organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(5S,6S)-4,5-Di­methyl-3-methyl­acryloyl-6-phenyl-1,3,4-oxadiazinan-2-one

aCB 4160, Department of Chemistry, Illinois State University, Normal, IL 61790, USA
*Correspondence e-mail: ferrence@illinoisstate.edu

(Received 9 May 2008; accepted 9 May 2008; online 17 May 2008)

The title compound, C15H18N2O3, is an example of an oxadiazinan-2-one with significant inter­action between the N3-acyl and N4-methyl groups. These steric inter­actions result in a large torsion angle between the two carbonyl groups, not present with acyl substituents with less steric demand.

Related literature

For related literature, see: Bruno et al. 2004[Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133-2144.]; Burgeson et al. (2004[Burgeson, J. R., Renner, M. K., Hardt, I., Ferrence, G. M., Standard, J. M. & Hitchcock, S. R. (2004). J. Org. Chem. 69, 727-734.]); Casper et al. (2002a[Casper, D. M., Blackburn, J. R., Maroules, C. D., Brady, T., Esken, J. M., Ferrence, G. M., Standard, J. M. & Hitchcock, S. R. (2002a). J. Org. Chem. 67, 8871-8876.],b[Casper, D. M., Burgeson, J. R., Esken, J. M., Ferrence, G. M. & Hitchcock, S. R. (2002b). Org. Lett. 4, 3739-3742.]); Ferrence et al. (2003[Ferrence, G. M., Esken, J. M., Blackburn, J. R. & Hitchcock, S. R. (2003). Acta Cryst. E59, o212-o214.]); Hitchcock et al. (2001[Hitchcock, S. R., Nora, G. P., Casper, D. M., Squire, M. D., Maroules, C. D., Ferrence, G. M., Szczepura, L. F. & Standard, J. M. (2001). Tetrahedron, 57, 9789-9798.], 2004[Hitchcock, S. R., Casper, D. M., Vaughn, J. F., Finefield, J. M., Ferrence, G. M. & Esken, J. M. (2004). J. Org. Chem. 69, 714-718.]); Szczepura et al. (2004[Szczepura, L. F., Hitchcock, S. R. & Nora, G. P. (2004). Acta Cryst. E60, o1467-o1469.]); Trepanier et al. (1968[Trepanier, D. L., Elbe, J. N. & Harris, G. H. (1968). J. Med. Chem. 11, 357-361.]).

[Scheme 1]

Experimental

Crystal data
  • C15H18N2O3

  • Mr = 274.31

  • Orthorhombic, P 21 21 21

  • a = 8.7962 (6) Å

  • b = 9.7797 (6) Å

  • c = 16.6782 (11) Å

  • V = 1434.73 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 193 (2) K

  • 0.46 × 0.38 × 0.21 mm

Data collection
  • Bruker P4/R4/SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS in SAINT-Plus; Bruker, 2003[Bruker (2003). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.865, Tmax = 0.982

  • 9610 measured reflections

  • 1702 independent reflections

  • 1593 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.080

  • S = 1.07

  • 1702 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.13 e Å−3

Data collection: SMART (Bruker, 2003[Bruker (2003). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2003[Bruker (2003). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

In recent years, the synthesis of varying oxadiazinanones has led to chiral auxiliaries used in aldol addition reactions. The fundamental heterocyclic structure of related 1,3,4-oxadiazinan-2-one compounds has been known for nearly forty years (Trepanier et al., 1968); however, it has not been until recent years that more detailed conformational studies have been performed on species containing an N3-acyl substituent (Hitchcock et al., 2001; Casper et al., 2002a). The influence of the N3-acyl substituent is of significant importance in these studies. When the N3-acyl substituent is of low steric demand the two carbonyls found in the molecule are co-planar and point at one another. However, when the N3-substituent is of high steric demand, repulsive steric interactions between the N3-acyl substituent and the N4-methyl group cause the two carbonyls to twist out of planarity. The molecule represented herein is an example of a structure in which the acyl substituent at the N3 position has a high steric demand.

Herein we report the single-crystal X-ray structure of a vinyl-acylated pseudoephedrine-derived 1,3,4-oxadiazinan-2-one (I). Several structures for various N3 substituted oxadiazananones have been published (Burgeson et al., 2004; Casper et al., 2002b; Ferrence et al., 2003; Hitchcock et al., 2001, 2004). Also, a compound unsubstituted at the N3 position has been synthesized (Szczepura et al., 2004). A Mogul (Bruno et al. 2004) geometry check showed all non-H bond angles, distances and torsions to be within typical ranges. The structures of previously reported acetyl, propionyl, and t-butylacetyl substituents at the N3 position exhibit syn-parallel carbonyls. In contrast, in the title compound the 150.8 (2)° O16—C15—N3—C2 and 132.4 (3)° O20—C2—C15—O16 torsion angles are indicative of anti-parallel arrangement of the imide carbonyl groups. It appears likely that this arrangement helps to relieve steric congestion between the O16 carbonyl and the vinyl moiety while at the same time avoiding steric interactions between the N4 methyl group and the vinyl CH2 group. The O16—C15—C17—C18 torsion angle is 130.5 (2)°. The potential for steric interactions is further illustrated in the Jmol enhanced figure (Fig. 2).

Related literature top

For related literature, see: Bruno et al. 2004; Burgeson et al. (2004); Casper et al. (2002a,b); Ferrence et al. (2003); Hitchcock et al. (2001, 2004); Szczepura et al. (2004); Trepanier et al. (1968).

Experimental top

The title compound was prepared by acylation of pseudoephedrine derived 1,3,4-oxadiazinan-2-one using sodium hexamethyldisilazane and methylacrylolyl chloride (Casper et al., 2002a).

Refinement top

All non-H atoms were refined anisotropically without disorder, except for the C19 methyl group which had H-atoms attached as rotationally disordered methyl groups using the AFIX 123 command. All H atoms were initially identified through difference Fourier synthesis then removed and included in the refinement in the riding-model approximation (C–H = 0.95, 0.98, 0.99 and 1.00 Å for Ar–H, CH3 and sp2 CH2 and CH; Uiso(H) = 1.2Ueq(C) except for methyl groups, where Uiso(H) = 1.5Ueq(C)). In the absence of significant anomalous scattering effects, Friedel pairs were merged.

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SMART (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of compound (I), with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. J mol enhanced figure of I. The default view shows the asymmetric unit which is the main residue depicted with a space-filling perspective. Several Jmol button scripts are provided to highlight key structural and crystallographic features.
(5S,6S)-4,5-Dimethyl-3-methylacryloyl-6-phenyl- 1,3,4-oxadiazinan-2-one top
Crystal data top
C15H18N2O3F(000) = 584
Mr = 274.31Dx = 1.27 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 7730 reflections
a = 8.7962 (6) Åθ = 3.3–26.4°
b = 9.7797 (6) ŵ = 0.09 mm1
c = 16.6782 (11) ÅT = 193 K
V = 1434.73 (16) Å3Prism, colourless
Z = 40.46 × 0.38 × 0.21 mm
Data collection top
Bruker P4/R4/SMART 1000 CCD
diffractometer
1702 independent reflections
Radiation source: sealed tube1593 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
/w scansθmax = 26.4°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS in SAINT-Plus; Bruker, 2003)
h = 1011
Tmin = 0.865, Tmax = 0.982k = 1112
9610 measured reflectionsl = 2020
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.039P)2 + 0.2942P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.080(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.15 e Å3
1702 reflectionsΔρmin = 0.13 e Å3
181 parameters
Crystal data top
C15H18N2O3V = 1434.73 (16) Å3
Mr = 274.31Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.7962 (6) ŵ = 0.09 mm1
b = 9.7797 (6) ÅT = 193 K
c = 16.6782 (11) Å0.46 × 0.38 × 0.21 mm
Data collection top
Bruker P4/R4/SMART 1000 CCD
diffractometer
1702 independent reflections
Absorption correction: multi-scan
(SADABS in SAINT-Plus; Bruker, 2003)
1593 reflections with I > 2σ(I)
Tmin = 0.865, Tmax = 0.982Rint = 0.032
9610 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.080H-atom parameters constrained
S = 1.07Δρmax = 0.15 e Å3
1702 reflectionsΔρmin = 0.13 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.56811 (14)0.91142 (13)0.46559 (7)0.0296 (3)
C20.6459 (2)0.85642 (18)0.40478 (10)0.0255 (4)
N30.56076 (17)0.80251 (16)0.34127 (8)0.0270 (3)
N40.40508 (18)0.76608 (16)0.35333 (9)0.0281 (3)
C50.3312 (2)0.8846 (2)0.39098 (11)0.0275 (4)
H50.35180.96680.3570.033*
C60.4005 (2)0.90915 (19)0.47323 (10)0.0266 (4)
H60.37260.83010.50830.032*
C70.3531 (2)1.0377 (2)0.51526 (11)0.0293 (4)
C80.2870 (2)1.0285 (2)0.59025 (12)0.0382 (5)
H80.27670.94150.6150.046*
C90.2356 (3)1.1443 (3)0.63006 (14)0.0501 (6)
H90.19011.13640.68150.06*
C100.2509 (3)1.2699 (3)0.59454 (16)0.0548 (7)
H100.21461.34950.62110.066*
C110.3186 (3)1.2809 (3)0.52055 (17)0.0581 (7)
H110.33051.36850.49670.07*
C120.3698 (3)1.1662 (2)0.48046 (14)0.0432 (5)
H120.41631.17490.42930.052*
C130.1593 (2)0.8641 (2)0.39546 (12)0.0368 (5)
H13A0.1190.84830.34150.055*
H13B0.11190.94590.41840.055*
H13C0.13660.78490.42940.055*
C140.3987 (2)0.63742 (19)0.39932 (11)0.0345 (4)
H14A0.45090.56510.36940.052*
H14B0.29230.61140.40780.052*
H14C0.44860.65030.45130.052*
C150.6276 (2)0.7502 (2)0.27061 (11)0.0302 (4)
O160.56288 (17)0.66036 (17)0.23419 (8)0.0436 (4)
C170.7710 (2)0.8135 (3)0.24081 (11)0.0395 (5)
C180.7866 (3)0.9514 (3)0.23698 (14)0.0552 (7)
H18A0.87420.99030.21270.066*
H18B0.70991.0090.25860.066*
C190.8816 (3)0.7179 (3)0.20957 (19)0.0697 (9)
H19A0.84640.62420.21910.105*0.5
H19B0.97930.73190.23660.105*0.5
H19C0.89410.73270.15180.105*0.5
H19D0.96680.76840.18590.105*0.5
H19E0.83390.66060.16840.105*0.5
H19F0.91910.65990.25320.105*0.5
O200.78185 (15)0.85606 (15)0.40662 (8)0.0334 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0264 (7)0.0361 (7)0.0264 (6)0.0026 (6)0.0026 (5)0.0042 (5)
C20.0276 (9)0.0240 (9)0.0249 (8)0.0016 (7)0.0016 (7)0.0032 (7)
N30.0232 (8)0.0327 (8)0.0250 (7)0.0007 (7)0.0007 (6)0.0016 (6)
N40.0239 (8)0.0330 (8)0.0273 (7)0.0043 (7)0.0012 (6)0.0013 (6)
C50.0253 (9)0.0304 (10)0.0267 (8)0.0014 (8)0.0024 (7)0.0034 (7)
C60.0255 (9)0.0277 (9)0.0266 (8)0.0010 (8)0.0024 (8)0.0026 (7)
C70.0252 (9)0.0312 (10)0.0315 (9)0.0004 (8)0.0011 (8)0.0018 (8)
C80.0376 (11)0.0409 (12)0.0360 (10)0.0041 (10)0.0027 (9)0.0055 (9)
C90.0417 (12)0.0642 (16)0.0445 (11)0.0043 (12)0.0035 (10)0.0207 (12)
C100.0533 (15)0.0482 (14)0.0628 (15)0.0179 (12)0.0107 (13)0.0232 (12)
C110.0741 (18)0.0294 (12)0.0707 (17)0.0106 (12)0.0103 (15)0.0008 (12)
C120.0514 (13)0.0342 (11)0.0442 (11)0.0028 (10)0.0044 (10)0.0044 (10)
C130.0248 (9)0.0471 (12)0.0384 (10)0.0031 (9)0.0016 (8)0.0015 (10)
C140.0386 (10)0.0299 (10)0.0349 (9)0.0052 (9)0.0028 (9)0.0033 (8)
C150.0278 (10)0.0379 (11)0.0249 (8)0.0029 (8)0.0018 (7)0.0026 (8)
O160.0390 (8)0.0533 (9)0.0385 (7)0.0053 (8)0.0051 (6)0.0169 (7)
C170.0302 (10)0.0612 (14)0.0272 (9)0.0053 (10)0.0019 (8)0.0060 (9)
C180.0665 (17)0.0539 (15)0.0453 (12)0.0102 (14)0.0131 (12)0.0109 (11)
C190.0401 (14)0.089 (2)0.0800 (18)0.0012 (15)0.0159 (14)0.0317 (17)
O200.0253 (7)0.0426 (8)0.0324 (6)0.0028 (6)0.0047 (5)0.0008 (6)
Geometric parameters (Å, º) top
O1—C21.336 (2)C11—C121.382 (3)
O1—C61.480 (2)C11—H110.95
C2—O201.196 (2)C12—H120.95
C2—N31.400 (2)C13—H13A0.98
N3—C151.413 (2)C13—H13B0.98
N3—N41.429 (2)C13—H13C0.98
N4—C51.470 (2)C14—H14A0.98
N4—C141.475 (2)C14—H14B0.98
C5—C61.520 (2)C14—H14C0.98
C5—C131.528 (3)C15—O161.210 (2)
C5—H51C15—C171.491 (3)
C6—C71.499 (3)C17—C181.357 (4)
C6—H61C17—C191.447 (3)
C7—C81.382 (3)C18—H18A0.95
C7—C121.392 (3)C18—H18B0.95
C8—C91.388 (3)C19—H19A0.98
C8—H80.95C19—H19B0.98
C9—C101.371 (4)C19—H19C0.98
C9—H90.95C19—H19D0.98
C10—C111.375 (4)C19—H19E0.98
C10—H100.95C19—H19F0.98
C2—O1—C6124.71 (14)C5—C13—H13B109.5
O20—C2—O1119.58 (17)H13A—C13—H13B109.5
O20—C2—N3123.57 (17)C5—C13—H13C109.5
O1—C2—N3116.85 (15)H13A—C13—H13C109.5
C2—N3—C15123.02 (15)H13B—C13—H13C109.5
C2—N3—N4119.99 (14)N4—C14—H14A109.5
C15—N3—N4115.19 (14)N4—C14—H14B109.5
N3—N4—C5106.68 (14)H14A—C14—H14B109.5
N3—N4—C14108.80 (14)N4—C14—H14C109.5
C5—N4—C14115.71 (14)H14A—C14—H14C109.5
N4—C5—C6109.45 (14)H14B—C14—H14C109.5
N4—C5—C13110.80 (16)O16—C15—N3119.08 (18)
C6—C5—C13111.93 (15)O16—C15—C17122.15 (18)
N4—C5—H5108.2N3—C15—C17118.67 (17)
C6—C5—H5108.2C18—C17—C19123.9 (3)
C13—C5—H5108.2C18—C17—C15120.9 (2)
O1—C6—C7107.77 (14)C19—C17—C15114.9 (2)
O1—C6—C5108.91 (14)C17—C18—H18A120
C7—C6—C5116.28 (15)C17—C18—H18B120
O1—C6—H6107.9H18A—C18—H18B120
C7—C6—H6107.9C17—C19—H19A109.5
C5—C6—H6107.9C17—C19—H19B109.5
C8—C7—C12118.74 (19)H19A—C19—H19B109.5
C8—C7—C6119.06 (18)C17—C19—H19C109.5
C12—C7—C6122.18 (17)H19A—C19—H19C109.5
C7—C8—C9121.1 (2)H19B—C19—H19C109.5
C7—C8—H8119.4C17—C19—H19D109.5
C9—C8—H8119.4H19A—C19—H19D141.1
C10—C9—C8119.5 (2)H19B—C19—H19D56.3
C10—C9—H9120.3H19C—C19—H19D56.3
C8—C9—H9120.3C17—C19—H19E109.5
C9—C10—C11120.0 (2)H19A—C19—H19E56.3
C9—C10—H10120H19B—C19—H19E141.1
C11—C10—H10120H19C—C19—H19E56.3
C10—C11—C12120.8 (2)H19D—C19—H19E109.5
C10—C11—H11119.6C17—C19—H19F109.5
C12—C11—H11119.6H19A—C19—H19F56.3
C11—C12—C7119.8 (2)H19B—C19—H19F56.3
C11—C12—H12120.1H19C—C19—H19F141.1
C7—C12—H12120.1H19D—C19—H19F109.5
C5—C13—H13A109.5H19E—C19—H19F109.5
C6—O1—C2—O20175.30 (16)C5—C6—C7—C8122.65 (19)
C6—O1—C2—N35.1 (3)O1—C6—C7—C1266.8 (2)
O20—C2—N3—C154.2 (3)C5—C6—C7—C1255.7 (2)
O1—C2—N3—C15175.31 (16)C12—C7—C8—C91.1 (3)
O20—C2—N3—N4159.76 (17)C6—C7—C8—C9177.33 (19)
O1—C2—N3—N420.7 (2)C7—C8—C9—C100.2 (3)
C2—N3—N4—C550.5 (2)C8—C9—C10—C110.9 (4)
C15—N3—N4—C5144.27 (15)C9—C10—C11—C121.1 (4)
C2—N3—N4—C1474.94 (19)C10—C11—C12—C70.2 (4)
C15—N3—N4—C1490.25 (17)C8—C7—C12—C110.9 (3)
N3—N4—C5—C664.27 (17)C6—C7—C12—C11177.5 (2)
C14—N4—C5—C656.91 (19)C2—N3—C15—O16150.77 (18)
N3—N4—C5—C13171.82 (15)N4—N3—C15—O1613.9 (3)
C14—N4—C5—C1367.0 (2)C2—N3—C15—C1732.8 (3)
C2—O1—C6—C7147.65 (16)N4—N3—C15—C17162.50 (16)
C2—O1—C6—C520.7 (2)O16—C15—C17—C18130.5 (2)
N4—C5—C6—O150.02 (18)N3—C15—C17—C1845.8 (3)
C13—C5—C6—O1173.25 (16)O16—C15—C17—C1943.4 (3)
N4—C5—C6—C7171.95 (15)N3—C15—C17—C19140.3 (2)
C13—C5—C6—C764.8 (2)O20—C2—C15—O16132.4 (3)
O1—C6—C7—C8114.81 (19)

Experimental details

Crystal data
Chemical formulaC15H18N2O3
Mr274.31
Crystal system, space groupOrthorhombic, P212121
Temperature (K)193
a, b, c (Å)8.7962 (6), 9.7797 (6), 16.6782 (11)
V3)1434.73 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.46 × 0.38 × 0.21
Data collection
DiffractometerBruker P4/R4/SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS in SAINT-Plus; Bruker, 2003)
Tmin, Tmax0.865, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
9610, 1702, 1593
Rint0.032
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.080, 1.07
No. of reflections1702
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.13

Computer programs: SMART (Bruker, 2003), SAINT-Plus (Bruker, 2003), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and publCIF (Westrip, 2008).

 

Acknowledgements

This material is based upon work supported by the US National Science Foundation (CHE-0348158) (to GMF) and the American Chemical Society Petroleum Research Fund (to SRH & GMF). GMF thanks Robert McDonald and Michael Ferguson, X-ray Crystallography Laboratory, Department of Chemistry, University of Alberta for the data collection.

References

First citationBruker (2003). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBurgeson, J. R., Renner, M. K., Hardt, I., Ferrence, G. M., Standard, J. M. & Hitchcock, S. R. (2004). J. Org. Chem. 69, 727–734.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCasper, D. M., Blackburn, J. R., Maroules, C. D., Brady, T., Esken, J. M., Ferrence, G. M., Standard, J. M. & Hitchcock, S. R. (2002a). J. Org. Chem. 67, 8871–8876.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCasper, D. M., Burgeson, J. R., Esken, J. M., Ferrence, G. M. & Hitchcock, S. R. (2002b). Org. Lett. 4, 3739–3742.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFerrence, G. M., Esken, J. M., Blackburn, J. R. & Hitchcock, S. R. (2003). Acta Cryst. E59, o212–o214.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHitchcock, S. R., Casper, D. M., Vaughn, J. F., Finefield, J. M., Ferrence, G. M. & Esken, J. M. (2004). J. Org. Chem. 69, 714–718.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHitchcock, S. R., Nora, G. P., Casper, D. M., Squire, M. D., Maroules, C. D., Ferrence, G. M., Szczepura, L. F. & Standard, J. M. (2001). Tetrahedron, 57, 9789–9798.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSzczepura, L. F., Hitchcock, S. R. & Nora, G. P. (2004). Acta Cryst. E60, o1467–o1469.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTrepanier, D. L., Elbe, J. N. & Harris, G. H. (1968). J. Med. Chem. 11, 357–361.  CrossRef CAS PubMed Web of Science Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds