organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Furfuryl-3-furoylthio­urea

aDepartment of Structure Analysis, Institute of Materials, University of Havana, Cuba, and bGrupo de Cristalografía, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil
*Correspondence e-mail: osvaldo@imre.oc.uh.cu

(Received 6 May 2008; accepted 20 May 2008; online 24 May 2008)

The title compound, C11H10N2O3S, was synthesized from furoyl isothio­cyanate and furfurylamine in dry acetone. The thio­urea group is in the thio­amide form. The transcis geometry of the thio­urea group is stabilized by intra­molecular hydrogen bonding between the carbonyl and cis-thio­amide and results in a pseudo-S(6) planar ring which makes dihedral angles of 2.5 (3) and 88.1 (2)° with the furoyl and furfuryl groups, respectively. There is also an intra­molecular hydrogen bond between the furan O atom and the other thio­amide H atom. In the crystal structure, mol­ecules are linked by two inter­molecular N—H⋯O hydrogen bonds, forming dimers. These dimers are stacked within the crystal structure along the [010] direction.

Related literature

For general background, see: Dhooghe et al. (2005[Dhooghe, M., Waterinckx, A. & De Kimpe, N. (2005). J. Org. Chem. 70, 227-232.]); Aly et al. (2007[Aly, A. A., Ahmed, E. K., El-Mokadem, K. M. & Hegazy, M. E. F. (2007). J. Sulfur Chem. 28, 73-93.]); Estévez-Hernández et al. (2007[Estévez-Hernández, O., Hidalgo, J. L., Reguera, E. & Naranjo, I. (2007). Sens. Actuators B, 120, 766-772.]). For related structures, see: Koch (2001[Koch, K. R. (2001). Coord. Chem. Rev. 216-217, 473-488.]); Yamin & Hassan (2004[Yamin, B. M. & Hassan, I. N. (2004). Acta Cryst. E60, o2513-o2514.]). For the synthesis, see: Otazo et al. (2001[Otazo, E., Pérez, L., Estévez, O., Rojas, S. & Alonso, J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 2211-2218.]).

[Scheme 1]

Experimental

Crystal data
  • C11H10N2O3S

  • Mr = 250.27

  • Triclinic, [P \overline 1]

  • a = 4.5999 (2) Å

  • b = 11.3792 (6) Å

  • c = 12.0556 (5) Å

  • α = 68.351 (3)°

  • β = 83.187 (4)°

  • γ = 89.367 (3)°

  • V = 582.01 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 294 K

  • 0.16 × 0.15 × 0.08 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 4433 measured reflections

  • 2427 independent reflections

  • 1753 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.135

  • S = 1.05

  • 2427 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.86 2.24 2.672 (3) 111
N2—H2⋯O1 0.86 2.00 2.677 (3) 135
N2—H2⋯O1i 0.86 2.43 3.091 (3) 133
Symmetry code: (i) -x, -y, -z+1.

Data collection: COLLECT (Enraf–Nonius, 2000[Enraf-Nonius (2000). COLLECT. Enraf-Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Thiourea and its derivatives have found extensive applications in the fields of medicine, agriculture and analytical chemistry. Thioureas are also widely used in heterocyclic syntheses (Dhooghe et al., 2005). Aroylthioureas have also been found to have applications in metal complexes and molecular electronics (Aly et al., 2007). The title compound (Fig. 1), has been successfully used as ionophore in amperometric sensors for Cd(II) (Estévez-Hernández et al., 2007).

The title compound crystallizes in the thioamide form. The furoyl and furfuryl groups are trans and cis, respectively, to the S atom across the thiourea C—N bonds (Fig. 1). The main bond lengths and torsion angles are within the ranges obtained for similar compounds (Koch et al., 2001). The C2—S1 and C1—O1 bonds show a typical double bond character with bond lengths (Table 1) of 1.661 (2) and 1.227 (2) Å respectively, closely related to other thiourea derivatives (Yamin & Hassan, 2004). However, all the C—N bonds (Table 1) of thiourea fragment C1—N1, C2—N1 and C2—N2 are in the range 1.392 (3)–1,327 (3) Å, intermediate between those expected for single and double C—N bonds (1.47 and 1.27 Å respectively). It is deduced that this thiourea moiety makes up a multi-electron conjugated π bond. The central thiourea fragment makes torsion angles of 2.5 (3)° and 88.1 (2)° with the furan carbonyl ring (O2-C3-C1-N1) and the furfuryl group (C2-N2-C7-C8), respectively. The trans-cis geometry in the thiourea moiety is stabilized by the N2—H2···O1 intramolecular hydrogen bond (Fig.1 and Table 2). An additional intramolecular hydrogen bond N1—H1···O2 is observed. In the crystal structure symmetry related molecules are linked by two N2—H2···O1 intermolecular hydrogen bonds to form dimers along the [010] direction (Fig. 2 and Table 2).

Related literature top

For general background, see: Dhooghe et al. (2005); Aly et al. (2007); Estévez-Hernández et al. (2007). For related structures, see: Koch (2001); Yamin & Hassan (2004). For the synthesis, see: Otazo et al. (2001).

Experimental top

The title compound was synthesized according to a previous report (Otazo et al., 2001), by converting furoyl chloride into furoyl isothiocyanate and then condensing with furfurylamine. The resulting solid product was crystallized from ethanol yielding X-ray quality single crystals (m.p 79–80 ° C). Elemental analysis (%) for C11H10N2O3S calculated: C 52.80, H 4.00, N 11.20, S 12.80; found: C 52.83, H 4.07, N 11.21, S 12.81.

Refinement top

H atoms were placed in calculated positions with N—H = 0.88 Å and C—H = 0.93 (aromatic) or 0.97 Å (methylene), and refined in riding model with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: COLLECT (Enraf–Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure (50% probability displacement ellipsoids). Intramolecular hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. View of the crystal packing of the title compound. Intermolecular hydrogen bonds are shown as dashed lines.
1-Furfuryl-3-furoylthiourea top
Crystal data top
C11H10N2O3SZ = 2
Mr = 250.27F(000) = 260
Triclinic, P1Dx = 1.428 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.5999 (2) ÅCell parameters from 2356 reflections
b = 11.3792 (6) Åθ = 2.9–26.7°
c = 12.0556 (5) ŵ = 0.28 mm1
α = 68.351 (3)°T = 294 K
β = 83.187 (4)°Prism, colourless
γ = 89.367 (3)°0.16 × 0.15 × 0.08 mm
V = 582.01 (5) Å3
Data collection top
Nonius KappaCCD
diffractometer
Rint = 0.028
ω scansθmax = 26.6°, θmin = 3.1°
4433 measured reflectionsh = 55
2427 independent reflectionsk = 1414
1753 reflections with I > 2σ(I)l = 1513
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.048 w = 1/[σ2(Fo2) + (0.0698P)2 + 0.1199P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.135(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.32 e Å3
2427 reflectionsΔρmin = 0.28 e Å3
154 parameters
Crystal data top
C11H10N2O3Sγ = 89.367 (3)°
Mr = 250.27V = 582.01 (5) Å3
Triclinic, P1Z = 2
a = 4.5999 (2) ÅMo Kα radiation
b = 11.3792 (6) ŵ = 0.28 mm1
c = 12.0556 (5) ÅT = 294 K
α = 68.351 (3)°0.16 × 0.15 × 0.08 mm
β = 83.187 (4)°
Data collection top
Nonius KappaCCD
diffractometer
1753 reflections with I > 2σ(I)
4433 measured reflectionsRint = 0.028
2427 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.05Δρmax = 0.32 e Å3
2427 reflectionsΔρmin = 0.28 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.16463 (15)0.45844 (5)0.35901 (6)0.0578 (2)
O10.1719 (4)0.07028 (14)0.56626 (15)0.0540 (4)
O20.4479 (4)0.28509 (15)0.68097 (15)0.0565 (4)
N20.1523 (4)0.21274 (16)0.39894 (15)0.0417 (4)
H20.09110.1390.43810.05*
O30.0164 (5)0.1731 (2)0.16872 (17)0.0793 (6)
N10.1109 (4)0.28290 (16)0.51574 (15)0.0421 (4)
H10.16010.34610.53320.05*
C80.1860 (5)0.2555 (2)0.1856 (2)0.0476 (5)
C70.3440 (5)0.2252 (2)0.30733 (19)0.0461 (5)
H7A0.48090.29110.30540.055*
H7B0.45670.14650.32990.055*
C30.3974 (5)0.17197 (19)0.67285 (18)0.0415 (5)
C10.2185 (5)0.16912 (19)0.58107 (18)0.0411 (5)
C20.0679 (5)0.30996 (19)0.42464 (18)0.0396 (5)
C40.5302 (6)0.0818 (2)0.7549 (2)0.0606 (7)
H40.53030.0040.76760.073*
C90.2028 (7)0.3500 (3)0.0816 (3)0.0771 (9)
H90.32190.41930.0680.092*
C60.6146 (6)0.2632 (3)0.7713 (2)0.0611 (7)
H60.68060.3250.79660.073*
C50.6702 (6)0.1424 (3)0.8184 (2)0.0607 (7)
H50.78050.10430.88140.073*
C100.0005 (8)0.3236 (4)0.0059 (3)0.0850 (10)
H100.03660.37250.08750.102*
C110.1238 (8)0.2192 (4)0.0502 (3)0.0893 (10)
H110.26570.18110.01440.107*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0793 (5)0.0362 (3)0.0594 (4)0.0082 (3)0.0299 (3)0.0131 (3)
O10.0709 (11)0.0387 (8)0.0580 (10)0.0093 (7)0.0252 (8)0.0195 (7)
O20.0688 (11)0.0463 (9)0.0608 (10)0.0043 (8)0.0235 (8)0.0225 (8)
N20.0499 (10)0.0363 (9)0.0390 (9)0.0019 (7)0.0114 (8)0.0122 (7)
O30.0938 (15)0.0759 (13)0.0589 (12)0.0162 (11)0.0080 (10)0.0197 (10)
N10.0512 (10)0.0335 (8)0.0426 (9)0.0010 (7)0.0137 (8)0.0128 (7)
C80.0536 (13)0.0444 (12)0.0467 (12)0.0013 (10)0.0165 (10)0.0158 (10)
C70.0458 (12)0.0479 (12)0.0472 (12)0.0008 (9)0.0131 (10)0.0185 (10)
C30.0437 (11)0.0406 (11)0.0420 (11)0.0019 (9)0.0077 (9)0.0167 (9)
C10.0428 (11)0.0400 (11)0.0384 (11)0.0012 (9)0.0034 (9)0.0125 (9)
C20.0413 (11)0.0399 (11)0.0350 (10)0.0013 (9)0.0052 (8)0.0107 (9)
C40.0782 (17)0.0469 (13)0.0612 (15)0.0147 (12)0.0309 (13)0.0189 (11)
C90.098 (2)0.0648 (17)0.0581 (17)0.0002 (16)0.0300 (16)0.0041 (14)
C60.0649 (16)0.0689 (17)0.0599 (15)0.0010 (13)0.0212 (13)0.0317 (13)
C50.0655 (16)0.0704 (17)0.0512 (14)0.0123 (13)0.0272 (12)0.0229 (12)
C100.102 (2)0.106 (3)0.0390 (15)0.034 (2)0.0080 (15)0.0166 (16)
C110.108 (3)0.098 (3)0.0561 (19)0.010 (2)0.0174 (18)0.0309 (19)
Geometric parameters (Å, º) top
S1—C21.661 (2)C7—H7A0.97
O1—C11.227 (2)C7—H7B0.97
O2—C31.351 (3)C3—C41.336 (3)
O2—C61.353 (3)C3—C11.465 (3)
N2—C21.327 (3)C4—C51.412 (4)
N2—C71.460 (3)C4—H40.93
N2—H20.86C9—C101.439 (5)
O3—C111.359 (3)C9—H90.93
O3—C81.366 (3)C6—C51.314 (4)
N1—C11.367 (3)C6—H60.93
N1—C21.392 (3)C5—H50.93
N1—H10.86C10—C111.294 (5)
C8—C91.327 (3)C10—H100.93
C8—C71.476 (3)C11—H110.93
C3—O2—C6106.57 (19)N1—C1—C3115.07 (18)
C2—N2—C7123.03 (18)N2—C2—N1116.40 (17)
C2—N2—H2118.5N2—C2—S1125.21 (16)
C7—N2—H2118.5N1—C2—S1118.38 (15)
C11—O3—C8107.1 (2)C3—C4—C5106.4 (2)
C1—N1—C2128.53 (18)C3—C4—H4126.8
C1—N1—H1115.7C5—C4—H4126.8
C2—N1—H1115.7C8—C9—C10106.1 (3)
C9—C8—O3109.2 (2)C8—C9—H9126.9
C9—C8—C7132.7 (3)C10—C9—H9126.9
O3—C8—C7118.09 (19)C5—C6—O2110.6 (2)
N2—C7—C8113.74 (18)C5—C6—H6124.7
N2—C7—H7A108.8O2—C6—H6124.7
C8—C7—H7A108.8C6—C5—C4106.7 (2)
N2—C7—H7B108.8C6—C5—H5126.6
C8—C7—H7B108.8C4—C5—H5126.6
H7A—C7—H7B107.7C11—C10—C9107.2 (3)
C4—C3—O2109.73 (19)C11—C10—H10126.4
C4—C3—C1132.6 (2)C9—C10—H10126.4
O2—C3—C1117.69 (18)C10—C11—O3110.3 (3)
O1—C1—N1123.86 (19)C10—C11—H11124.8
O1—C1—C3121.08 (19)O3—C11—H11124.8
C11—O3—C8—C90.4 (3)C7—N2—C2—S10.2 (3)
C11—O3—C8—C7178.2 (2)C1—N1—C2—N21.8 (3)
C2—N2—C7—C888.1 (2)C1—N1—C2—S1179.47 (17)
C9—C8—C7—N2122.7 (3)O2—C3—C4—C50.4 (3)
O3—C8—C7—N259.2 (3)C1—C3—C4—C5179.9 (2)
C6—O2—C3—C40.5 (3)O3—C8—C9—C100.7 (3)
C6—O2—C3—C1179.72 (19)C7—C8—C9—C10177.6 (2)
C2—N1—C1—O10.9 (4)C3—O2—C6—C50.4 (3)
C2—N1—C1—C3178.86 (19)O2—C6—C5—C40.2 (3)
C4—C3—C1—O12.1 (4)C3—C4—C5—C60.1 (3)
O2—C3—C1—O1177.7 (2)C8—C9—C10—C110.7 (3)
C4—C3—C1—N1177.7 (2)C9—C10—C11—O30.5 (4)
O2—C3—C1—N12.5 (3)C8—O3—C11—C100.1 (4)
C7—N2—C2—N1178.88 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.862.242.672 (3)111
N2—H2···O10.862.002.677 (3)135
N2—H2···O1i0.862.433.091 (3)133
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC11H10N2O3S
Mr250.27
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)4.5999 (2), 11.3792 (6), 12.0556 (5)
α, β, γ (°)68.351 (3), 83.187 (4), 89.367 (3)
V3)582.01 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.16 × 0.15 × 0.08
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4433, 2427, 1753
Rint0.028
(sin θ/λ)max1)0.630
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.135, 1.05
No. of reflections2427
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.28

Computer programs: COLLECT (Enraf–Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
S1—C21.661 (2)N2—C71.460 (3)
O1—C11.227 (2)N1—C11.367 (3)
N2—C21.327 (3)N1—C21.392 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.862.242.672 (3)111
N2—H2···O10.862.002.677 (3)135
N2—H2···O1i0.862.433.091 (3)133
Symmetry code: (i) x, y, z+1.
 

Acknowledgements

The authors thank the Crystallography Group, São Carlos Physics Institute, USP, and acknowledge financial support from the Brazilian agency CNPq.

References

First citationAly, A. A., Ahmed, E. K., El-Mokadem, K. M. & Hegazy, M. E. F. (2007). J. Sulfur Chem. 28, 73–93.  CrossRef CAS Google Scholar
First citationDhooghe, M., Waterinckx, A. & De Kimpe, N. (2005). J. Org. Chem. 70, 227–232.  Web of Science PubMed CAS Google Scholar
First citationEnraf–Nonius (2000). COLLECT. Enraf–Nonius BV, Delft, The Netherlands.  Google Scholar
First citationEstévez-Hernández, O., Hidalgo, J. L., Reguera, E. & Naranjo, I. (2007). Sens. Actuators B, 120, 766–772.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKoch, K. R. (2001). Coord. Chem. Rev. 216–217, 473–488.  Web of Science CrossRef CAS Google Scholar
First citationOtazo, E., Pérez, L., Estévez, O., Rojas, S. & Alonso, J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 2211–2218.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamin, B. M. & Hassan, I. N. (2004). Acta Cryst. E60, o2513–o2514.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds