 K
α = 66.280 (1)°0.23 × 0.20 × 0.16 mm
β = 70.732 (1)°
Data collection top
Bruker APEX2 CCD detector
diffractometer
2112 independent reflections
Absorption correction: numerical
[based on real shape of the crystal; absorption correction followed by the application of SADABS (Bruker, 2005)]
2112 reflections with I > 2σ(I)
Tmin = 0.075, Tmax = 0.118Rint = 0.023
5232 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0210 restraints
wR(F2) = 0.056All H-atom parameters refined
S = 1.15Δρmax = 1.02 e Å3
2112 reflectionsΔρmin = 0.68 e Å3
159 parameters
Special details top

Experimental. Analysis found: C 10.57; H 2.91; C~8~H~26~Br~6Õ~4~S~4~Te requires: C 10.42, H 2.84

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Te10.50000.00000.50000.01240 (12)
Br10.47203 (5)0.30103 (4)0.30479 (4)0.01875 (12)
Br20.13998 (5)0.11843 (5)0.62389 (4)0.01970 (12)
Br30.39388 (5)0.09389 (5)0.33507 (4)0.02004 (12)
S10.72250 (12)0.24280 (11)0.11647 (9)0.0176 (2)
O10.8060 (4)0.2997 (3)0.0395 (3)0.0229 (6)
C10.4776 (5)0.3040 (5)0.0455 (4)0.0213 (8)
H1A0.459 (7)0.246 (6)0.054 (5)0.030 (12)*
H1B0.440 (7)0.421 (7)0.066 (5)0.032 (13)*
H1C0.424 (6)0.263 (6)0.088 (5)0.026 (12)*
C20.7743 (6)0.0237 (5)0.0301 (4)0.0215 (8)
H2A0.700 (7)0.016 (6)0.060 (5)0.027 (11)*
H2B0.741 (6)0.002 (6)0.070 (5)0.027 (12)*
H2C0.907 (7)0.020 (6)0.066 (5)0.025 (11)*
S21.03170 (12)0.54942 (12)0.30476 (10)0.0219 (2)
O21.0726 (4)0.4039 (4)0.1636 (3)0.0256 (6)
H2O0.985 (10)0.364 (9)0.123 (8)0.07 (2)*
C31.2525 (6)0.5183 (6)0.4190 (5)0.0266 (9)
H3A1.340 (7)0.519 (6)0.369 (5)0.029 (12)*
H3B1.245 (7)0.614 (7)0.496 (6)0.040 (14)*
H3C1.284 (8)0.410 (7)0.440 (6)0.049 (15)*
C41.0161 (7)0.7251 (6)0.2660 (6)0.0321 (10)
H4A1.015 (7)0.822 (7)0.346 (6)0.040 (14)*
H4B0.913 (8)0.747 (7)0.207 (6)0.043 (15)*
H4C1.125 (7)0.695 (6)0.222 (5)0.035 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Te10.01221 (17)0.01490 (18)0.01250 (17)0.00478 (12)0.00205 (12)0.00641 (12)
Br10.0217 (2)0.0180 (2)0.0169 (2)0.00800 (15)0.00436 (15)0.00352 (15)
Br20.0143 (2)0.0229 (2)0.0215 (2)0.00556 (15)0.00073 (15)0.01025 (16)
Br30.0237 (2)0.0221 (2)0.0211 (2)0.00733 (16)0.00826 (16)0.01003 (16)
S10.0187 (4)0.0208 (4)0.0158 (4)0.0096 (4)0.0020 (3)0.0059 (3)
O10.0228 (14)0.0314 (15)0.0234 (13)0.0161 (12)0.0018 (11)0.0118 (11)
C10.0215 (19)0.026 (2)0.022 (2)0.0115 (17)0.0024 (16)0.0095 (17)
C20.025 (2)0.0208 (19)0.021 (2)0.0087 (17)0.0077 (17)0.0047 (16)
S20.0167 (4)0.0226 (5)0.0279 (5)0.0070 (4)0.0058 (4)0.0075 (4)
O20.0243 (15)0.0295 (15)0.0261 (14)0.0158 (13)0.0052 (12)0.0042 (12)
C30.026 (2)0.028 (2)0.028 (2)0.0117 (18)0.0002 (18)0.0107 (18)
C40.024 (2)0.025 (2)0.049 (3)0.0039 (18)0.002 (2)0.021 (2)
Geometric parameters (Å, º) top
Te1—Br1i2.6865 (4)C2—H2B0.95 (5)
Te1—Br12.6865 (4)C2—H2C0.97 (5)
Te1—Br32.6956 (4)S2—O21.576 (3)
Te1—Br3i2.6956 (4)S2—C31.767 (4)
Te1—Br2i2.7103 (4)S2—C41.776 (4)
Te1—Br22.7103 (4)O2—H2O0.83 (7)
S1—O11.537 (3)C3—H3A1.00 (5)
S1—C21.787 (4)C3—H3B0.92 (6)
S1—C11.791 (4)C3—H3C1.03 (6)
C1—H1A0.96 (5)C4—H4A0.95 (6)
C1—H1B0.95 (5)C4—H4B0.86 (6)
C1—H1C0.97 (5)C4—H4C1.01 (5)
C2—H2A0.98 (5)
Br1i—Te1—Br1180.0H1B—C1—H1C117 (4)
Br1i—Te1—Br389.604 (11)S1—C2—H2A107 (3)
Br1—Te1—Br390.395 (11)S1—C2—H2B110 (3)
Br1i—Te1—Br3i90.397 (11)H2A—C2—H2B110 (4)
Br1—Te1—Br3i89.604 (11)S1—C2—H2C103 (3)
Br3—Te1—Br3i179.999 (1)H2A—C2—H2C112 (4)
Br1i—Te1—Br2i89.151 (11)H2B—C2—H2C114 (4)
Br1—Te1—Br2i90.849 (11)O2—S2—C3102.38 (19)
Br3—Te1—Br2i89.485 (12)O2—S2—C4102.5 (2)
Br3i—Te1—Br2i90.515 (11)C3—S2—C4100.2 (2)
Br1i—Te1—Br290.848 (11)S2—O2—H2O112 (5)
Br1—Te1—Br289.151 (11)S2—C3—H3A106 (3)
Br3—Te1—Br290.515 (11)S2—C3—H3B107 (3)
Br3i—Te1—Br289.485 (12)H3A—C3—H3B104 (4)
Br2i—Te1—Br2180.0S2—C3—H3C107 (3)
O1—S1—C2103.95 (17)H3A—C3—H3C115 (4)
O1—S1—C1104.47 (17)H3B—C3—H3C116 (5)
C2—S1—C198.62 (19)S2—C4—H4A114 (3)
S1—C1—H1A108 (3)S2—C4—H4B107 (4)
S1—C1—H1B106 (3)H4A—C4—H4B108 (5)
H1A—C1—H1B113 (4)S2—C4—H4C108 (3)
S1—C1—H1C106 (3)H4A—C4—H4C110 (4)
H1A—C1—H1C108 (4)H4B—C4—H4C111 (5)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O10.83 (7)1.62 (8)2.448 (4)175 (7)

Experimental details

Crystal data
Chemical formula2C2H7OS+·Br6Te2·2C2H6OS
Mr921.59
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.0087 (2), 9.2428 (2), 10.5249 (3)
α, β, γ (°)66.280 (1), 70.732 (1), 66.340 (1)
V3)639.98 (3)
Z1
Radiation typeCu Kα
µ (mm1)23.30
Crystal size (mm)0.23 × 0.20 × 0.16
Data collection
DiffractometerBruker APEX2 CCD detector
diffractometer
Absorption correctionNumerical
[based on real shape of the crystal; absorption correction followed by the application of SADABS (Bruker, 2005)]
Tmin, Tmax0.075, 0.118
No. of measured, independent and
observed [I > 2σ(I)] reflections
5232, 2112, 2112
Rint0.023
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.056, 1.15
No. of reflections2112
No. of parameters159
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)1.02, 0.68

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SADABS (Bruker, 2005), XS in SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Bruker, 1998), XCIF in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O10.83 (7)1.62 (8)2.448 (4)175 (7)
 

Acknowledgements

This work was supported in part by a University of Wisconsin Colleges Summer Faculty Research Grant. MDR acknowledges Marquette University for the use of X-ray diffraction facilities and the University of Wisconsin - Fox Valley's Professional Development Committee for travel funding.

References

First citationAbriel, W. (1987). Z. Naturforsch. Teil B, 43, 415–420.  Google Scholar
First citationAbriel, W. & du Bois, A. (1989). Acta Cryst. C45, 2002–2003.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBorgias, B. A., Scarrow, R. C., Seidler, M. D. & Weiner, W. P. (1985). Acta Cryst. C41, 476–479.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (1998). XP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJaswal, J. S., Rettig, S. J. & James, B. R. (1990). Can. J. Chem. 68, 1808–1817.  CrossRef CAS Web of Science Google Scholar
First citationKeefer, L. J., Hrabie, J. A., Ohannesian, L., Flippen-Anderson, J. L. & George, C. (1988). J. Am. Chem. Soc. 110, 3701–3708.  CSD CrossRef CAS Web of Science Google Scholar
First citationLaitinen, R. S., Pietikäinen, J., Maaninen, A., Oilunkaniemi, R. & Valkonen, J. (2002). Polyhedron, 21, 1089–1095.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationViossat, B., Khodadad, P. & Rodier, N. (1981). J. Mol. Struct. 71, 237–241.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds