supplementary materials


zl2111 scheme

Acta Cryst. (2008). E64, o1087    [ doi:10.1107/S1600536808014220 ]

4'-Hydroxybiphenyl-4-carboxylic acid

S. Feng

Abstract top

The title compound, C13H10O3, has potential oxygen donor and acceptor sites. Intermolecular hydrogen bonding between neighboring carboxylate groups leads to the formation of hydrogen-bonded dimers [graph-set motif R22(8)]. A second hydrogen-bonding interaction between the hydroxy groups generates a chain and extends the structure into a lamellar layer. One of the benzene rings is disordered over two positions with an occupancy ratio of 0.57 (2):0.43 (2).

Comment top

Hydrogen-bonding interactions between ligands are specific and directional. When present in metal complexes they usually do not rely on the properties of the metal ions, but they play an important role in the overall structures and functions of the complexes and the way in which they pack in the solid state (Zwier et al., 1996; Datta & Pati, 2006). In this context we report here the crystal structure of the title compound, (I).

The molecular structure of (I) is shown in Fig. 1. The C—O and C—C bond distances show no remarkable features. The title molecular structure acts as both a hydrogen bonding donor and acceptor, forming dimers with neighboring molecules through O—H···O hydrogen bonding with a R22(8) graph set motif (Bernstein et al., 1995). A second hydrogen bonding interaction by the hydroxyl groups forms a chain and extends the structure into a lamellar layer (Table 1, Fig. 2).

Related literature top

For related literature, see: Bernstein et al. (1995); Datta & Pati (2006); Zwier et al. (1996).

Experimental top

4-Hydroxyl-biphenyl-4'-carboxylic acid was dissolved in a hot ethanol-water solution (1:1; v/v) with stirring. Colorless single crystals suitable for X-ray diffraction were obtained at room temperature by slow evaporation of the solvent over a period of several days.

Refinement top

In the initial refinement with disorder not taken into account one of phenyl rings showed significantly elongated thermal ellipsoids indicating disorder, the dihedral angle between two phenyl rings is 5.66 (2) /%A, and the adjacent distances of C-H···C-H interactions in the biphenylene are 2.044 (1) and 2.077 (1) /%A, respectively, thus leading to a static repulsion between two phenyl rings,and the phenyl ring was thus refined as being disordered over two positions. The occupancy ratio refined to 0.57 (2) to 0.43 (2). The adps of the disordered atoms were restrained to be close to isotropic and those of equivalent atoms were set to be identical. Carbon-bound, hydroxyl and carboxylate group H atoms were placed at calculated positions and were treated as riding on their parent C or O atoms with C—H = 0.93 Å, with Uiso(H) = 1.2 Ueq(C); O—H = 0.82 Å and with Uiso(H) = 1.5 Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004); data reduction: APEX2 (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. A layer view of (I).
4'-Hydroxybiphenyl-4-carboxylic acid top
Crystal data top
C13H10O3F000 = 448
Mr = 214.21Dx = 1.428 Mg m3
Monoclinic, P21/nMo Kα radiation
λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1560 reflections
a = 8.6500 (7) Åθ = 1.4–28.0º
b = 5.5077 (5) ŵ = 0.10 mm1
c = 20.9655 (18) ÅT = 293 (2) K
β = 94.145 (3)ºPlate, colorless
V = 996.22 (15) Å30.21 × 0.20 × 0.16 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
854 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.063
Monochromator: graphiteθmax = 25.2º
T = 293(2) Kθmin = 2.0º
φ and ω scansh = 10→10
Absorption correction: nonek = 5→6
6310 measured reflectionsl = 24→25
1800 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.183  w = 1/[σ2(Fo2) + (0.0772P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
1800 reflectionsΔρmax = 0.18 e Å3
160 parametersΔρmin = 0.19 e Å3
24 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods
Crystal data top
C13H10O3V = 996.22 (15) Å3
Mr = 214.21Z = 4
Monoclinic, P21/nMo Kα
a = 8.6500 (7) ŵ = 0.10 mm1
b = 5.5077 (5) ÅT = 293 (2) K
c = 20.9655 (18) Å0.21 × 0.20 × 0.16 mm
β = 94.145 (3)º
Data collection top
Bruker APEXII area-detector
diffractometer
1800 independent reflections
Absorption correction: none854 reflections with I > 2σ(I)
6310 measured reflectionsRint = 0.063
Refinement top
R[F2 > 2σ(F2)] = 0.05824 restraints
wR(F2) = 0.183H-atom parameters constrained
S = 1.01Δρmax = 0.18 e Å3
1800 reflectionsΔρmin = 0.19 e Å3
160 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C11.3074 (3)0.0387 (7)0.03781 (15)0.0499 (9)
C80.7212 (3)0.1508 (6)0.15024 (14)0.0448 (8)
C90.6208 (3)0.3440 (6)0.13452 (16)0.0578 (10)
H90.64990.45970.10540.069*
C100.4806 (3)0.3688 (7)0.16071 (17)0.0593 (10)
H100.41670.49990.14930.071*
C110.4352 (3)0.2019 (7)0.20337 (15)0.0525 (9)
C120.5302 (4)0.0092 (7)0.22074 (16)0.0596 (10)
H120.50010.10520.25000.072*
C130.6703 (4)0.0119 (6)0.19414 (15)0.0545 (9)
H130.73390.14240.20640.065*
O11.3852 (2)0.1522 (5)0.05016 (11)0.0704 (8)
O21.3483 (2)0.2037 (5)0.00069 (12)0.0696 (8)
H21.43420.17170.01120.104*
O30.2936 (3)0.2362 (5)0.22900 (12)0.0720 (8)
H3A0.26720.10990.24580.108*
C21.15866 (19)0.0702 (5)0.06838 (10)0.0480 (8)0.43 (2)
C31.0867 (8)0.2959 (6)0.0682 (6)0.052 (3)0.43 (2)
H31.13270.42880.04980.063*0.43 (2)
C40.9458 (8)0.3228 (6)0.0954 (6)0.045 (2)0.43 (2)
H40.89760.47380.09520.054*0.43 (2)
C50.8770 (2)0.1241 (4)0.12279 (11)0.0441 (8)0.43 (2)
C60.9490 (7)0.1015 (7)0.1230 (5)0.045 (3)0.43 (2)
H60.90290.23450.14130.054*0.43 (2)
C71.0898 (8)0.1285 (7)0.0958 (6)0.052 (3)0.43 (2)
H71.13800.27950.09590.062*0.43 (2)
C2'1.15879 (19)0.0709 (5)0.06822 (10)0.0480 (8)0.57 (2)
C3'1.0571 (7)0.2579 (15)0.0469 (5)0.052 (2)0.57 (2)
H3'1.08450.36470.01530.063*0.57 (2)
C4'0.9160 (7)0.2818 (15)0.0734 (5)0.049 (2)0.57 (2)
H4'0.84850.40450.05880.059*0.57 (2)
C5'0.8725 (2)0.1234 (5)0.12205 (11)0.0441 (8)0.57 (2)
C6'0.9755 (6)0.0581 (16)0.1431 (4)0.048 (2)0.57 (2)
H6'0.95050.16210.17580.057*0.57 (2)
C7'1.1161 (6)0.0845 (15)0.1155 (4)0.047 (2)0.57 (2)
H7'1.18270.20970.12910.056*0.57 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0396 (18)0.061 (2)0.051 (2)0.0010 (18)0.0134 (16)0.0005 (19)
C80.0388 (17)0.044 (2)0.0527 (18)0.0001 (16)0.0113 (15)0.0022 (17)
C90.0445 (19)0.058 (2)0.073 (2)0.0005 (18)0.0159 (17)0.011 (2)
C100.0418 (19)0.057 (2)0.081 (2)0.0079 (18)0.0170 (18)0.008 (2)
C110.0338 (17)0.062 (3)0.064 (2)0.0032 (17)0.0160 (15)0.0135 (19)
C120.049 (2)0.061 (3)0.071 (2)0.0015 (18)0.0214 (18)0.0075 (19)
C130.0448 (19)0.051 (2)0.069 (2)0.0088 (17)0.0183 (17)0.0053 (18)
O10.0529 (15)0.0705 (18)0.0910 (18)0.0171 (13)0.0281 (13)0.0188 (15)
O20.0460 (14)0.083 (2)0.0837 (18)0.0127 (13)0.0307 (13)0.0194 (15)
O30.0418 (13)0.090 (2)0.0882 (18)0.0033 (13)0.0308 (12)0.0057 (16)
C20.0334 (17)0.062 (2)0.050 (2)0.0008 (17)0.0144 (15)0.0031 (18)
C30.040 (5)0.065 (7)0.054 (5)0.002 (5)0.015 (4)0.006 (5)
C40.046 (5)0.047 (6)0.043 (5)0.005 (4)0.012 (4)0.000 (4)
C50.0367 (17)0.049 (2)0.0476 (19)0.0041 (16)0.0129 (14)0.0004 (17)
C60.045 (5)0.052 (5)0.039 (5)0.002 (4)0.002 (4)0.008 (4)
C70.041 (5)0.061 (7)0.052 (5)0.003 (4)0.001 (4)0.001 (5)
C2'0.0334 (17)0.062 (2)0.050 (2)0.0008 (17)0.0144 (15)0.0031 (18)
C3'0.044 (4)0.057 (5)0.058 (4)0.004 (3)0.014 (4)0.008 (4)
C4'0.042 (4)0.049 (4)0.057 (4)0.012 (3)0.014 (3)0.000 (4)
C5'0.0367 (17)0.049 (2)0.0476 (19)0.0041 (16)0.0129 (14)0.0004 (17)
C6'0.036 (4)0.068 (5)0.039 (4)0.007 (3)0.010 (3)0.009 (4)
C7'0.029 (3)0.063 (5)0.049 (4)0.011 (3)0.005 (3)0.007 (4)
Geometric parameters (Å, °) top
C1—O21.264 (4)C3—C41.3900
C1—O11.265 (4)C3—H30.9300
C1—C21.488 (4)C4—C51.3900
C8—C131.379 (4)C4—H40.9300
C8—C91.398 (4)C5—C61.3900
C8—C51.510 (3)C6—C71.3900
C9—C101.374 (4)C6—H60.9300
C9—H90.9300C7—H70.9300
C10—C111.360 (5)C2'—C7'1.3793
C10—H100.9300C2'—C3'1.4061
C11—C121.375 (4)C3'—C4'1.3820
C11—O31.386 (4)C3'—H3'0.9300
C12—C131.375 (4)C4'—C5'1.4147
C12—H120.9300C4'—H4'0.9300
C13—H130.9300C5'—C6'1.3903
O2—H20.8200C6'—C7'1.3923
O3—H3A0.8200C6'—H6'0.9300
C2—C31.3900C7'—H7'0.9300
C2—C71.3900
O2—C1—O1123.7 (3)C3—C4—C5120.0
O2—C1—C2118.1 (3)C3—C4—H4120.0
O1—C1—C2118.2 (3)C5—C4—H4120.0
C13—C8—C9115.4 (3)C6—C5—C4120.0
C13—C8—C5121.9 (3)C6—C5—C8119.8 (2)
C9—C8—C5122.7 (3)C4—C5—C8120.1 (2)
C10—C9—C8122.2 (3)C5—C6—C7120.0
C10—C9—H9118.9C5—C6—H6120.0
C8—C9—H9118.9C7—C6—H6120.0
C11—C10—C9120.1 (3)C6—C7—C2120.0
C11—C10—H10120.0C6—C7—H7120.0
C9—C10—H10120.0C2—C7—H7120.0
C10—C11—C12120.1 (3)C7'—C2'—C3'119.2
C10—C11—O3117.9 (3)C4'—C3'—C2'119.5
C12—C11—O3122.0 (3)C4'—C3'—H3'120.2
C11—C12—C13119.0 (3)C2'—C3'—H3'120.2
C11—C12—H12120.5C3'—C4'—C5'121.3
C13—C12—H12120.5C3'—C4'—H4'119.4
C12—C13—C8123.3 (3)C5'—C4'—H4'119.4
C12—C13—H13118.4C6'—C5'—C4'118.4
C8—C13—H13118.4C5'—C6'—C7'120.1
C3—C2—C7120.0C5'—C6'—H6'120.0
C3—C2—C1120.3 (2)C7'—C6'—H6'120.0
C7—C2—C1119.7 (2)C2'—C7'—C6'121.5
C4—C3—C2120.0C2'—C7'—H7'119.3
C4—C3—H3120.0C6'—C7'—H7'119.3
C2—C3—H3120.0
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.821.822.624 (3)168
O3—H3A···O3ii0.822.203.0041 (18)168
Symmetry codes: (i) −x+3, −y, −z; (ii) −x+1/2, y−1/2, −z+1/2.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.821.822.624 (3)168
O3—H3A···O3ii0.822.203.0041 (18)168
Symmetry codes: (i) −x+3, −y, −z; (ii) −x+1/2, y−1/2, −z+1/2.
Acknowledgements top

The authors thank South China Normal University for supporting this study.

references
References top

Bernstein, J., Davis, R. E., Shimoni, L. & $ Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555–1573.

Bruker (2004). APEX2 and SMART. Bruker AXS Inc, Madison, Wisconsin, USA.

Datta, A. & $ Pati, S. K. (2006). Chem. Soc. Rev. pp. 1305–1323.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Zwier, T. S. (1996). Annu. Rev. Phys. Chem. 47, 205–241.