metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages m872-m873

Di-μ-methacrylato-κ4O:O′-bis­­[aqua­bis­(1,10-phenanthroline-κ2N,N′)copper(II)] dinitrate dihydrate

aDepartment of Chemistry, Rajshahi University, Rajshahi 6205, Bangladesh, bDepartment of Chemistry, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia, cDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and dX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: ttofazzal@yahoo.com

(Received 24 May 2008; accepted 28 May 2008; online 7 June 2008)

The title complex, [Cu2(C4H5O2)2(C12H8N2)2(H2O)2](NO3)2·2H2O, contains a dimeric [Cu2(C4H5O2)2(C12H8N2)2(H2O)2]2+ dication with two five-coordinated CuII ions linked by two methacrylate ions in a synsyn bridging arrangement. The dication possesses pseudo-twofold rotational symmetry. The penta­coordination of each CuII ion has a distorted square-pyramidal geometry, with two N donors from a phenanthroline ligand and two carboxyl­ate O atoms occupying basal sites and the apical position being occupied by a water mol­ecule. In the crystal packing, mol­ecules are linked to form a three-dimensional framework by O—H⋯O and C—H⋯O hydrogen bonds and ππ inter­actions [centroid–centroid distances of 3.6039 (15), 3.5301 (15), 3.6015 (15), 3.6496 (15) and 3.6858 (15) Å].

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For structures of related copper(II) complexes, see: Chen et al. (2008[Chen, F., Lu, W.-M. & Zhu, Y. (2008). Acta Cryst. C64, m167-m169.]); Perlepes et al. (1995[Perlepes, S. P., Huffman, J. C. & Christou, G. (1995). Polyhedron, 14, 1073-1081.]). For related literature, see: Besecke et al. (1989[Besecke, S., Schröder, G. & Gänzler, W. (1989). Ger. Patent DE 3137840.]); Blackburn et al. (1995[Blackburn, N. J., Buse, G., Soulimane, T., Steffens, G. C. M. & Nolting, H.-F. (1995). Angew. Chem. Int. Ed. Engl. 34, 1488-1495.]); Chen et al. (2007[Chen, X.-B., Chen, B., Li, Y.-Z. & You, X.-Z. (2007). Appl. Organomet. Chem. 21, 777-781.]); Dang (1994[Dang, Y. (1994). Coord. Chem. Rev. 135/136, 93-128.]); Houser et al. (1996[Houser, R. P., Young, V. G. & Tolman, W. B. (1996). J. Am. Chem. Soc. 118, 101-107.]); Matsushima et al. (1995[Matsushima, H., Koikawa, M., Nakashima, M. & Tokii, T. (1995). Chem. Lett. 24, 869-870.]); Reza et al. (1998[Reza, M. Y., Matsushima, H., Koikawa, M., Nakashima, M. & Tokii, T. (1998). Bull. Chem. Soc. Jpn, 71, 155-160.], 1999[Reza, M. Y., Matsushima, H., Koikawa, M., Nakashima, M. & Tokii, T. (1999). Polyhedron, 18, 787-792.], 2003[Reza, M. Y., Belayet, H. M. & Islam, M. (2003). Pak. J. Biol. Sci. 6, 1494-1496.]); Tokii et al. (1989[Tokii, T., Watanabe, N., Nakashima, M., Muto, Y., Morooka, M., Ohba, S. & Saito, Y. (1989). Chem. Lett. 18, 1671-1674.], 1990[Tokii, T., Watanabe, N., Nakashima, M., Muto, Y., Morooka, M., Ohba, S. & Saito, Y. (1990). Bull. Chem. Soc. Jpn, 63, 364-369.], 1992[Tokii, T., Nagamatsu, M., Hamada, H. & Nakashima, M. (1992). Chem. Lett. 21, 1091-1094.], 1995[Tokii, T., Nakahara, S., Hoshimoto, N., Koikawa, M., Nakashima, M. & Matsushima, H. (1995). Bull. Chem. Soc. Jpn, 68, 2533-2542.]); Schubert (1996[Schubert, U. (1996). J. Chem. Soc. Dalton Trans. pp. 3343-3348.]); Schubert et al. (1992[Schubert, U., Arpac, E., Glaubitt, W., Helmerich, A. & Chau, C. (1992). Chem. Mater. 4, 291-295.], 1995[Schubert, U., Huesing, N. & Lorenz, A. (1995). Chem. Mater. 7, 2010-2027.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C4H5O2)2(C12H8N2)2(H2O)2](NO3)2·2H2O

  • Mr = 853.75

  • Monoclinic, P 21 /c

  • a = 13.6146 (2) Å

  • b = 15.7322 (2) Å

  • c = 16.4463 (2) Å

  • β = 102.1306 (8)°

  • V = 3443.94 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.31 mm−1

  • T = 100.0 (1) K

  • 0.27 × 0.24 × 0.16 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.716, Tmax = 0.822

  • 43546 measured reflections

  • 10036 independent reflections

  • 6885 reflections with I > 2σ(I)

  • Rint = 0.069

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.113

  • S = 1.04

  • 10036 reflections

  • 489 parameters

  • H-atom parameters constrained

  • Δρmax = 0.68 e Å−3

  • Δρmin = −0.78 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯O6i 0.85 2.42 3.115 (3) 140
O1W—H1W1⋯O8i 0.85 2.32 2.882 (3) 124
O2W—H1W2⋯O5ii 0.85 2.03 2.761 (3) 144
O3W—H1W3⋯O5 0.86 1.97 2.811 (3) 163
O4W—H1W4⋯O10iii 0.93 2.02 2.807 (3) 142
O1W—H2W1⋯O3Wi 0.85 2.19 2.791 (3) 127
O3W—H2W3⋯O9iii 0.91 2.00 2.862 (3) 157
O4W—H2W4⋯O7iii 0.84 2.29 2.860 (3) 125
C1—H1A⋯O4 0.93 2.56 3.035 (3) 112
C1—H1A⋯O10iv 0.93 2.53 3.247 (3) 134
C3—H3A⋯O9v 0.93 2.37 3.186 (4) 146
C14—H14A⋯O4Wvi 0.93 2.52 3.364 (4) 151
C15—H15A⋯O2Wii 0.93 2.49 3.357 (3) 155
C21—H21A⋯O3v 0.93 2.39 3.318 (4) 179
C28—H28B⋯O3 0.93 2.42 2.747 (4) 100
C32—H32B⋯O1 0.93 2.42 2.737 (4) 100
C32—H32B⋯O8i 0.93 2.43 3.345 (3) 168
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) x, y+1, z; (v) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (vi) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

There is considerable interest in bioinorganic chemistry of metal carboxylates as these are formally analogous to organic esters (Dang, 1994; Reza et al., 2003). In this type of complex, the reactivity of the carboxylates towards the nucleophiles is enhanced (Houser et al., 1996; Blackburn et al., 1995; Reza et al., 1998; 1999; Tokii et al., 1989). Since transition metal complexes of methacrylic acid are also polymeric (Schubert, 1996; Schubert et al., 1992, 1995), chemists are attracted to study the application of these types of materials, particularly as catalysts. The CuII ions coordinate with a variety of carboxylates (Besecke et al., 1989; Matsushima et al., 1995). Such related coordinations have appeared in a series of binuclear CuII complexes with 1,3-bis(hydroxyphenyl)-2-imidazolidinethione, [Cu(RCOO)(HL1)]2 (R = CH3, C6H5),(HL1= 1-hydroxymethyl-3-methyl-2-imidazolidinethione), [Cu(RCOO)(L2)]2 (R = CH3, 2-CH3C6H4, and 4-CH3C6H4) (imidazolidinethione being the second substituent of the aryl ring) (Tokii et al., 1995), bis(µ-carboxylato-O,O')-diaquobis (1,10-pherathroline) dicopper(II) dinitrate tetrahydrates [Cu(RCOO)(phen)(H2O)]2(NO3)2. 4H2O [R = H, CH3 and (CH3)3C] (Tokii et al., 1990; 1992). Matsushima et al. (1995) have reported some triply bridged dinuclear carboxylato copper (II) complexes, [Cu2(Ph2CHCOO)3(L)2]BF4 [L = 2.2'-bipyridine and 1,10-phenanthroline]. From these related coordinations (Perlepes et al., 1995), we found there is no report on conjugated double-bond systems containing a monobasic acid (e.g. methacrylic acid) with synsyn bridging modes of binuclear Cu(II) and this has prompted us to attempt to prepare a binuclear Cu(II) complex with phenanthroline (phen) and methacrylic acid. Methacrylic acid and phenanthroline were used to gain some insight into the flexiblity of these complexes and also the effect of these auxiliary ligands on stacking. We report herein the first example of a binuclear CuII complex of this type, [Cu(C3H5COO)(phen)(H2O)]2(NO3)2.2H2O, along with its crystal structure.

The asymmetric unit of the title compound consists of a dinuclear [Cu(C3H5COO)(phen)(H2O)]22+ cation, two NO3- anions and two H2O molecules (Fig. 1). The coordination environment of each CuII ion is CuN2O3 in which the basal positions are formed by two N atoms from a bidentate phenanthroline ligand [Cu1—N1 = 2.014 (2) Å, Cu1—N2 = 2.018 (2) Å and Cu2—N3 = 2.008 (2) Å, Cu2—N4 = 2.019 (2) Å] and two O atoms of two bridging methacrylato ligands [Cu1—O1 = 1.9641 (19) Å, Cu1—O4 = 1.9446 (18) Å and Cu2—O2 = 1.9440 (19) Å, Cu2—O3 = 1.956 (2) Å]. The two carboxylate groups are in the bidentate synsyn bridging mode. The apical position of each CuII is occupied by an O atom of a water molecule [Cu1—O1W = 2.1525 (19) Å and Cu2—O2W = 2.1538 (18) Å]. These axial bonds are longer than the bond lengths in the basal positons. Coordination of the N2 chelate phenanthroline ligand to the CuII ion results in the formation of two planar five-membered rings Cu1/N1/N2/C11/C12 (with a maximum deviation of -0.019 (1) Å for atom Cu1) and Cu2/N3/N4/C23/C24 (with a maximum deviation of 0.014 (3) Å for atom C23). The dihedral angle between these two five-membered rings is 5.48 (10)°. The Cu1···Cu2 distance is 3.106 (1) Å. The orientation of the two bridging methacrylato ligands can be indicated by the dihedral angle between the mean planes through Cu1/O3/O4/C25 and Cu2/O1/O2/C29 of 71.74 (13)°. The electron delocalizations in the two carboxylate fragments are complete as can be indicated by the almost equal C—O bond lengths [C25—O3 = 1.263 (3) Å, C25—O4 = 1.261 (3) Å and C29—O1 = 1.259 (3) Å, C29—O2 = 1.266 (3) Å]. All bond lengths are in agreement with other related structures (Chen et al., 2008; Perlepes et al., 1995) and are in normal ranges (Allen et al., 1987).

The two phen ligands of the dinuclear complex are stacked with their centroids separated by 3.625 (1) Å indicating significant ππ interactions. The various centroid–centroid separations involving the two phen ligands are: Cg1···Cg3 = 3.6039 (15)Å, Cg1···Cg6 = 3.5301 (15)Å, Cg2···Cg4 = 3.6015 (15)Å, Cg4···Cg5 = 3.6496 (15)Å and Cg5···Cg6 = 3.6858 (15)Å (Cg1, Cg2, Cg3, Cg4, Cg5 and Cg6 are the centroids of the N1/C1–C4/C12, N2/C7–C11, N3/C13–C16/C24, N4/C19–C23, C4–C7/C11/C12 and C16–C19/C23/C24 rings, respectively).

O—H···O hydrogen bonds between water molecules and the nitrate ions play an important role in stabilizing the crystal structure (Table 1). These hydrogen bonds link the complex molecules, water molecules and nitrate groups into a two-dimensional network parallel to the (010) plane. The two-dimensional network is further strengthened by ππ interactions between two symmetry related C4–C7/C11/C12 rings at (x, y, z) and (1-x, 2-y, 1-z), with their centroids separated by 3.5381 (15) Å. The adjacent two-dimensional network are cross-linked along the b axis via weak C—H···O interactions.

Related literature top

For bond-length data, see: Allen et al. (1987). For structures of related copper(II) complexes, see: Chen et al. (2008); Perlepes et al. (1995). For related literature, see: Besecke et al. (1989); Blackburn et al. (1995); Chen et al. (2007); Dang (1994); Houser et al. (1996); Matsushima et al. (1995); Reza et al. (1998, 1999, 2003); Tokii et al. (1989, 1990, 1992, 1995); Schubert (1996); Schubert et al. (1992, 1995).

Experimental top

The title compound was synthesized by adding a mixture of methacrylic acid (10 mmol) and 1,10-phenanthroline (10 mmol) in water (60 ml) with triethylamine (10 mmol) to aqueous Cu(NO3)2 (2.42 g, 10 mmol) in water (20 ml) while stirring. The stirring was continued for another half an hour. Precipitates initially formed were filtered and the filtrate was concentrated to one-third of its original volume (25 ml). Deep blue single crystals of the title compound which appeared after a week were collected, washed with water and dried in air at room temperature (m.p. 494 K).

Refinement top

H atoms attached to O atoms (water) were located in difference Fourier maps and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(O). C-bound H atoms were placed in calculated positions (C—H = 0.93–0.96 Å) and allowed to ride on their parent atoms, with Uiso = 1.2-1.5Ueq(C). A rotating group model was used for the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering. The O—H···O hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed approximately along the b axis. Hydrogen bonds are shown as dashed lines.
Di-µ-methacrylato-κ4O:O'-bis[aquabis(1,10-phenanthroline- κ2N,N')copper(II)] dinitrate dihydrate top
Crystal data top
[Cu2(C4H5O2)2(C12H8N2)2(H2O)2](NO3)2·2H2OF(000) = 1752
Mr = 853.75Dx = 1.647 Mg m3
Monoclinic, P21/cMelting point: 494 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 13.6146 (2) ÅCell parameters from 10036 reflections
b = 15.7322 (2) Åθ = 1.5–30.0°
c = 16.4463 (2) ŵ = 1.32 mm1
β = 102.1306 (8)°T = 100 K
V = 3443.94 (8) Å3Block, blue
Z = 40.27 × 0.24 × 0.16 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
10036 independent reflections
Radiation source: fine-focus sealed tube6885 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.069
Detector resolution: 8.33 pixels mm-1θmax = 30.0°, θmin = 1.5°
ω scansh = 1919
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 2122
Tmin = 0.716, Tmax = 0.822l = 2322
43546 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0457P)2 + 1.7397P]
where P = (Fo2 + 2Fc2)/3
10036 reflections(Δ/σ)max = 0.001
489 parametersΔρmax = 0.68 e Å3
0 restraintsΔρmin = 0.78 e Å3
Crystal data top
[Cu2(C4H5O2)2(C12H8N2)2(H2O)2](NO3)2·2H2OV = 3443.94 (8) Å3
Mr = 853.75Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.6146 (2) ŵ = 1.32 mm1
b = 15.7322 (2) ÅT = 100 K
c = 16.4463 (2) Å0.27 × 0.24 × 0.16 mm
β = 102.1306 (8)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
10036 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
6885 reflections with I > 2σ(I)
Tmin = 0.716, Tmax = 0.822Rint = 0.069
43546 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.04Δρmax = 0.68 e Å3
10036 reflectionsΔρmin = 0.78 e Å3
489 parameters
Special details top

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.38427 (2)0.86242 (2)0.280115 (19)0.01328 (8)
Cu20.15436 (2)0.83947 (2)0.21652 (2)0.01440 (9)
O10.36221 (13)0.74006 (12)0.26072 (11)0.0175 (4)
O20.19581 (14)0.72098 (12)0.22433 (12)0.0210 (4)
O30.19962 (13)0.86057 (13)0.11307 (12)0.0195 (4)
O40.36133 (13)0.89340 (12)0.16317 (11)0.0163 (4)
O1W0.54224 (14)0.84782 (13)0.28332 (12)0.0206 (4)
H1W10.59270.81480.29200.031*
H2W10.54660.87960.24240.031*
O2W0.00149 (13)0.80624 (12)0.16106 (12)0.0189 (4)
H1W20.02560.81710.20200.023*
H2W20.00720.75240.16180.023*
N10.35977 (15)0.98300 (14)0.31179 (13)0.0136 (4)
N20.40285 (15)0.84520 (14)0.40400 (13)0.0133 (4)
N30.11389 (15)0.96185 (14)0.22068 (13)0.0148 (5)
N40.15054 (15)0.84559 (14)0.33844 (14)0.0147 (5)
C10.33896 (18)1.05166 (17)0.26328 (16)0.0148 (5)
H1A0.34001.04700.20710.018*
C20.31551 (19)1.13053 (18)0.29446 (17)0.0174 (6)
H2A0.30011.17680.25890.021*
C30.31543 (19)1.13909 (18)0.37706 (17)0.0177 (6)
H3A0.29901.19090.39790.021*
C40.34054 (18)1.06858 (17)0.43076 (16)0.0156 (5)
C50.34706 (19)1.07128 (18)0.51869 (17)0.0176 (6)
H5A0.33271.12170.54330.021*
C60.37387 (19)1.00148 (18)0.56700 (17)0.0170 (6)
H6A0.37911.00520.62420.020*
C70.39418 (18)0.92214 (17)0.53086 (16)0.0149 (5)
C80.42171 (19)0.84690 (18)0.57659 (17)0.0175 (6)
H8A0.42750.84630.63400.021*
C90.43985 (19)0.77448 (18)0.53534 (16)0.0171 (6)
H9A0.45900.72470.56490.021*
C100.42949 (19)0.77571 (18)0.44871 (17)0.0173 (6)
H10A0.44170.72610.42170.021*
C110.38645 (18)0.91764 (17)0.44477 (16)0.0133 (5)
C120.36170 (18)0.99215 (17)0.39418 (16)0.0137 (5)
C130.0902 (2)1.01713 (18)0.15840 (17)0.0185 (6)
H13A0.09661.00070.10540.022*
C140.0561 (2)1.09905 (18)0.16996 (18)0.0217 (6)
H14A0.03881.13580.12490.026*
C150.0481 (2)1.12505 (18)0.24745 (19)0.0212 (6)
H15A0.02581.17960.25560.025*
C160.07407 (19)1.06854 (17)0.31525 (17)0.0169 (6)
C170.0720 (2)1.08926 (19)0.39989 (18)0.0223 (6)
H17A0.05401.14380.41280.027*
C180.0960 (2)1.03040 (19)0.46151 (18)0.0220 (6)
H18A0.09611.04590.51610.026*
C190.12109 (19)0.94527 (19)0.44389 (16)0.0173 (6)
C200.1392 (2)0.8790 (2)0.50233 (18)0.0215 (6)
H20A0.13670.88940.55750.026*
C210.1606 (2)0.7989 (2)0.47812 (18)0.0218 (6)
H21A0.17110.75470.51650.026*
C220.16637 (19)0.78423 (18)0.39568 (17)0.0191 (6)
H22A0.18180.72980.38010.023*
C230.12645 (18)0.92432 (17)0.36181 (17)0.0145 (5)
C240.10448 (18)0.98683 (17)0.29791 (16)0.0153 (5)
C250.28327 (19)0.89118 (17)0.10616 (16)0.0149 (5)
C260.2907 (2)0.92989 (18)0.02407 (17)0.0205 (6)
C270.3878 (2)0.9638 (2)0.01568 (19)0.0278 (7)
H27A0.38270.98570.03950.042*
H27B0.43720.91930.02570.042*
H27C0.40751.00860.05540.042*
C280.2060 (2)0.9363 (2)0.03626 (18)0.0335 (8)
H28A0.20800.96340.08610.040*
H28B0.14590.91360.02770.040*
C290.28507 (19)0.69382 (17)0.24574 (16)0.0154 (5)
C300.2994 (2)0.59990 (17)0.25582 (16)0.0164 (5)
C310.2129 (2)0.54491 (19)0.23257 (18)0.0246 (7)
H31A0.22940.48920.25500.037*
H31B0.19380.54150.17300.037*
H31C0.15810.56750.25420.037*
C320.3946 (2)0.56991 (19)0.28914 (17)0.0225 (6)
H32A0.40540.51190.29750.027*
H32B0.44800.60770.30320.027*
N50.15097 (17)0.32307 (16)0.18469 (15)0.0220 (5)
O50.15892 (15)0.33112 (15)0.26311 (13)0.0296 (5)
O60.22735 (16)0.32020 (17)0.15650 (14)0.0374 (6)
O70.06546 (15)0.31781 (15)0.13950 (14)0.0326 (5)
N60.33329 (18)0.17479 (15)0.07401 (15)0.0201 (5)
O80.40081 (14)0.18673 (13)0.13715 (12)0.0237 (5)
O90.34045 (18)0.20737 (15)0.00610 (13)0.0348 (6)
O100.25858 (15)0.13046 (14)0.07883 (13)0.0280 (5)
O3W0.35788 (15)0.35991 (13)0.34804 (13)0.0242 (5)
H1W30.29600.36220.32200.036*
H2W30.34480.35270.39960.036*
O4W0.07983 (16)0.28832 (15)0.50131 (13)0.0319 (5)
H1W40.14620.30430.50520.048*
H2W40.04140.28070.53470.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01626 (15)0.01130 (17)0.01213 (16)0.00004 (12)0.00262 (12)0.00018 (12)
Cu20.01577 (15)0.01211 (17)0.01579 (17)0.00068 (12)0.00441 (12)0.00054 (13)
O10.0210 (9)0.0106 (10)0.0202 (10)0.0009 (7)0.0028 (8)0.0017 (8)
O20.0203 (9)0.0144 (10)0.0288 (11)0.0017 (8)0.0057 (8)0.0023 (8)
O30.0176 (9)0.0250 (11)0.0166 (10)0.0012 (8)0.0055 (7)0.0027 (8)
O40.0201 (9)0.0144 (10)0.0144 (9)0.0011 (7)0.0038 (7)0.0001 (7)
O1W0.0172 (9)0.0251 (12)0.0193 (10)0.0037 (8)0.0035 (8)0.0022 (8)
O2W0.0204 (9)0.0161 (10)0.0215 (10)0.0014 (8)0.0070 (8)0.0008 (8)
N10.0142 (10)0.0125 (11)0.0148 (11)0.0001 (8)0.0047 (8)0.0001 (9)
N20.0132 (10)0.0118 (11)0.0151 (11)0.0000 (8)0.0032 (8)0.0010 (9)
N30.0140 (10)0.0137 (12)0.0173 (11)0.0002 (9)0.0048 (8)0.0025 (9)
N40.0141 (10)0.0141 (12)0.0160 (11)0.0011 (8)0.0030 (8)0.0015 (9)
C10.0175 (12)0.0135 (13)0.0144 (12)0.0004 (10)0.0053 (10)0.0009 (10)
C20.0181 (12)0.0145 (14)0.0201 (14)0.0003 (10)0.0053 (10)0.0030 (11)
C30.0185 (12)0.0136 (14)0.0215 (14)0.0009 (10)0.0051 (10)0.0018 (11)
C40.0145 (12)0.0148 (14)0.0177 (13)0.0020 (10)0.0041 (10)0.0015 (10)
C50.0195 (12)0.0156 (14)0.0186 (14)0.0021 (11)0.0063 (10)0.0052 (11)
C60.0188 (13)0.0201 (15)0.0132 (12)0.0036 (11)0.0057 (10)0.0029 (11)
C70.0114 (11)0.0175 (14)0.0161 (13)0.0023 (10)0.0037 (10)0.0012 (10)
C80.0179 (12)0.0231 (16)0.0124 (12)0.0011 (11)0.0050 (10)0.0001 (11)
C90.0186 (12)0.0168 (14)0.0169 (13)0.0029 (11)0.0061 (10)0.0049 (11)
C100.0178 (12)0.0156 (14)0.0192 (14)0.0003 (10)0.0051 (10)0.0016 (11)
C110.0117 (11)0.0158 (14)0.0129 (12)0.0002 (10)0.0036 (9)0.0003 (10)
C120.0106 (11)0.0158 (14)0.0146 (12)0.0014 (10)0.0029 (9)0.0004 (10)
C130.0217 (13)0.0172 (14)0.0169 (13)0.0012 (11)0.0049 (11)0.0023 (11)
C140.0204 (13)0.0166 (15)0.0273 (15)0.0001 (11)0.0035 (11)0.0076 (12)
C150.0200 (13)0.0126 (14)0.0323 (16)0.0011 (11)0.0082 (12)0.0014 (12)
C160.0150 (12)0.0134 (14)0.0230 (14)0.0016 (10)0.0055 (10)0.0028 (11)
C170.0231 (14)0.0183 (15)0.0278 (16)0.0015 (11)0.0105 (12)0.0087 (12)
C180.0211 (13)0.0265 (17)0.0200 (14)0.0023 (12)0.0076 (11)0.0068 (12)
C190.0139 (12)0.0244 (16)0.0154 (13)0.0031 (11)0.0070 (10)0.0032 (11)
C200.0167 (12)0.0327 (18)0.0158 (13)0.0016 (12)0.0047 (10)0.0007 (12)
C210.0174 (13)0.0283 (17)0.0198 (14)0.0002 (12)0.0037 (11)0.0096 (12)
C220.0151 (12)0.0168 (14)0.0249 (15)0.0011 (10)0.0032 (11)0.0037 (11)
C230.0095 (11)0.0140 (13)0.0207 (14)0.0018 (10)0.0050 (10)0.0001 (11)
C240.0126 (11)0.0153 (14)0.0185 (13)0.0011 (10)0.0046 (10)0.0013 (11)
C250.0203 (13)0.0126 (13)0.0126 (12)0.0040 (10)0.0057 (10)0.0022 (10)
C260.0320 (15)0.0161 (15)0.0144 (13)0.0025 (12)0.0074 (11)0.0004 (11)
C270.0360 (17)0.0264 (18)0.0236 (16)0.0043 (14)0.0123 (13)0.0038 (13)
C280.0358 (17)0.049 (2)0.0148 (15)0.0023 (16)0.0033 (13)0.0019 (14)
C290.0221 (13)0.0141 (14)0.0112 (12)0.0001 (10)0.0064 (10)0.0007 (10)
C300.0257 (13)0.0118 (14)0.0131 (12)0.0001 (11)0.0070 (10)0.0012 (10)
C310.0300 (15)0.0200 (16)0.0223 (15)0.0028 (12)0.0021 (12)0.0014 (12)
C320.0322 (15)0.0127 (14)0.0220 (15)0.0021 (12)0.0042 (12)0.0008 (11)
N50.0199 (12)0.0205 (13)0.0249 (13)0.0021 (10)0.0027 (10)0.0013 (10)
O50.0235 (10)0.0409 (14)0.0254 (12)0.0094 (10)0.0079 (9)0.0029 (10)
O60.0219 (11)0.0613 (18)0.0318 (13)0.0054 (11)0.0121 (10)0.0084 (12)
O70.0180 (10)0.0423 (15)0.0346 (13)0.0063 (10)0.0014 (9)0.0056 (11)
N60.0287 (13)0.0129 (12)0.0192 (12)0.0035 (10)0.0059 (10)0.0011 (10)
O80.0217 (10)0.0276 (12)0.0204 (10)0.0028 (9)0.0013 (8)0.0010 (9)
O90.0585 (15)0.0297 (13)0.0170 (11)0.0008 (11)0.0099 (10)0.0075 (9)
O100.0257 (10)0.0229 (12)0.0325 (12)0.0071 (9)0.0003 (9)0.0062 (9)
O3W0.0227 (10)0.0271 (12)0.0234 (11)0.0011 (9)0.0065 (8)0.0033 (9)
O4W0.0298 (11)0.0450 (15)0.0206 (11)0.0054 (10)0.0050 (9)0.0043 (10)
Geometric parameters (Å, º) top
Cu1—O41.9446 (18)C13—C141.396 (4)
Cu1—O11.9641 (19)C13—H13A0.93
Cu1—N12.014 (2)C14—C151.364 (4)
Cu1—N22.018 (2)C14—H14A0.93
Cu1—O1W2.1525 (19)C15—C161.412 (4)
Cu2—O21.9440 (19)C15—H15A0.93
Cu2—O31.956 (2)C16—C241.398 (4)
Cu2—N32.008 (2)C16—C171.436 (4)
Cu2—N42.019 (2)C17—C181.361 (4)
Cu2—O2W2.1538 (18)C17—H17A0.93
O1—C291.259 (3)C18—C191.427 (4)
O2—C291.266 (3)C18—H18A0.93
O3—C251.263 (3)C19—C201.404 (4)
O4—C251.261 (3)C19—C231.406 (4)
O1W—H1W10.85C20—C211.371 (4)
O1W—H2W10.85C20—H20A0.93
O2W—H1W20.85C21—C221.394 (4)
O2W—H2W20.85C21—H21A0.93
N1—C11.337 (3)C22—H22A0.93
N1—C121.357 (3)C23—C241.424 (4)
N2—C101.325 (3)C25—C261.504 (4)
N2—C111.364 (3)C26—C281.358 (4)
N3—C131.331 (3)C26—C271.459 (4)
N3—C241.361 (3)C27—H27A0.96
N4—C221.334 (3)C27—H27B0.96
N4—C231.357 (3)C27—H27C0.96
C1—C21.405 (4)C28—H28A0.93
C1—H1A0.93C28—H28B0.93
C2—C31.365 (4)C29—C301.495 (4)
C2—H2A0.93C30—C321.381 (4)
C3—C41.414 (4)C30—C311.446 (4)
C3—H3A0.93C31—H31A0.96
C4—C121.401 (4)C31—H31B0.96
C4—C51.431 (4)C31—H31C0.96
C5—C61.359 (4)C32—H32A0.93
C5—H5A0.93C32—H32B0.93
C6—C71.434 (4)N5—O61.225 (3)
C6—H6A0.93N5—O71.245 (3)
C7—C111.399 (4)N5—O51.278 (3)
C7—C81.410 (4)N6—O81.248 (3)
C8—C91.375 (4)N6—O101.249 (3)
C8—H8A0.93N6—O91.251 (3)
C9—C101.402 (4)O3W—H1W30.86
C9—H9A0.93O3W—H2W30.91
C10—H10A0.93O4W—H1W40.93
C11—C121.436 (4)O4W—H2W40.84
O4—Cu1—O195.60 (8)N1—C12—C11116.4 (2)
O4—Cu1—N191.08 (8)C4—C12—C11119.7 (2)
O1—Cu1—N1159.63 (8)N3—C13—C14122.1 (3)
O4—Cu1—N2172.86 (8)N3—C13—H13A118.9
O1—Cu1—N290.85 (8)C14—C13—H13A118.9
N1—Cu1—N281.82 (9)C15—C14—C13119.9 (3)
O4—Cu1—O1W90.17 (7)C15—C14—H14A120.1
O1—Cu1—O1W90.99 (8)C13—C14—H14A120.1
N1—Cu1—O1W108.26 (8)C14—C15—C16119.6 (3)
N2—Cu1—O1W92.77 (8)C14—C15—H15A120.2
O2—Cu2—O394.59 (8)C16—C15—H15A120.2
O2—Cu2—N3174.38 (9)C24—C16—C15117.0 (3)
O3—Cu2—N390.33 (9)C24—C16—C17118.3 (3)
O2—Cu2—N492.74 (9)C15—C16—C17124.8 (3)
O3—Cu2—N4159.13 (8)C18—C17—C16121.1 (3)
N3—Cu2—N481.71 (9)C18—C17—H17A119.4
O2—Cu2—O2W92.09 (8)C16—C17—H17A119.4
O3—Cu2—O2W97.23 (7)C17—C18—C19121.2 (3)
N3—Cu2—O2W89.97 (8)C17—C18—H18A119.4
N4—Cu2—O2W102.00 (8)C19—C18—H18A119.4
C29—O1—Cu1133.72 (18)C20—C19—C23116.5 (3)
C29—O2—Cu2126.17 (18)C20—C19—C18125.0 (3)
C25—O3—Cu2126.70 (17)C23—C19—C18118.5 (3)
C25—O4—Cu1131.56 (18)C21—C20—C19120.1 (3)
Cu1—O1W—H1W1147.0C21—C20—H20A120.0
Cu1—O1W—H2W198.9C19—C20—H20A120.0
H1W1—O1W—H2W1107.6C20—C21—C22119.6 (3)
Cu2—O2W—H1W299.0C20—C21—H21A120.2
Cu2—O2W—H2W299.1C22—C21—H21A120.2
H1W2—O2W—H2W2104.0N4—C22—C21122.2 (3)
C1—N1—C12117.8 (2)N4—C22—H22A118.9
C1—N1—Cu1129.24 (19)C21—C22—H22A118.9
C12—N1—Cu1112.87 (17)N4—C23—C19123.4 (2)
C10—N2—C11118.1 (2)N4—C23—C24116.5 (2)
C10—N2—Cu1129.25 (19)C19—C23—C24120.1 (2)
C11—N2—Cu1112.66 (17)N3—C24—C16123.1 (2)
C13—N3—C24118.3 (2)N3—C24—C23116.3 (2)
C13—N3—Cu2128.63 (19)C16—C24—C23120.6 (2)
C24—N3—Cu2112.89 (17)O4—C25—O3125.3 (2)
C22—N4—C23118.2 (2)O4—C25—C26116.8 (2)
C22—N4—Cu2129.2 (2)O3—C25—C26117.8 (2)
C23—N4—Cu2112.52 (17)C28—C26—C27123.4 (3)
N1—C1—C2122.1 (2)C28—C26—C25118.6 (3)
N1—C1—H1A118.9C27—C26—C25117.8 (2)
C2—C1—H1A118.9C26—C27—H27A109.5
C3—C2—C1119.9 (3)C26—C27—H27B109.5
C3—C2—H2A120.1H27A—C27—H27B109.5
C1—C2—H2A120.1C26—C27—H27C109.5
C2—C3—C4119.6 (3)H27A—C27—H27C109.5
C2—C3—H3A120.2H27B—C27—H27C109.5
C4—C3—H3A120.2C26—C28—H28A120.0
C12—C4—C3116.7 (2)C26—C28—H28B120.0
C12—C4—C5119.0 (2)H28A—C28—H28B120.0
C3—C4—C5124.3 (3)O1—C29—O2124.9 (3)
C6—C5—C4121.2 (3)O1—C29—C30117.8 (2)
C6—C5—H5A119.4O2—C29—C30117.3 (2)
C4—C5—H5A119.4C32—C30—C31123.0 (3)
C5—C6—C7120.8 (3)C32—C30—C29118.1 (2)
C5—C6—H6A119.6C31—C30—C29118.8 (2)
C7—C6—H6A119.6C30—C31—H31A109.5
C11—C7—C8116.9 (2)C30—C31—H31B109.5
C11—C7—C6118.9 (2)H31A—C31—H31B109.5
C8—C7—C6124.2 (2)C30—C31—H31C109.5
C9—C8—C7119.2 (3)H31A—C31—H31C109.5
C9—C8—H8A120.4H31B—C31—H31C109.5
C7—C8—H8A120.4C30—C32—H32A120.0
C8—C9—C10120.0 (3)C30—C32—H32B120.0
C8—C9—H9A120.0H32A—C32—H32B120.0
C10—C9—H9A120.0O6—N5—O7122.2 (3)
N2—C10—C9122.2 (3)O6—N5—O5119.1 (2)
N2—C10—H10A118.9O7—N5—O5118.6 (2)
C9—C10—H10A118.9O8—N6—O10119.9 (2)
N2—C11—C7123.7 (2)O8—N6—O9119.9 (2)
N2—C11—C12116.1 (2)O10—N6—O9120.2 (2)
C7—C11—C12120.2 (2)H1W3—O3W—H2W396.1
N1—C12—C4123.8 (2)H1W4—O4W—H2W4136.4
O4—Cu1—O1—C2984.4 (2)C6—C7—C11—C122.0 (4)
N1—Cu1—O1—C2924.2 (4)C1—N1—C12—C41.8 (4)
N2—Cu1—O1—C2992.6 (2)Cu1—N1—C12—C4175.84 (19)
O1W—Cu1—O1—C29174.7 (2)C1—N1—C12—C11178.7 (2)
O3—Cu2—O2—C2975.1 (2)Cu1—N1—C12—C113.7 (3)
N4—Cu2—O2—C2985.4 (2)C3—C4—C12—N10.4 (4)
O2W—Cu2—O2—C29172.5 (2)C5—C4—C12—N1178.6 (2)
O2—Cu2—O3—C2595.0 (2)C3—C4—C12—C11179.2 (2)
N3—Cu2—O3—C2582.3 (2)C5—C4—C12—C111.9 (4)
N4—Cu2—O3—C2515.3 (4)N2—C11—C12—N11.6 (3)
O2W—Cu2—O3—C25172.3 (2)C7—C11—C12—N1177.4 (2)
O1—Cu1—O4—C2567.2 (2)N2—C11—C12—C4178.0 (2)
N1—Cu1—O4—C2593.5 (2)C7—C11—C12—C43.1 (4)
O1W—Cu1—O4—C25158.2 (2)C24—N3—C13—C140.2 (4)
O4—Cu1—N1—C11.5 (2)Cu2—N3—C13—C14175.11 (19)
O1—Cu1—N1—C1110.8 (3)N3—C13—C14—C151.4 (4)
N2—Cu1—N1—C1179.3 (2)C13—C14—C15—C160.3 (4)
O1W—Cu1—N1—C189.1 (2)C14—C15—C16—C241.7 (4)
O4—Cu1—N1—C12175.83 (17)C14—C15—C16—C17177.9 (3)
O1—Cu1—N1—C1266.5 (3)C24—C16—C17—C182.0 (4)
N2—Cu1—N1—C123.41 (16)C15—C16—C17—C18178.5 (3)
O1W—Cu1—N1—C1293.64 (17)C16—C17—C18—C192.0 (4)
O1—Cu1—N2—C1022.9 (2)C17—C18—C19—C20174.9 (3)
N1—Cu1—N2—C10176.2 (2)C17—C18—C19—C233.8 (4)
O1W—Cu1—N2—C1068.1 (2)C23—C19—C20—C210.1 (4)
O1—Cu1—N2—C11158.36 (17)C18—C19—C20—C21178.5 (3)
N1—Cu1—N2—C112.55 (17)C19—C20—C21—C221.4 (4)
O1W—Cu1—N2—C11110.60 (17)C23—N4—C22—C211.1 (4)
O3—Cu2—N3—C1323.8 (2)Cu2—N4—C22—C21179.80 (19)
N4—Cu2—N3—C13175.5 (2)C20—C21—C22—N40.8 (4)
O2W—Cu2—N3—C1373.4 (2)C22—N4—C23—C192.5 (4)
O3—Cu2—N3—C24160.65 (17)Cu2—N4—C23—C19178.57 (19)
N4—Cu2—N3—C240.01 (17)C22—N4—C23—C24176.5 (2)
O2W—Cu2—N3—C24102.12 (17)Cu2—N4—C23—C242.4 (3)
O2—Cu2—N4—C223.5 (2)C20—C19—C23—N41.9 (4)
O3—Cu2—N4—C22114.0 (3)C18—C19—C23—N4179.4 (2)
N3—Cu2—N4—C22177.5 (2)C20—C19—C23—C24177.1 (2)
O2W—Cu2—N4—C2289.3 (2)C18—C19—C23—C241.7 (4)
O2—Cu2—N4—C23177.76 (17)C13—N3—C24—C162.0 (4)
O3—Cu2—N4—C2367.2 (3)Cu2—N3—C24—C16178.02 (19)
N3—Cu2—N4—C231.32 (17)C13—N3—C24—C23177.4 (2)
O2W—Cu2—N4—C2389.52 (17)Cu2—N3—C24—C231.3 (3)
C12—N1—C1—C22.6 (4)C15—C16—C24—N32.9 (4)
Cu1—N1—C1—C2174.57 (18)C17—C16—C24—N3176.7 (2)
N1—C1—C2—C31.3 (4)C15—C16—C24—C23176.4 (2)
C1—C2—C3—C41.0 (4)C17—C16—C24—C234.0 (4)
C2—C3—C4—C121.7 (4)N4—C23—C24—N32.5 (3)
C2—C3—C4—C5177.2 (2)C19—C23—C24—N3178.4 (2)
C12—C4—C5—C60.4 (4)N4—C23—C24—C16176.8 (2)
C3—C4—C5—C6178.5 (3)C19—C23—C24—C162.2 (4)
C4—C5—C6—C71.5 (4)Cu1—O4—C25—O35.5 (4)
C5—C6—C7—C110.3 (4)Cu1—O4—C25—C26173.17 (18)
C5—C6—C7—C8179.6 (2)Cu2—O3—C25—O419.3 (4)
C11—C7—C8—C90.4 (4)Cu2—O3—C25—C26159.39 (18)
C6—C7—C8—C9179.7 (2)O4—C25—C26—C28173.6 (3)
C7—C8—C9—C100.9 (4)O3—C25—C26—C285.2 (4)
C11—N2—C10—C90.8 (4)O4—C25—C26—C272.3 (4)
Cu1—N2—C10—C9179.52 (18)O3—C25—C26—C27178.9 (3)
C8—C9—C10—N20.3 (4)Cu1—O1—C29—O213.8 (4)
C10—N2—C11—C71.4 (4)Cu1—O1—C29—C30164.71 (18)
Cu1—N2—C11—C7179.72 (19)Cu2—O2—C29—O14.5 (4)
C10—N2—C11—C12177.6 (2)Cu2—O2—C29—C30174.01 (17)
Cu1—N2—C11—C121.3 (3)O1—C29—C30—C326.6 (4)
C8—C7—C11—N20.8 (4)O2—C29—C30—C32172.0 (3)
C6—C7—C11—N2179.1 (2)O1—C29—C30—C31175.0 (2)
C8—C7—C11—C12178.1 (2)O2—C29—C30—C316.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O6i0.852.423.115 (3)140
O1W—H1W1···O8i0.852.322.882 (3)124
O2W—H1W2···O5ii0.852.032.761 (3)144
O3W—H1W3···O50.861.972.811 (3)163
O4W—H1W4···O10iii0.932.022.807 (3)142
O1W—H2W1···O3Wi0.852.192.791 (3)127
O3W—H2W3···O9iii0.912.002.862 (3)157
O4W—H2W4···O7iii0.842.292.860 (3)125
C1—H1A···O40.932.563.035 (3)112
C1—H1A···O10iv0.932.533.247 (3)134
C3—H3A···O9v0.932.373.186 (4)146
C14—H14A···O4Wvi0.932.523.364 (4)151
C15—H15A···O2Wii0.932.493.357 (3)155
C21—H21A···O3v0.932.393.318 (4)179
C28—H28B···O30.932.422.747 (4)100
C32—H32B···O10.932.422.737 (4)100
C32—H32B···O8i0.932.433.345 (3)168
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x, y+1/2, z+1/2; (iv) x, y+1, z; (v) x, y+3/2, z+1/2; (vi) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[Cu2(C4H5O2)2(C12H8N2)2(H2O)2](NO3)2·2H2O
Mr853.75
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)13.6146 (2), 15.7322 (2), 16.4463 (2)
β (°) 102.1306 (8)
V3)3443.94 (8)
Z4
Radiation typeMo Kα
µ (mm1)1.32
Crystal size (mm)0.27 × 0.24 × 0.16
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.716, 0.822
No. of measured, independent and
observed [I > 2σ(I)] reflections
43546, 10036, 6885
Rint0.069
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.113, 1.04
No. of reflections10036
No. of parameters489
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.68, 0.78

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O6i0.852.423.115 (3)140
O1W—H1W1···O8i0.852.322.882 (3)124
O2W—H1W2···O5ii0.852.032.761 (3)144
O3W—H1W3···O50.861.972.811 (3)163
O4W—H1W4···O10iii0.932.022.807 (3)142
O1W—H2W1···O3Wi0.852.192.791 (3)127
O3W—H2W3···O9iii0.912.002.862 (3)157
O4W—H2W4···O7iii0.842.292.860 (3)125
C1—H1A···O40.932.563.035 (3)112
C1—H1A···O10iv0.932.533.247 (3)134
C3—H3A···O9v0.932.373.186 (4)146
C14—H14A···O4Wvi0.932.523.364 (4)151
C15—H15A···O2Wii0.932.493.357 (3)155
C21—H21A···O3v0.932.393.318 (4)179
C28—H28B···O30.932.422.747 (4)100
C32—H32B···O10.932.422.737 (4)100
C32—H32B···O8i0.932.433.345 (3)168
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x, y+1/2, z+1/2; (iv) x, y+1, z; (v) x, y+3/2, z+1/2; (vi) x, y+3/2, z1/2.
 

Footnotes

Additional correspondence author, e-mail: suchada.c@psu.ac.th.

§Additional correspondence author, email: hkfun@usm.my.

Acknowledgements

MTHT and MYR thank Rajshahi University for the provision of laboratory facilities. KAC thanks the Universiti Putra Malaysia for financial assistance. SC thanks Prince of Songkla University for generous support. The authors also thank the Universiti Sains Malaysia for University Golden Goose Grant No. 1001/PFIZIK/811012.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBesecke, S., Schröder, G. & Gänzler, W. (1989). Ger. Patent DE 3137840.  Google Scholar
First citationBlackburn, N. J., Buse, G., Soulimane, T., Steffens, G. C. M. & Nolting, H.-F. (1995). Angew. Chem. Int. Ed. Engl. 34, 1488–1495.  Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, X.-B., Chen, B., Li, Y.-Z. & You, X.-Z. (2007). Appl. Organomet. Chem. 21, 777–781.  Web of Science CSD CrossRef CAS Google Scholar
First citationChen, F., Lu, W.-M. & Zhu, Y. (2008). Acta Cryst. C64, m167–m169.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDang, Y. (1994). Coord. Chem. Rev. 135/136, 93–128.  CrossRef CAS Web of Science Google Scholar
First citationHouser, R. P., Young, V. G. & Tolman, W. B. (1996). J. Am. Chem. Soc. 118, 101–107.  CSD CrossRef Web of Science Google Scholar
First citationMatsushima, H., Koikawa, M., Nakashima, M. & Tokii, T. (1995). Chem. Lett. 24, 869–870.  CrossRef Web of Science Google Scholar
First citationPerlepes, S. P., Huffman, J. C. & Christou, G. (1995). Polyhedron, 14, 1073–1081.  CSD CrossRef CAS Web of Science Google Scholar
First citationReza, M. Y., Belayet, H. M. & Islam, M. (2003). Pak. J. Biol. Sci. 6, 1494–1496.  Google Scholar
First citationReza, M. Y., Matsushima, H., Koikawa, M., Nakashima, M. & Tokii, T. (1998). Bull. Chem. Soc. Jpn, 71, 155–160.  Web of Science CSD CrossRef CAS Google Scholar
First citationReza, M. Y., Matsushima, H., Koikawa, M., Nakashima, M. & Tokii, T. (1999). Polyhedron, 18, 787–792.  Web of Science CSD CrossRef CAS Google Scholar
First citationSchubert, U. (1996). J. Chem. Soc. Dalton Trans. pp. 3343–3348.  CrossRef Web of Science Google Scholar
First citationSchubert, U., Arpac, E., Glaubitt, W., Helmerich, A. & Chau, C. (1992). Chem. Mater. 4, 291–295.  CSD CrossRef CAS Web of Science Google Scholar
First citationSchubert, U., Huesing, N. & Lorenz, A. (1995). Chem. Mater. 7, 2010–2027.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTokii, T., Nagamatsu, M., Hamada, H. & Nakashima, M. (1992). Chem. Lett. 21, 1091–1094.  CrossRef Web of Science Google Scholar
First citationTokii, T., Nakahara, S., Hoshimoto, N., Koikawa, M., Nakashima, M. & Matsushima, H. (1995). Bull. Chem. Soc. Jpn, 68, 2533–2542.  CrossRef CAS Web of Science Google Scholar
First citationTokii, T., Watanabe, N., Nakashima, M., Muto, Y., Morooka, M., Ohba, S. & Saito, Y. (1989). Chem. Lett. 18, 1671–1674.  CrossRef Web of Science Google Scholar
First citationTokii, T., Watanabe, N., Nakashima, M., Muto, Y., Morooka, M., Ohba, S. & Saito, Y. (1990). Bull. Chem. Soc. Jpn, 63, 364–369.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages m872-m873
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds