organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 3-[(E)-furfuryl­­idene]di­thio­carbazate

aCollege of Chemical Engineering and Materials Science, Zhejiang University of Technology, People's Republic of China
*Correspondence e-mail: shanshang@mail.hz.zj.cn

(Received 31 March 2008; accepted 29 April 2008; online 3 May 2008)

The mol­ecule of the title Schiff base compound, C7H8N2OS2, prepared by the reaction of methyl dithio­carbazate and furfural in an ethanol solution under reflux, adopts an E configuration; the dithio­carbazate and furan units are located on opposite sides of the C=N double bond. The planar dithio­carbazate group is twisted slightly with respect to the furan ring, making a dihedral angle of 5.2 (1)°. Adjacent mol­ecules are linked by N—H⋯S hydrogen bonding to form a supra­molecular dimer across an inversion center.

Related literature

For general background, see: Okabe et al. (1993[Okabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678-1680.]); Shan et al. (2002[Shan, S., Xu, D.-J., Wu, J.-Y. & Chiang, M. Y. (2002). Acta Cryst. E58, o1333-o1335.], 2003[Shan, S., Xu, D.-J., Hung, C.-H., Wu, J.-Y. & Chiang, M. Y. (2003). Acta Cryst. C59, o135-o136.]). For a related structure, see: Chen et al. (2007[Chen, Z.-Y., Wu, G.-Q., Jiang, F.-X., Tian, Y.-L. & Shan, S. (2007). Acta Cryst. E63, o1919-o1920.]). For the synthesis, see: Hu et al. (2001[Hu, W., Sun, N. & Yang, Z. (2001). Chem. J. Chin. Univ. 22, 2014-2017.]).

[Scheme 1]

Experimental

Crystal data
  • C7H8N2OS2

  • Mr = 200.27

  • Triclinic, [P \overline 1]

  • a = 4.0866 (8) Å

  • b = 8.8698 (12) Å

  • c = 12.8453 (15) Å

  • α = 93.970 (14)°

  • β = 91.856 (12)°

  • γ = 98.293 (12)°

  • V = 459.21 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.53 mm−1

  • T = 294 (2) K

  • 0.34 × 0.28 × 0.20 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.850, Tmax = 0.950 (expected range = 0.804–0.899)

  • 4733 measured reflections

  • 1608 independent reflections

  • 1349 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.096

  • S = 1.09

  • 1608 reflections

  • 110 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯S1i 0.86 2.65 3.4892 (17) 165
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Since some hydrazone derivatives have shown the potential bioactivity as DNA-damaging or mutagenic agents (Okabe et al., 1993), a lots of new hydrazone compounds has been synthesized in our laboratory (Shan et al., 2002, 2003). As part of the ongoing investigation on hydrazone, we present here the crystal structure of the title compound.

The molecular structure is shown in Fig. 1. The N2C3 bond distance of 1.284 (2) Å clearly indicates the double bond character for the Schiff base compound. The molecule adopts an E configuration, the carbazate and furan moieties located on the opposite positions of the N2C3 bond; similar to that found in a related structure (Chen et al., 2007). The dithiocarbazate moiety is well co-planar, the maximum atomic deviation being 0.037 (1) Å (S2), and the dithiocarbazate mean plane is slightly twisted with respect to the furan plane by a smaller dihedral angle of 5.2 (1)°. This shows the whole molecule is nearly co-planar.

Inter-molecular N—H···S hydrogen bonding links adjacent molecules to form the centro-symmetric supra-molecular dimmer (Fig. 1 and Table 1).

Related literature top

For general background, see: Okabe et al. (1993); Shan et al. (2002, 2003). For a related structure, see: Chen et al. (2007). For the synthesis, see: Hu et al. (2001).

Experimental top

Methyl dithiocarbazate was synthesized in the manner reported previously (Hu et al., 2001). Methyl dithiocarbazate (1.24 g, 10 mmol) and furfural (0.96 g, 10 mmol) were dissolved in ethanol (10 ml) and refluxed for 4 h. Yellow crystalline product appeared after cooling to room temperature. They were separated and washed with cold water. Single crystals of the title compound were obtained by recrystallization from an ethanol solution.

Refinement top

Methyl H atoms were placed in calculated positions with C—H = 0.96 Å and torsion angle was refined to fit electron density, Uiso(H) = 1.5Ueq(C). Other H atoms were placed in calculated positions with C—H = 0.93 and N—H = 0.86 Å, and refined in the riding mode, Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 40% probability displacement ellipsoids (arbitrary spheres for H atoms) [symmetry code: (i) -x, 1 - y, 1 - z].
Methyl 3-[(E)-furfurylidene]dithiocarbazate top
Crystal data top
C7H8N2OS2Z = 2
Mr = 200.27F(000) = 208
Triclinic, P1Dx = 1.448 Mg m3
Hall symbol: -P 1Melting point = 414–416 K
a = 4.0866 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.8698 (12) ÅCell parameters from 2276 reflections
c = 12.8453 (15) Åθ = 2.0–25.0°
α = 93.970 (14)°µ = 0.53 mm1
β = 91.856 (12)°T = 294 K
γ = 98.293 (12)°Prism, yellow
V = 459.21 (12) Å30.34 × 0.28 × 0.20 mm
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
1608 independent reflections
Radiation source: fine-focus sealed tube1349 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 10.0 pixels mm-1θmax = 25.2°, θmin = 1.6°
ω scansh = 44
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1010
Tmin = 0.850, Tmax = 0.950l = 1514
4733 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0598P)2]
where P = (Fo2 + 2Fc2)/3
1608 reflections(Δ/σ)max = 0.001
110 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C7H8N2OS2γ = 98.293 (12)°
Mr = 200.27V = 459.21 (12) Å3
Triclinic, P1Z = 2
a = 4.0866 (8) ÅMo Kα radiation
b = 8.8698 (12) ŵ = 0.53 mm1
c = 12.8453 (15) ÅT = 294 K
α = 93.970 (14)°0.34 × 0.28 × 0.20 mm
β = 91.856 (12)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
1608 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1349 reflections with I > 2σ(I)
Tmin = 0.850, Tmax = 0.950Rint = 0.030
4733 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.09Δρmax = 0.19 e Å3
1608 reflectionsΔρmin = 0.28 e Å3
110 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.20815 (13)0.27619 (5)0.50863 (4)0.0516 (2)
S20.38692 (13)0.20142 (5)0.28541 (4)0.0506 (2)
N10.1859 (4)0.45265 (16)0.35473 (12)0.0464 (4)
H10.10980.51490.39880.056*
N20.2353 (4)0.49265 (16)0.25394 (11)0.0449 (4)
O10.3206 (4)0.60245 (14)0.05809 (10)0.0553 (4)
C10.2537 (4)0.3197 (2)0.38518 (14)0.0407 (4)
C20.4665 (5)0.0393 (2)0.35393 (17)0.0557 (5)
H2A0.63110.07200.40900.084*
H2B0.54480.03430.30620.084*
H2C0.26590.00630.38310.084*
C30.1483 (5)0.6216 (2)0.23454 (16)0.0502 (5)
H30.05770.67720.28750.060*
C40.1847 (5)0.6835 (2)0.13501 (16)0.0481 (5)
C50.1076 (7)0.8131 (3)0.09881 (19)0.0685 (6)
H50.01390.88860.13600.082*
C60.1961 (6)0.8126 (3)0.00661 (18)0.0673 (6)
H60.17050.88730.05230.081*
C70.3227 (6)0.6849 (3)0.02770 (17)0.0608 (6)
H70.40180.65570.09200.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0714 (4)0.0502 (3)0.0359 (3)0.0125 (2)0.0107 (2)0.0105 (2)
S20.0694 (4)0.0482 (3)0.0378 (3)0.0171 (2)0.0114 (2)0.0072 (2)
N10.0681 (10)0.0401 (8)0.0326 (9)0.0104 (7)0.0108 (7)0.0056 (7)
N20.0614 (10)0.0393 (8)0.0352 (9)0.0078 (7)0.0060 (7)0.0077 (7)
O10.0837 (10)0.0443 (7)0.0418 (8)0.0168 (7)0.0145 (7)0.0112 (6)
C10.0456 (10)0.0405 (9)0.0345 (10)0.0013 (8)0.0024 (8)0.0026 (8)
C20.0701 (14)0.0467 (11)0.0534 (13)0.0161 (9)0.0056 (10)0.0087 (9)
C30.0655 (13)0.0478 (11)0.0390 (11)0.0114 (9)0.0094 (9)0.0051 (9)
C40.0631 (12)0.0419 (10)0.0419 (11)0.0129 (9)0.0072 (9)0.0076 (8)
C50.0988 (17)0.0596 (13)0.0577 (14)0.0391 (12)0.0168 (12)0.0165 (11)
C60.0947 (17)0.0596 (13)0.0544 (15)0.0224 (12)0.0054 (12)0.0278 (11)
C70.0875 (16)0.0583 (12)0.0393 (12)0.0115 (11)0.0109 (10)0.0173 (9)
Geometric parameters (Å, º) top
S1—C11.6675 (18)C2—H2B0.9600
S2—C11.7500 (19)C2—H2C0.9600
S2—C21.800 (2)C3—C41.430 (3)
N1—N21.379 (2)C3—H30.9300
N1—C11.331 (2)C4—C51.344 (3)
N1—H10.8600C5—C61.413 (3)
N2—C31.284 (2)C5—H50.9300
O1—C41.361 (2)C6—C71.327 (4)
O1—C71.364 (2)C6—H60.9300
C2—H2A0.9600C7—H70.9300
C1—S2—C2101.98 (9)N2—C3—C4122.79 (19)
C1—N1—N2121.34 (16)N2—C3—H3118.6
C1—N1—H1119.3C4—C3—H3118.6
N2—N1—H1119.3C5—C4—O1109.57 (17)
C3—N2—N1114.59 (16)C5—C4—C3132.1 (2)
C4—O1—C7106.45 (15)O1—C4—C3118.37 (16)
N1—C1—S1120.76 (14)C4—C5—C6106.8 (2)
N1—C1—S2114.05 (13)C4—C5—H5126.6
S1—C1—S2125.19 (11)C6—C5—H5126.6
S2—C2—H2A109.5C7—C6—C5106.67 (19)
S2—C2—H2B109.5C7—C6—H6126.7
H2A—C2—H2B109.5C5—C6—H6126.7
S2—C2—H2C109.5C6—C7—O1110.5 (2)
H2A—C2—H2C109.5C6—C7—H7124.8
H2B—C2—H2C109.5O1—C7—H7124.8
C1—N1—N2—C3177.62 (17)N2—C3—C4—C5179.2 (2)
N2—N1—C1—S1177.32 (12)N2—C3—C4—O10.7 (3)
N2—N1—C1—S23.0 (2)O1—C4—C5—C60.7 (3)
C2—S2—C1—N1178.23 (14)C3—C4—C5—C6179.2 (2)
C2—S2—C1—S12.13 (15)C4—C5—C6—C70.5 (3)
N1—N2—C3—C4179.09 (17)C5—C6—C7—O10.1 (3)
C7—O1—C4—C50.6 (2)C4—O1—C7—C60.3 (3)
C7—O1—C4—C3179.25 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S1i0.862.653.4892 (17)165
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC7H8N2OS2
Mr200.27
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)4.0866 (8), 8.8698 (12), 12.8453 (15)
α, β, γ (°)93.970 (14), 91.856 (12), 98.293 (12)
V3)459.21 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.53
Crystal size (mm)0.34 × 0.28 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.850, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
4733, 1608, 1349
Rint0.030
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.096, 1.09
No. of reflections1608
No. of parameters110
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.28

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S1i0.862.653.4892 (17)165
Symmetry code: (i) x, y+1, z+1.
 

Acknowledgements

The project was supported by the Natural Science Foundation of Zhejiang Province, China (grant No. M203027).

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationChen, Z.-Y., Wu, G.-Q., Jiang, F.-X., Tian, Y.-L. & Shan, S. (2007). Acta Cryst. E63, o1919–o1920.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHu, W., Sun, N. & Yang, Z. (2001). Chem. J. Chin. Univ. 22, 2014–2017.  CAS Google Scholar
First citationOkabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678–1680.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationShan, S., Xu, D.-J., Hung, C.-H., Wu, J.-Y. & Chiang, M. Y. (2003). Acta Cryst. C59, o135–o136.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationShan, S., Xu, D.-J., Wu, J.-Y. & Chiang, M. Y. (2002). Acta Cryst. E58, o1333–o1335.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds