organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages o1183-o1184

Methyl 4-[5-(4-fluoro­phen­yl)-4-(pyridin-4-yl)-1H-imidazol-2-ylsulfan­yl]butanoate

aInstitute of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany, and bDepartment of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: stefan.laufer@uni-tuebingen.de

(Received 17 April 2008; accepted 27 May 2008; online 7 June 2008)

The title compound, C19H18FN3O2S, was synthesized in the course of studies on 2-alkyl­sufanylimidazoles as p38 mitogen-activated protein kinase inhibitors. The synthesis was achieved by nucleophilic substitution of 4-(4-fluoro­phen­yl)-5-(pyridin-4-yl)-1,3-dihydro­imidazole-2-thione with methyl 4-bromo­butanoate. The five-membered heterocycle makes dihedral angles of 32.4 (2) and 18.3 (2)° with the fluoro­phenyl and pyridinyl rings, respectively, indicating a low degree of conjugation between these rings. Intra­molecular C—H⋯N and inter­molecular N—H⋯N hydrogen bonds as well as C—H⋯π inter­actions seem to be effective in stabilization of the crystal structure.

Related literature

Substituted imidazoles as small-mol­ecule inhibitors of p38 MAP kinase have been reviewed by Peifer et al. (2006[Peifer, C., Wagner, G. & Laufer, S. (2006). Curr. Top. Med. Chem. 6, 113-149.]) and Wagner & Laufer (2006[Wagner, G. & Laufer, S. (2006). Med. Res. Rev. 26, 1-62.]). For the preparation of 4-(4-fluoro­phen­yl)-5-(pyridin-4-yl)-1,3-dihydro­imidazole-2-thione, see: Lantos et al. (1988[Lantos, I., Gombatz, K., McGuire, M., Pridgen, L., Remich, J. & Shilcrat, S. (1988). J. Org. Chem. 53, 4223-4227.]). For related literature, see: Laufer, Striegel & Wagner (2002[Laufer, S. A., Striegel, H.-G. & Wagner, G. K. (2002). J. Med. Chem. 45, 4695-4705.]); Laufer, Wagner & Kotschenreuther (2002[Laufer, S., Wagner, G. & Kotschenreuther, D. (2002). Angew. Chem. Int. Ed. 41, 2290-2293.]); Laufer & Koch (2008[Laufer, S. & Koch, P. (2008). Org. Biomol. Chem. 6, 437-439.]); Wang et al. (1998[Wang, Z., Canagarajah, B. J., Boehm, J. C., Kassisa, S., Cobb, M. H., Young, P. R., Abdel-Meguid, S., Adams, J. L. & Goldsmith, E. J. (1998). Structure, 6, 1117-1128.]); Peifer et al. (2007[Peifer, C., Kinkel, K., Abadleh, M., Schollmeyer, D. & Laufer, S. (2007). J. Med. Chem. 50, 1213-1221.]).

[Scheme 1]

Experimental

Crystal data
  • C19H18FN3O2S

  • Mr = 371.42

  • Orthorhombic, P c a 21

  • a = 18.494 (4) Å

  • b = 12.4367 (10) Å

  • c = 7.5255 (5) Å

  • V = 1730.9 (4) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.92 mm−1

  • T = 193 (2) K

  • 0.55 × 0.12 × 0.09 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: Gaussian (PLATON; Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) Tmin = 0.61, Tmax = 0.85

  • 3363 measured reflections

  • 3086 independent reflections

  • 2869 reflections with I > 2σ(I)

  • Rint = 0.051

  • 3 standard reflections frequency: 60 min intensity decay: 5%

Refinement
  • R[F2 > 2σ(F2)] = 0.076

  • wR(F2) = 0.188

  • S = 1.14

  • 3086 reflections

  • 236 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 1.14 e Å−3

  • Δρmin = −0.60 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1307 Friedel pairs

  • Flack parameter: −0.02 (3)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5⋯N17i 0.90 1.95 2.849 (4) 174
Symmetry code: (i) [x+{\script{1\over 2}}, -y+1, z].

Table 2
Nonconventional C—H⋯X contacts (Å, °)

C–H⋯A C–H H⋯A C–H⋯A C⋯A
C13–H13BCg1ii 0.98 2.65 156 3.566 (6)
C7–H7A⋯N2 0.99 2.57 100 2.910 (5)
Symmetry code: (ii) x, y-1, z. Cg1 is the centroid of the C20–C25 ring.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: CORINC (Dräger & Gattow, 1971[Dräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761-762.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

The title compound was prepared in the course of our studies on 2-alkylsulfanyl-4-(4-fluorophenyl)-5-pyridinyl imidazoles as p38 mitogen-activated protein (MAP) kinase inhibitors. The p38 MAP kinase plays a central role for the biosynthesis and release of pro-inflammatory cytokines like TNF-α and IL-1β. Inhibition of p38 MAP kinase is therefore a promising therapeutic strategy for the treatment of inflammatory disorders like psoriasis, inflammatory bowel disease and rheumatoid arthritis. The fundamental SAR for the class of pyridinyl imidazole derivative as p38 MAP kinase inhibitors can be exemplified by the way SB203580 binds to the protein (Wang et al., 1998). There is a crucial hydrogen bond between the pyridin-4-yl moiety and Met109 of the enzyme. The 4-fluorophenyl ring binds to the hydrophobic region I, mainly gaining selectivity. Another possible ligand-protein interaction is a hydrogen bond between Lys53 and N3 of the imidazole core (Peifer et al., 2007).

The analysis of the crystal structure of methyl 4-(5-(4-fluorophenyl)-4-(pyridin-4-yl)-1H-imidazol-2-ylthio)butanoate (I) is shown in Figure 1. The crystal packing (Figure 2) shows that N5—H5 of the imidazole ring forms an intermolecular N–H···N hydrogen bond to pyridine (N17). The length of the hydrogen bond is 1.95Å (Table 1). Non-conventional C—H···X H-bonds are also present in addition to intermolecular N—H···N hydrogen interactions (Table 2).

Related literature top

Substituted imidazoles as small-molecule inhibitors of p38 MAP kinase have been reviewed by Peifer et al. (2006) and Wagner & Laufer (2006). For the preparation of 4-(4-fluorophenyl)-5-(pyridin-4-yl)-1,3-dihydroimidazole-2-thione, see: Lantos et al. (1988). For related literature, see: Laufer, Striegel & Wagner (2002); Laufer, Wagner & Kotschenreuther (2002); Laufer & Koch (2008); Wang et al. (1998); Peifer et al. (2007).

Experimental top

To a stirred solution of 4-(4-fluorophenyl)-5-(pyridin-4-yl)-1,3-dihydroimidazole-2-thione (0.74 mmol) and potassium tert-butoxide (0.77 mmol) in dry methanol (15 ml) was added under argon atmosphere after 15 min metyl 4-bromobutanoate (0.77 mmol). The solution was heated for 1 h to reflux temperature. After extraction with water and ethyl acetate the organic layer was washed twice with water, dried over sodium sulfate and evaporated under reduced pressure. The crude product was purified by flash chromatography (silica gel, dichloromethane - ethyl acetate 1:1 to 2:3) to yield methyl 4-(5-(4-fluorophenyl)-4-(pyridin-4-yl)-1H-imidazol-2-ylthio)butanoate (I) (49%) as a colorless solid. Compound I was crystallized from methanol.

Refinement top

Hydrogen atoms attached to carbons were placed at calculated positions with C—H = 0.95Å (aromatic) or 0.98–0.99 Å (sp3 C-atom). H-atom bonded to N5 was located from a difference Fourier map (N—H = 0.9 Å). All H atoms were refined in the riding-model approximation with isotropic displacement parameters (set at 1.2–1.5 times of the Ueq of the parent atom).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: CORINC (Dräger & Gattow, 1971); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. View of compound I. Displacement ellipsoids are drawn at the 50% probability level. H atoms are depicted as circles of arbitrary size.
[Figure 2] Fig. 2. Part of the crystal packing of compound I. The hydrogen bond is shown with dashed lines. View along c axis. N17_b:x + 1/2, 1 - y, z
Methyl 4-[5-(4-fluorophenyl)-4-(pyridin-4-yl)-1H-imidazol-2-ylsulfanyl]butanoate top
Crystal data top
C19H18FN3O2SF(000) = 776
Mr = 371.42Dx = 1.425 Mg m3
Orthorhombic, Pca21Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2c -2acCell parameters from 25 reflections
a = 18.494 (4) Åθ = 31–44°
b = 12.4367 (10) ŵ = 1.92 mm1
c = 7.5255 (5) ÅT = 193 K
V = 1730.9 (4) Å3Needle, colourless
Z = 40.55 × 0.12 × 0.09 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
2869 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.051
Graphite monochromatorθmax = 70.0°, θmin = 3.6°
ω/2θ scansh = 2222
Absorption correction: gaussian
(PLATON; Spek, 2003)
k = 1515
Tmin = 0.61, Tmax = 0.85l = 79
3363 measured reflections3 standard reflections every 60 min
3086 independent reflections intensity decay: 5%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.076H-atom parameters constrained
wR(F2) = 0.188 w = 1/[σ2(Fo2) + (0.1374P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max < 0.001
3086 reflectionsΔρmax = 1.14 e Å3
236 parametersΔρmin = 0.60 e Å3
1 restraintAbsolute structure: Flack (1983), 1307 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (3)
Crystal data top
C19H18FN3O2SV = 1730.9 (4) Å3
Mr = 371.42Z = 4
Orthorhombic, Pca21Cu Kα radiation
a = 18.494 (4) ŵ = 1.92 mm1
b = 12.4367 (10) ÅT = 193 K
c = 7.5255 (5) Å0.55 × 0.12 × 0.09 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
2869 reflections with I > 2σ(I)
Absorption correction: gaussian
(PLATON; Spek, 2003)
Rint = 0.051
Tmin = 0.61, Tmax = 0.853 standard reflections every 60 min
3363 measured reflections intensity decay: 5%
3086 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.076H-atom parameters constrained
wR(F2) = 0.188Δρmax = 1.14 e Å3
S = 1.14Δρmin = 0.60 e Å3
3086 reflectionsAbsolute structure: Flack (1983), 1307 Friedel pairs
236 parametersAbsolute structure parameter: 0.02 (3)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3643 (2)0.3750 (3)0.3172 (5)0.0204 (8)
N20.29502 (16)0.3630 (3)0.3227 (4)0.0203 (7)
C30.26668 (19)0.4629 (3)0.2819 (5)0.0179 (7)
C40.32215 (19)0.5351 (3)0.2524 (5)0.0183 (8)
N50.38455 (15)0.4764 (2)0.2738 (4)0.0173 (6)
H50.43140.49670.27110.021*
S60.42920 (5)0.27420 (8)0.35250 (18)0.0298 (3)
C70.3694 (2)0.1589 (3)0.3710 (7)0.0300 (9)
H7A0.33120.16500.27960.036*
H7B0.39750.09290.34560.036*
C80.3338 (2)0.1474 (4)0.5527 (8)0.0371 (12)
H8A0.29670.09010.54630.044*
H8B0.30890.21550.58250.044*
C90.3870 (3)0.1202 (4)0.7011 (8)0.0451 (13)
H9A0.42390.17780.70610.054*
H9B0.36040.12140.81530.054*
C100.4252 (2)0.0150 (4)0.6867 (7)0.0360 (11)
O110.4808 (2)0.0057 (4)0.7602 (7)0.0621 (12)
O120.38975 (17)0.0571 (2)0.5875 (5)0.0368 (8)
C130.4252 (3)0.1576 (4)0.5589 (7)0.0413 (12)
H13A0.47380.14470.51150.062*
H13B0.39730.20040.47370.062*
H13C0.42880.19650.67170.062*
C140.1875 (2)0.4721 (3)0.2746 (5)0.0189 (7)
C150.14573 (19)0.3934 (3)0.3609 (6)0.0225 (7)
H150.16840.33740.42600.027*
C160.07186 (19)0.3987 (3)0.3501 (7)0.0267 (8)
H160.04470.34390.40760.032*
N170.03515 (16)0.4759 (3)0.2637 (6)0.0270 (8)
C180.0753 (2)0.5502 (3)0.1816 (6)0.0244 (9)
H180.05090.60560.11860.029*
C190.14979 (19)0.5514 (3)0.1825 (5)0.0201 (7)
H190.17530.60610.12070.024*
C200.32620 (18)0.6506 (3)0.2109 (5)0.0185 (8)
C210.2750 (2)0.7236 (3)0.2741 (6)0.0217 (8)
H210.23730.69880.34930.026*
C220.2782 (2)0.8313 (3)0.2294 (6)0.0261 (9)
H220.24230.88010.27040.031*
C230.3342 (2)0.8664 (3)0.1244 (6)0.0274 (9)
C240.3875 (2)0.7984 (4)0.0657 (6)0.0267 (9)
H240.42650.82520.00320.032*
C250.38349 (19)0.6910 (3)0.1081 (6)0.0220 (8)
H250.42010.64340.06720.026*
F260.33578 (16)0.9714 (2)0.0773 (4)0.0405 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0269 (17)0.0264 (18)0.008 (2)0.0036 (14)0.0006 (13)0.0032 (14)
N20.0239 (14)0.0260 (15)0.0110 (19)0.0029 (11)0.0001 (12)0.0007 (12)
C30.0263 (18)0.0242 (17)0.0031 (17)0.0023 (13)0.0009 (14)0.0015 (14)
C40.0211 (16)0.032 (2)0.0019 (18)0.0020 (14)0.0004 (13)0.0021 (14)
N50.0177 (13)0.0271 (16)0.0072 (15)0.0012 (11)0.0002 (12)0.0022 (12)
S60.0229 (5)0.0303 (5)0.0362 (7)0.0068 (3)0.0024 (4)0.0086 (4)
C70.037 (2)0.0238 (18)0.029 (3)0.0044 (15)0.005 (2)0.0005 (17)
C80.039 (2)0.033 (2)0.039 (3)0.0064 (18)0.011 (2)0.013 (2)
C90.078 (4)0.033 (2)0.024 (3)0.004 (2)0.005 (3)0.002 (2)
C100.045 (3)0.037 (2)0.026 (3)0.0026 (18)0.002 (2)0.004 (2)
O110.059 (2)0.061 (2)0.067 (3)0.009 (2)0.027 (2)0.019 (2)
O120.0440 (17)0.0313 (16)0.035 (2)0.0030 (12)0.0122 (15)0.0029 (15)
C130.060 (3)0.035 (2)0.029 (3)0.008 (2)0.014 (2)0.002 (2)
C140.0255 (17)0.0277 (17)0.0036 (17)0.0002 (14)0.0021 (14)0.0047 (14)
C150.0294 (17)0.0239 (16)0.014 (2)0.0004 (14)0.0036 (18)0.0007 (15)
C160.0281 (18)0.0265 (18)0.025 (2)0.0021 (14)0.0060 (18)0.0044 (19)
N170.0193 (14)0.0349 (18)0.027 (2)0.0003 (13)0.0008 (13)0.0080 (15)
C180.033 (2)0.031 (2)0.010 (2)0.0058 (15)0.0052 (16)0.0029 (17)
C190.0266 (18)0.0275 (17)0.006 (2)0.0008 (14)0.0003 (14)0.0004 (15)
C200.0224 (17)0.0276 (18)0.0055 (18)0.0017 (13)0.0034 (13)0.0007 (14)
C210.0266 (18)0.031 (2)0.0076 (18)0.0008 (14)0.0018 (15)0.0005 (15)
C220.034 (2)0.0285 (19)0.016 (2)0.0043 (16)0.0011 (16)0.0031 (16)
C230.037 (2)0.0259 (19)0.020 (2)0.0043 (15)0.0059 (17)0.0033 (16)
C240.031 (2)0.036 (2)0.013 (2)0.0078 (16)0.0001 (15)0.0056 (17)
C250.0221 (17)0.0320 (19)0.012 (2)0.0004 (14)0.0006 (15)0.0026 (16)
F260.0596 (17)0.0272 (12)0.0346 (18)0.0027 (11)0.0013 (13)0.0072 (11)
Geometric parameters (Å, º) top
C1—N21.290 (5)C13—H13B0.9800
C1—N51.356 (5)C13—H13C0.9800
C1—S61.756 (4)C14—C191.392 (5)
N2—C31.384 (5)C14—C151.405 (5)
C3—C41.381 (5)C15—C161.370 (5)
C3—C141.470 (5)C15—H150.9500
C4—N51.375 (5)C16—N171.344 (6)
C4—C201.471 (5)C16—H160.9500
N5—H50.9032N17—C181.336 (6)
S6—C71.816 (4)C18—C191.378 (5)
C7—C81.525 (7)C18—H180.9500
C7—H7A0.9900C19—H190.9500
C7—H7B0.9900C20—C211.395 (5)
C8—C91.527 (8)C20—C251.405 (5)
C8—H8A0.9900C21—C221.383 (5)
C8—H8B0.9900C21—H210.9500
C9—C101.491 (6)C22—C231.374 (6)
C9—H9A0.9900C22—H220.9500
C9—H9B0.9900C23—F261.354 (5)
C10—O111.196 (6)C23—C241.371 (6)
C10—O121.339 (6)C24—C251.375 (6)
O12—C131.427 (6)C24—H240.9500
C13—H13A0.9800C25—H250.9500
N2—C1—N5113.0 (3)H13A—C13—H13B109.5
N2—C1—S6126.2 (3)O12—C13—H13C109.5
N5—C1—S6120.7 (3)H13A—C13—H13C109.5
C1—N2—C3105.3 (3)H13B—C13—H13C109.5
C4—C3—N2109.8 (3)C19—C14—C15116.6 (3)
C4—C3—C14133.1 (3)C19—C14—C3124.9 (3)
N2—C3—C14117.1 (3)C15—C14—C3118.4 (3)
N5—C4—C3105.0 (3)C16—C15—C14119.2 (4)
N5—C4—C20120.0 (3)C16—C15—H15120.4
C3—C4—C20134.9 (3)C14—C15—H15120.4
C1—N5—C4106.9 (3)N17—C16—C15124.5 (4)
C1—N5—H5122.1N17—C16—H16117.8
C4—N5—H5130.9C15—C16—H16117.8
C1—S6—C799.14 (18)C18—N17—C16115.9 (3)
C8—C7—S6114.0 (3)N17—C18—C19124.1 (4)
C8—C7—H7A108.8N17—C18—H18117.9
S6—C7—H7A108.8C19—C18—H18117.9
C8—C7—H7B108.8C18—C19—C14119.7 (4)
S6—C7—H7B108.8C18—C19—H19120.2
H7A—C7—H7B107.7C14—C19—H19120.2
C7—C8—C9113.4 (4)C21—C20—C25117.8 (4)
C7—C8—H8A108.9C21—C20—C4121.9 (3)
C9—C8—H8A108.9C25—C20—C4120.3 (3)
C7—C8—H8B108.9C22—C21—C20121.3 (4)
C9—C8—H8B108.9C22—C21—H21119.4
H8A—C8—H8B107.7C20—C21—H21119.4
C10—C9—C8116.6 (4)C23—C22—C21118.7 (4)
C10—C9—H9A108.2C23—C22—H22120.7
C8—C9—H9A108.2C21—C22—H22120.7
C10—C9—H9B108.2F26—C23—C24119.7 (4)
C8—C9—H9B108.2F26—C23—C22118.3 (4)
H9A—C9—H9B107.3C24—C23—C22122.1 (4)
O11—C10—O12122.4 (5)C23—C24—C25119.1 (4)
O11—C10—C9124.3 (5)C23—C24—H24120.5
O12—C10—C9113.3 (4)C25—C24—H24120.5
C10—O12—C13116.5 (4)C24—C25—C20121.0 (4)
O12—C13—H13A109.5C24—C25—H25119.5
O12—C13—H13B109.5C20—C25—H25119.5
N5—C1—N2—C30.5 (4)N2—C3—C14—C1519.8 (5)
S6—C1—N2—C3178.3 (3)C19—C14—C15—C160.1 (6)
C1—N2—C3—C40.2 (4)C3—C14—C15—C16177.7 (4)
C1—N2—C3—C14178.7 (3)C14—C15—C16—N171.2 (7)
N2—C3—C4—N50.8 (4)C15—C16—N17—C181.3 (7)
C14—C3—C4—N5177.8 (4)C16—N17—C18—C190.4 (6)
N2—C3—C4—C20177.7 (4)N17—C18—C19—C140.5 (6)
C14—C3—C4—C203.6 (7)C15—C14—C19—C180.7 (6)
N2—C1—N5—C41.0 (4)C3—C14—C19—C18178.3 (3)
S6—C1—N5—C4179.0 (3)N5—C4—C20—C21146.2 (4)
C3—C4—N5—C11.1 (4)C3—C4—C20—C2132.2 (7)
C20—C4—N5—C1177.7 (4)N5—C4—C20—C2532.5 (5)
N2—C1—S6—C75.7 (4)C3—C4—C20—C25149.2 (4)
N5—C1—S6—C7172.0 (3)C25—C20—C21—C223.4 (6)
C1—S6—C7—C880.0 (3)C4—C20—C21—C22177.9 (4)
S6—C7—C8—C967.3 (4)C20—C21—C22—C231.7 (6)
C7—C8—C9—C1063.6 (6)C21—C22—C23—F26178.2 (4)
C8—C9—C10—O11158.8 (6)C21—C22—C23—C241.2 (7)
C8—C9—C10—O1223.6 (6)F26—C23—C24—C25177.2 (4)
O11—C10—O12—C136.0 (8)C22—C23—C24—C252.2 (7)
C9—C10—O12—C13176.3 (4)C23—C24—C25—C200.4 (6)
C4—C3—C14—C1920.7 (7)C21—C20—C25—C242.4 (6)
N2—C3—C14—C19157.8 (4)C4—C20—C25—C24178.9 (4)
C4—C3—C14—C15161.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5···N17i0.901.952.849 (4)174
Symmetry code: (i) x+1/2, y+1, z.

Experimental details

Crystal data
Chemical formulaC19H18FN3O2S
Mr371.42
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)193
a, b, c (Å)18.494 (4), 12.4367 (10), 7.5255 (5)
V3)1730.9 (4)
Z4
Radiation typeCu Kα
µ (mm1)1.92
Crystal size (mm)0.55 × 0.12 × 0.09
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionGaussian
(PLATON; Spek, 2003)
Tmin, Tmax0.61, 0.85
No. of measured, independent and
observed [I > 2σ(I)] reflections
3363, 3086, 2869
Rint0.051
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.076, 0.188, 1.14
No. of reflections3086
No. of parameters236
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.14, 0.60
Absolute structureFlack (1983), 1307 Friedel pairs
Absolute structure parameter0.02 (3)

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), CORINC (Dräger & Gattow, 1971), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5···N17i0.901.952.849 (4)173.8
Symmetry code: (i) x+1/2, y+1, z.
Nonconventional C–H···X contacts (Å, °). top
C–H···AC–HH···AC–H···AC···A
C13–H13B···Cg1ii0.982.651563.566 (6)
C7–H7A···N20.992.571002.910 (5)
Symmetry code: (ii) x, y-1, z. Cg1 is the centroid of the C20–C25 ring.
 

Acknowledgements

The authors acknowledge financial support from the EU, part of the EU-Craft Programme, Framework Project 6 `MACROCEPT'.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761–762.  Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLantos, I., Gombatz, K., McGuire, M., Pridgen, L., Remich, J. & Shilcrat, S. (1988). J. Org. Chem. 53, 4223–4227.  CrossRef CAS Web of Science Google Scholar
First citationLaufer, S. & Koch, P. (2008). Org. Biomol. Chem. 6, 437–439.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLaufer, S. A., Striegel, H.-G. & Wagner, G. K. (2002). J. Med. Chem. 45, 4695–4705.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLaufer, S., Wagner, G. & Kotschenreuther, D. (2002). Angew. Chem. Int. Ed. 41, 2290–2293.  CrossRef CAS Google Scholar
First citationPeifer, C., Kinkel, K., Abadleh, M., Schollmeyer, D. & Laufer, S. (2007). J. Med. Chem. 50, 1213–1221.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPeifer, C., Wagner, G. & Laufer, S. (2006). Curr. Top. Med. Chem. 6, 113–149.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWagner, G. & Laufer, S. (2006). Med. Res. Rev. 26, 1–62.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWang, Z., Canagarajah, B. J., Boehm, J. C., Kassisa, S., Cobb, M. H., Young, P. R., Abdel-Meguid, S., Adams, J. L. & Goldsmith, E. J. (1998). Structure, 6, 1117–1128.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages o1183-o1184
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds