metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages m912-m913

An octa­nuclear zinc(II) complex with 6,6′-dihydr­­oxy-2,2′-[1,2-phenyl­enebis(nitrilo­methyl­­idyne)]diphenol

aSchool of Chemical Science, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 31 May 2008; accepted 9 June 2008; online 13 June 2008)

The asymmetric unit of the title compound, tetra­aqua­tetrakis­{μ3-6,6′-di­oxido-2,2′-[1,2-phenyl­enebis(nitrilo­methyl­idyne)]diphenolato}octa­zinc(II) dimethyl sulfoxide tetra­solvate dihydrate, [Zn8(C20H12N2O4)4(H2O)4]·4C2H6OS·2H2O, contains one quarter of a ZnII octa­nuclear complex with [\overline4] symmetry, one dimethyl sulfoxide mol­ecule and one half of a water mol­ecule which lies on a twofold rotation axis. The ZnII atoms of the octa­nuclear complex have two different five-coordinate environments, viz. ZnN2O3 and ZnO5. All eight ZnII centers adopt a distorted square-pyramidal coordination; four ZnII ions have the N2O2 tetra­dentate Schiff base ligand bound in a basal plane and the coordinated water mol­ecule occupying the apical site, while the remaing four ZnII ions are bound by five O atoms from three Schiff base ligands. In the crystal structure, ZnII complex mol­ecules, coordinated and uncoord­inated water mol­ecules and dimethyl sulfoxide mol­ecules are linked via O—H⋯O and C—H⋯O hydrogen bonds and C—H⋯π inter­actions, forming a three-dimensional framework.

Related literature

For related literatures on Schiff base ZnII coordination complexes, see: Basak et al. 2007[Basak, S., Sen, S., Banerjee, S., Mitra, S., Rosair, G. & Garland Rodriguez, M. T. (2007). Polyhedron, 26, 5104-5112.]; Collinson & Fenton (1996[Collinson, S. R. & Fenton, D. E. (1996). Coord. Chem. Rev. 148, 19-40.]); Pal et al. (2005[Pal, S., Barik, A. K., Gupta, S., Hazra, A., Kar, S. K., Peng, S.-M., Lee, G.-H., Butcher, R. J., El Fallah, M. S. & Ribas, J. (2005). Inorg. Chem. 44, 3880-3889.]); Tarafder et al. (2002[Tarafder, M. T. H., Chew, K.-B., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2002). Polyhedron, 21, 2683-2690.]). For related structures, see: Eltayeb et al. (2007a[Eltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Ibrahim, K. (2007a). Acta Cryst. E63, m1633-m1634.],b[Eltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Ibrahim, K. (2007b). Acta Cryst. E63, m1672-m1673.],c[Eltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Ibrahim, K. (2007c). Acta Cryst. E63, m2024-m2025.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn8(C20H12N2O4)4(H2O)4]·4C2H6OS·2H2O

  • Mr = 2321.03

  • Tetragonal, P 42 /n

  • a = 18.1324 (3) Å

  • c = 13.3813 (3) Å

  • V = 4399.56 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.32 mm−1

  • T = 100.0 (1) K

  • 0.57 × 0.13 × 0.10 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.352, Tmax = 0.796

  • 26700 measured reflections

  • 5851 independent reflections

  • 3700 reflections with I > 2σ(I)

  • Rint = 0.085

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.138

  • S = 1.02

  • 5851 reflections

  • 314 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.67 e Å−3

  • Δρmin = −1.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯O4i 0.84 (4) 1.72 (4) 2.535 (4) 164 (5)
O2W—H1W2⋯O5 0.85 (8) 2.28 (9) 3.032 (4) 147 (4)
O1W—H2W1⋯O5 0.83 (4) 1.95 (4) 2.772 (5) 174 (4)
C3—H3A⋯O3ii 0.93 2.57 3.271 (5) 132
C21—H21C⋯O4iii 0.96 2.52 3.454 (7) 165
C21—H21BCg1iv 0.96 2.81 3.475 (6) 127
Symmetry codes: (i) [y, -x+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (iii) [-y+1, x+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) -x+1, -y+1, -z. Cg1 is the centroid of the C1–C6 ring.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

There has been considerable interest in the synthesis of metal Schiff base complexes due to their coordination chemistry and applications (Basak et al., 2007; Eltayeb et al., 2007a,b,c; Pal et al., 2005; Tarafder et al., 2002). Zinc complexes with Schiff bases are important in biological systems and coordination chemistry (Collinson & Fenton, 1996; Tarafder et al., 2002). Previously, we have reported crystal structures of ZnII complexes with Schiff base ligands (Eltayeb et al., 2007a,b,c). As a continuation of our research on Schiff base complexes, we report here the crystal structure of the title octanuclear ZnII complex.

The asymmetric unit of the title compound (Fig. 1) contains one quarter of the Zn8(C80H56N8O20) complex, one dimethyl sulfoxide (C2H6OS) and one-half of a water molecule with its O atom lying on a twofold rotation axis. The other three quarters of the octanuclear complex molecule are generated by the fourfold axis. The ZnII atoms of the octanuclear complex has two different five-coordination environments viz. ZnN2O3 and ZnO5 (Fig. 2). All eight ZnII centers adopt a distorted square-pyramidal coordination in which four ZnII ions (outer) (Zn1 and its three symmetry equivalents Zn1A, Zn1B and Zn1C) coordinate with the N2O2 tetradentate Schiff base ligand bounded in a basal plane and the coordinated water molecule occupying the apical site. The other four ZnII ions (inner) (Zn2 and its three symmetry equivalents Zn2A, Zn2B and Zn2C) are coordinated with five O atoms from three Schiff base ligands (see Fig. 2). The ZnII ions in each unit are connected by one µ-O (Zn1—O2—Zn2) atom (Fig. 1). The Zn—µ-O bond lengths are Zn1—O2 = 2.032 (3) and Zn2—O2 = 2.191 (3) Å. In the octanuclear cluster, the µ-O1 atoms are also in bridging positions, between the ZnII ions (inner cavity) (Zn2—O1—Zn2B) with the Zn—µ-O distances of Zn2—O1 = 2.000 (3) Å and Zn2B—O1 = 1.981 (3) Å. The connections of the four inner ZnII ions by bridging µ-O1 and its equivalents result in the formation of an eight membered ring (Zn2—O1—Zn2B—O1B—Zn2C—O1C—Zn2A—O1A), with the Zn···Zn contacts being 3.4878 (5) Å. The Schiff base ligand in the present complex is in an umbrella conformation with the dihedral angle between the two outer rings (C1—C6 and C15—C20) being 48.1 (2) °. In the octanuclear complex (Fig. 2), the four Schiff bases have their concave sides alternating up and down. The coordination geometry of the five-coordinate atoms Zn1 and Zn2 (and their equivalents) can be viewed as that of a slightly distorted square antiprism. Bond lengths and angles observed in the structure are in normal ranges (Allen et al., 1987) and comparable with the related structures (Eltayeb et al., 2007a,b,c).

In the crystal packing (Fig. 3), the ZnII complex molecules, coordinated and free water molecules and dimethyl sulfoxide molecules are linked via O—H···O and C—H···O hydrogen bonds and C—H···π interactions involving the C1—C6 (centroid Cg1) ring (Table 1) forming a three-dimensional framework.

Related literature top

For related literatures on Schiff base ZnII coordination complexes, see: Basak et al. 2007; Collinson & Fenton (1996); Pal et al. (2005); Tarafder et al. (2002). For related structures, see: Eltayeb et al. (2007a,b,c). For bond-length data, see: Allen et al. (1987). Cg1 is the centroid of the C1–C6 ring.

Experimental top

The title compound was synthesized by adding 2,3-dihydroxybenzaldehyde (0.552 g, 4 mmol) to a solution of o-phenylenediamine (0.216 g, 2 mmol) in ethanol 95% (20 ml). The mixture was refluxed with stirring for 30 min. Zinc chloride (0.544 g, 4 mmol) in ethanol (10 ml) was then added, followed by triethylamine (1.0 ml, 7.2 mmol). The mixture was stirred at room temperature for 3 h. The yellow precipitate obtained was washed with about 5 ml e thanol, dried, and then washed with copious amounts of diethylether. Orange single crystals of the title compound suitable for X-ray diffraction were formed after recrystallization in the dimethyl sulfoxide/ethanol (3:5 v/v) at room temperature after several days.

Refinement top

Water H atoms were found in the difference map and their positions were refined with a restrained geometry, with O—H = 0.84 (2) Å and H···H = 1.37 (2) Å. The remaining H atoms are placed in calculated positions with d(C—H) = 0.93 Å, Uiso = 1.2Ueq(C) for CH and aromatic and 0.96 Å, Uiso = 1.5Ueq(C) for CH3 atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.36 Å from H22C and the deepest hole is located at 0.47 Å from S1.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The molecular structure of the octanuclear complex, showing 50% probability displacement ellipsoids and the atomic numbering. H atoms of the ZnII complex, DMSO and solvated water molecules have been omitted for clarity. Symmetry codes: (A) 1/2 - y, x, 1/2 - z; (B) y, 1/2 - x, 1/2 - z; (C) 1/2 - x, 1/2 - y, z.
[Figure 3] Fig. 3. The crystal packing of the title compound, viewed along the c axis, showing sheets parallel to the ab plane. Hydrogen bonds are shown as dashed lines.
tetraaquatetrakis{µ3-6,6'-dioxido-2,2'-[1,2- phenylenebis(nitrilomethylidyne)]diphenolato}octazinc(II) dimethyl sulfoxide tetrasolvate dihydrate top
Crystal data top
[Zn8(C20H12N2O4)4(H2O)4]·4C2H6OS·2H2ODx = 1.752 Mg m3
Mr = 2321.03Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P42/nCell parameters from 5851 reflections
Hall symbol: -P 4bcθ = 2.9–29.0°
a = 18.1324 (3) ŵ = 2.32 mm1
c = 13.3813 (3) ÅT = 100 K
V = 4399.56 (14) Å3Needle, orange
Z = 20.57 × 0.13 × 0.10 mm
F(000) = 2360
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5851 independent reflections
Radiation source: fine-focus sealed tube3700 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.085
Detector resolution: 8.33 pixels mm-1θmax = 29.0°, θmin = 2.9°
ω scansh = 2411
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 2424
Tmin = 0.352, Tmax = 0.796l = 1818
26700 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0592P)2 + 6.834P]
where P = (Fo2 + 2Fc2)/3
5851 reflections(Δ/σ)max = 0.001
314 parametersΔρmax = 0.67 e Å3
6 restraintsΔρmin = 1.34 e Å3
Crystal data top
[Zn8(C20H12N2O4)4(H2O)4]·4C2H6OS·2H2OZ = 2
Mr = 2321.03Mo Kα radiation
Tetragonal, P42/nµ = 2.32 mm1
a = 18.1324 (3) ÅT = 100 K
c = 13.3813 (3) Å0.57 × 0.13 × 0.10 mm
V = 4399.56 (14) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5851 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3700 reflections with I > 2σ(I)
Tmin = 0.352, Tmax = 0.796Rint = 0.085
26700 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0506 restraints
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.67 e Å3
5851 reflectionsΔρmin = 1.34 e Å3
314 parameters
Special details top

Experimental. The low-temparture data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.22916 (3)0.46426 (3)0.07015 (4)0.01886 (13)
Zn20.34013 (2)0.35177 (2)0.24587 (4)0.01728 (13)
O10.35359 (15)0.25401 (15)0.1791 (2)0.0188 (6)
O20.28402 (15)0.36961 (15)0.1029 (2)0.0192 (6)
O30.14565 (15)0.43546 (15)0.1585 (2)0.0189 (6)
O40.05238 (16)0.38411 (16)0.2903 (3)0.0277 (7)
N10.26712 (19)0.45884 (18)0.0754 (3)0.0210 (7)
N20.1627 (2)0.54198 (19)0.0038 (3)0.0233 (8)
C10.3139 (2)0.3234 (2)0.0380 (3)0.0177 (8)
C20.3494 (2)0.2598 (2)0.0780 (3)0.0182 (8)
C30.3795 (2)0.2079 (2)0.0141 (3)0.0222 (9)
H3A0.40190.16610.04070.027*
C40.3768 (3)0.2170 (2)0.0899 (4)0.0282 (10)
H4A0.39520.18050.13200.034*
C50.3471 (2)0.2795 (2)0.1285 (3)0.0248 (9)
H5A0.34700.28610.19740.030*
C60.3166 (2)0.3342 (2)0.0672 (3)0.0216 (9)
C70.2939 (2)0.4005 (2)0.1172 (3)0.0231 (9)
H7A0.29900.40160.18630.028*
C80.2508 (2)0.5228 (2)0.1328 (3)0.0234 (9)
C90.2866 (3)0.5429 (3)0.2203 (4)0.0296 (10)
H9A0.32380.51330.24620.035*
C100.2663 (3)0.6077 (3)0.2689 (4)0.0349 (12)
H10A0.28930.62070.32850.042*
C110.2123 (3)0.6529 (3)0.2295 (4)0.0326 (11)
H11A0.19900.69590.26260.039*
C120.1781 (3)0.6342 (2)0.1410 (4)0.0278 (10)
H12A0.14280.66550.11380.033*
C130.1960 (2)0.5688 (2)0.0920 (3)0.0218 (9)
C140.0969 (2)0.5594 (2)0.0204 (4)0.0250 (9)
H14A0.07270.59400.01910.030*
C150.0574 (2)0.5294 (2)0.1044 (3)0.0223 (9)
C160.0143 (2)0.5597 (2)0.1196 (4)0.0261 (10)
H16A0.02980.59880.07970.031*
C170.0604 (2)0.5332 (2)0.1905 (4)0.0269 (10)
H17A0.10650.55460.19980.032*
C180.0388 (2)0.4735 (2)0.2496 (4)0.0250 (9)
H18A0.07070.45510.29780.030*
C190.0295 (2)0.4420 (2)0.2369 (3)0.0209 (9)
C200.0805 (2)0.4700 (2)0.1638 (3)0.0199 (9)
S10.42019 (7)0.60730 (7)0.06159 (11)0.0376 (3)
O50.3672 (2)0.6353 (2)0.0183 (3)0.0436 (9)
C210.5096 (3)0.6047 (3)0.0076 (5)0.0449 (14)
H21A0.51220.56500.03970.067*
H21B0.51920.65060.02580.067*
H21C0.54570.59720.05910.067*
C220.4357 (4)0.6846 (3)0.1418 (5)0.0504 (16)
H22A0.39130.69570.17780.076*
H22B0.47440.67310.18810.076*
H22C0.44980.72660.10230.076*
O1W0.29110 (16)0.53937 (16)0.1423 (3)0.0251 (7)
H1W10.321 (2)0.5050 (19)0.154 (4)0.038*
H2W10.311 (2)0.570 (2)0.105 (3)0.038*
O2W0.25000.75000.0625 (6)0.104 (3)
H1W20.278 (5)0.724 (5)0.026 (2)0.156*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0204 (2)0.0191 (2)0.0171 (3)0.00136 (18)0.0007 (2)0.0010 (2)
Zn20.0177 (2)0.0191 (2)0.0150 (2)0.00013 (18)0.0004 (2)0.0005 (2)
O10.0245 (14)0.0182 (13)0.0139 (15)0.0013 (11)0.0015 (13)0.0006 (12)
O20.0229 (14)0.0219 (14)0.0128 (14)0.0035 (11)0.0021 (12)0.0020 (12)
O30.0182 (13)0.0181 (13)0.0205 (16)0.0015 (10)0.0001 (12)0.0022 (12)
O40.0263 (15)0.0267 (15)0.0302 (19)0.0052 (12)0.0069 (15)0.0101 (15)
N10.0245 (17)0.0203 (16)0.0181 (19)0.0016 (14)0.0011 (16)0.0018 (15)
N20.0261 (18)0.0229 (17)0.021 (2)0.0033 (14)0.0014 (17)0.0014 (16)
C10.0195 (19)0.0168 (18)0.017 (2)0.0004 (15)0.0013 (17)0.0030 (17)
C20.0204 (18)0.0192 (18)0.015 (2)0.0001 (15)0.0052 (17)0.0002 (18)
C30.025 (2)0.021 (2)0.020 (2)0.0031 (16)0.0047 (19)0.0000 (19)
C40.041 (3)0.025 (2)0.019 (2)0.0074 (19)0.003 (2)0.0046 (19)
C50.035 (2)0.026 (2)0.013 (2)0.0031 (18)0.0017 (19)0.0014 (19)
C60.023 (2)0.023 (2)0.019 (2)0.0008 (16)0.0007 (19)0.0020 (19)
C70.024 (2)0.030 (2)0.015 (2)0.0005 (17)0.0027 (19)0.0018 (19)
C80.027 (2)0.022 (2)0.021 (2)0.0005 (17)0.004 (2)0.0010 (19)
C90.036 (3)0.029 (2)0.023 (2)0.0043 (19)0.002 (2)0.004 (2)
C100.045 (3)0.030 (2)0.030 (3)0.002 (2)0.007 (2)0.011 (2)
C110.040 (3)0.028 (2)0.029 (3)0.002 (2)0.002 (2)0.009 (2)
C120.029 (2)0.025 (2)0.030 (3)0.0036 (17)0.001 (2)0.002 (2)
C130.022 (2)0.024 (2)0.019 (2)0.0000 (16)0.0007 (18)0.0058 (18)
C140.029 (2)0.024 (2)0.022 (2)0.0078 (17)0.001 (2)0.0065 (19)
C150.026 (2)0.0188 (19)0.022 (2)0.0027 (16)0.0011 (19)0.0004 (18)
C160.030 (2)0.023 (2)0.026 (3)0.0071 (17)0.003 (2)0.001 (2)
C170.027 (2)0.027 (2)0.026 (3)0.0071 (18)0.000 (2)0.001 (2)
C180.025 (2)0.027 (2)0.023 (2)0.0004 (17)0.006 (2)0.000 (2)
C190.0211 (19)0.0185 (18)0.023 (2)0.0011 (15)0.0010 (18)0.0030 (18)
C200.0210 (19)0.0192 (19)0.020 (2)0.0004 (15)0.0038 (18)0.0025 (18)
S10.0380 (7)0.0359 (7)0.0389 (8)0.0037 (5)0.0043 (6)0.0010 (6)
O50.044 (2)0.045 (2)0.042 (2)0.0087 (17)0.0120 (19)0.0001 (19)
C210.038 (3)0.057 (4)0.039 (3)0.005 (2)0.004 (3)0.001 (3)
C220.062 (4)0.042 (3)0.048 (4)0.007 (3)0.021 (3)0.005 (3)
O1W0.0260 (16)0.0203 (15)0.0290 (19)0.0008 (12)0.0009 (14)0.0011 (14)
O2W0.134 (8)0.130 (8)0.047 (5)0.075 (6)0.0000.000
Geometric parameters (Å, º) top
Zn1—O31.990 (3)C8—C91.387 (7)
Zn1—O1W2.012 (3)C8—C131.407 (6)
Zn1—O22.032 (3)C9—C101.393 (6)
Zn1—N12.069 (4)C9—H9A0.93
Zn1—N22.101 (4)C10—C111.381 (7)
Zn1—H1W12.13 (5)C10—H10A0.93
Zn2—O4i1.973 (3)C11—C121.379 (7)
Zn2—O1ii1.981 (3)C11—H11A0.93
Zn2—O12.000 (3)C12—C131.393 (6)
Zn2—O3i2.152 (3)C12—H12A0.93
Zn2—O22.191 (3)C14—C151.439 (6)
O1—C21.359 (5)C14—H14A0.93
O1—Zn2i1.981 (3)C15—C201.403 (6)
O2—C11.323 (5)C15—C161.426 (6)
O3—C201.339 (5)C16—C171.353 (7)
O3—Zn2ii2.152 (3)C16—H16A0.93
O4—C191.336 (5)C17—C181.396 (6)
O4—Zn2ii1.973 (3)C17—H17A0.93
N1—C71.291 (5)C18—C191.374 (6)
N1—C81.423 (5)C18—H18A0.93
N2—C141.277 (5)C19—C201.439 (6)
N2—C131.412 (6)S1—O51.525 (4)
C1—C61.421 (6)S1—C211.775 (6)
C1—C21.425 (5)S1—C221.787 (6)
C2—C31.384 (6)C21—H21A0.96
C3—C41.402 (6)C21—H21B0.96
C3—H3A0.93C21—H21C0.96
C4—C51.356 (6)C22—H22A0.96
C4—H4A0.93C22—H22B0.96
C5—C61.402 (6)C22—H22C0.96
C5—H5A0.93O1W—H1W10.837 (19)
C6—C71.436 (6)O1W—H2W10.833 (19)
C7—H7A0.93O2W—H1W20.846 (14)
O3—Zn1—O1W108.50 (13)N1—C7—H7A116.9
O3—Zn1—O291.31 (11)C6—C7—H7A116.9
O1W—Zn1—O2101.24 (12)C9—C8—C13120.2 (4)
O3—Zn1—N1143.11 (13)C9—C8—N1124.8 (4)
O1W—Zn1—N1107.36 (14)C13—C8—N1114.9 (4)
O2—Zn1—N190.00 (12)C8—C9—C10119.5 (4)
O3—Zn1—N291.11 (13)C8—C9—H9A120.3
O1W—Zn1—N295.28 (13)C10—C9—H9A120.3
O2—Zn1—N2161.59 (13)C11—C10—C9120.6 (5)
N1—Zn1—N277.25 (14)C11—C10—H10A119.7
O3—Zn1—H1W1111.9 (13)C9—C10—H10A119.7
O1W—Zn1—H1W123.1 (7)C12—C11—C10120.1 (4)
O2—Zn1—H1W178.4 (6)C12—C11—H11A120.0
N1—Zn1—H1W1104.5 (13)C10—C11—H11A120.0
N2—Zn1—H1W1117.4 (6)C11—C12—C13120.6 (4)
O4i—Zn2—O1ii117.28 (13)C11—C12—H12A119.7
O4i—Zn2—O1128.45 (13)C13—C12—H12A119.7
O1ii—Zn2—O1110.27 (16)C12—C13—C8119.1 (4)
O4i—Zn2—O3i78.59 (12)C12—C13—N2126.0 (4)
O1ii—Zn2—O3i112.98 (12)C8—C13—N2114.9 (4)
O1—Zn2—O3i100.78 (11)N2—C14—C15124.8 (4)
O4i—Zn2—O280.99 (12)N2—C14—H14A117.6
O1ii—Zn2—O292.30 (11)C15—C14—H14A117.6
O1—Zn2—O278.31 (11)C20—C15—C16119.2 (4)
O3i—Zn2—O2152.81 (11)C20—C15—C14125.7 (4)
C2—O1—Zn2i124.8 (2)C16—C15—C14114.8 (4)
C2—O1—Zn2111.7 (2)C17—C16—C15121.7 (4)
Zn2i—O1—Zn2122.36 (15)C17—C16—H16A119.1
C1—O2—Zn1126.4 (3)C15—C16—H16A119.1
C1—O2—Zn2106.8 (2)C16—C17—C18120.0 (4)
Zn1—O2—Zn2122.72 (14)C16—C17—H17A120.0
C20—O3—Zn1125.4 (3)C18—C17—H17A120.0
C20—O3—Zn2ii111.3 (2)C19—C18—C17120.4 (4)
Zn1—O3—Zn2ii123.20 (13)C19—C18—H18A119.8
C19—O4—Zn2ii117.4 (3)C17—C18—H18A119.8
C7—N1—C8120.9 (4)O4—C19—C18122.7 (4)
C7—N1—Zn1124.9 (3)O4—C19—C20116.2 (4)
C8—N1—Zn1113.6 (3)C18—C19—C20121.1 (4)
C14—N2—C13121.7 (4)O3—C20—C15126.4 (4)
C14—N2—Zn1125.6 (3)O3—C20—C19115.9 (4)
C13—N2—Zn1112.3 (3)C15—C20—C19117.7 (4)
O2—C1—C6125.2 (4)O5—S1—C21107.4 (3)
O2—C1—C2116.8 (4)O5—S1—C22105.0 (2)
C6—C1—C2117.9 (4)C21—S1—C2296.9 (3)
O1—C2—C3122.7 (4)S1—C21—H21A109.5
O1—C2—C1117.5 (3)S1—C21—H21B109.5
C3—C2—C1119.8 (4)H21A—C21—H21B109.5
C2—C3—C4121.3 (4)S1—C21—H21C109.5
C2—C3—H3A119.4H21A—C21—H21C109.5
C4—C3—H3A119.4H21B—C21—H21C109.5
C5—C4—C3119.3 (4)S1—C22—H22A109.5
C5—C4—H4A120.3S1—C22—H22B109.5
C3—C4—H4A120.3H22A—C22—H22B109.5
C4—C5—C6121.7 (4)S1—C22—H22C109.5
C4—C5—H5A119.2H22A—C22—H22C109.5
C6—C5—H5A119.2H22B—C22—H22C109.5
C5—C6—C1119.7 (4)Zn1—O1W—H1W187 (4)
C5—C6—C7115.7 (4)Zn1—O1W—H2W1114 (4)
C1—C6—C7124.5 (4)H1W1—O1W—H2W1109 (3)
N1—C7—C6126.3 (4)
O4i—Zn2—O1—C244.4 (3)C6—C1—C2—C35.4 (6)
O1ii—Zn2—O1—C2112.0 (3)O1—C2—C3—C4177.4 (4)
O3i—Zn2—O1—C2128.4 (2)C1—C2—C3—C40.9 (6)
O2—Zn2—O1—C223.9 (2)C2—C3—C4—C53.0 (7)
O4i—Zn2—O1—Zn2i147.45 (15)C3—C4—C5—C62.3 (7)
O1ii—Zn2—O1—Zn2i56.06 (14)C4—C5—C6—C12.4 (7)
O3i—Zn2—O1—Zn2i63.54 (17)C4—C5—C6—C7174.0 (4)
O2—Zn2—O1—Zn2i144.18 (17)O2—C1—C6—C5177.2 (4)
O3—Zn1—O2—C1130.5 (3)C2—C1—C6—C56.2 (6)
O1W—Zn1—O2—C1120.3 (3)O2—C1—C6—C76.7 (7)
N1—Zn1—O2—C112.6 (3)C2—C1—C6—C7169.9 (4)
N2—Zn1—O2—C133.0 (6)C8—N1—C7—C6176.2 (4)
O3—Zn1—O2—Zn275.11 (16)Zn1—N1—C7—C613.8 (6)
O1W—Zn1—O2—Zn234.05 (18)C5—C6—C7—N1177.3 (4)
N1—Zn1—O2—Zn2141.76 (17)C1—C6—C7—N11.1 (7)
N2—Zn1—O2—Zn2172.6 (3)C7—N1—C8—C928.3 (7)
O4i—Zn2—O2—C1107.0 (3)Zn1—N1—C8—C9160.6 (4)
O1ii—Zn2—O2—C1135.8 (2)C7—N1—C8—C13154.6 (4)
O1—Zn2—O2—C125.5 (2)Zn1—N1—C8—C1316.5 (5)
O3i—Zn2—O2—C165.3 (3)C13—C8—C9—C101.9 (7)
O4i—Zn2—O2—Zn151.73 (17)N1—C8—C9—C10179.0 (4)
O1ii—Zn2—O2—Zn165.53 (16)C8—C9—C10—C111.6 (8)
O1—Zn2—O2—Zn1175.75 (18)C9—C10—C11—C120.2 (8)
O3i—Zn2—O2—Zn193.4 (3)C10—C11—C12—C131.8 (7)
O1W—Zn1—O3—C2087.5 (3)C11—C12—C13—C81.5 (7)
O2—Zn1—O3—C20170.2 (3)C11—C12—C13—N2177.0 (4)
N1—Zn1—O3—C2078.4 (4)C9—C8—C13—C120.4 (7)
N2—Zn1—O3—C208.4 (3)N1—C8—C13—C12177.7 (4)
O1W—Zn1—O3—Zn2ii95.24 (18)C9—C8—C13—N2179.0 (4)
O2—Zn1—O3—Zn2ii7.07 (17)N1—C8—C13—N23.7 (6)
N1—Zn1—O3—Zn2ii98.8 (2)C14—N2—C13—C1226.1 (7)
N2—Zn1—O3—Zn2ii168.82 (18)Zn1—N2—C13—C12159.8 (4)
O3—Zn1—N1—C774.8 (4)C14—N2—C13—C8152.4 (4)
O1W—Zn1—N1—C7119.1 (3)Zn1—N2—C13—C821.7 (5)
O2—Zn1—N1—C717.3 (4)C13—N2—C14—C15174.5 (4)
N2—Zn1—N1—C7149.3 (4)Zn1—N2—C14—C151.3 (7)
O3—Zn1—N1—C895.8 (3)N2—C14—C15—C209.3 (8)
O1W—Zn1—N1—C870.2 (3)N2—C14—C15—C16177.2 (4)
O2—Zn1—N1—C8172.0 (3)C20—C15—C16—C170.7 (7)
N2—Zn1—N1—C821.4 (3)C14—C15—C16—C17174.7 (4)
O3—Zn1—N2—C145.9 (4)C15—C16—C17—C181.4 (7)
O1W—Zn1—N2—C14102.8 (4)C16—C17—C18—C190.6 (7)
O2—Zn1—N2—C14103.4 (5)Zn2ii—O4—C19—C18174.6 (3)
N1—Zn1—N2—C14150.6 (4)Zn2ii—O4—C19—C205.1 (5)
O3—Zn1—N2—C13167.9 (3)C17—C18—C19—O4178.9 (4)
O1W—Zn1—N2—C1383.4 (3)C17—C18—C19—C200.9 (7)
O2—Zn1—N2—C1370.4 (5)Zn1—O3—C20—C154.3 (6)
N1—Zn1—N2—C1323.2 (3)Zn2ii—O3—C20—C15173.3 (3)
Zn1—O2—C1—C63.8 (6)Zn1—O3—C20—C19176.8 (3)
Zn2—O2—C1—C6153.8 (3)Zn2ii—O3—C20—C195.7 (4)
Zn1—O2—C1—C2179.5 (3)C16—C15—C20—O3179.7 (4)
Zn2—O2—C1—C222.8 (4)C14—C15—C20—O36.4 (7)
Zn2i—O1—C2—C333.8 (5)C16—C15—C20—C190.7 (6)
Zn2—O1—C2—C3158.5 (3)C14—C15—C20—C19172.5 (4)
Zn2i—O1—C2—C1147.9 (3)O4—C19—C20—O30.8 (6)
Zn2—O1—C2—C119.8 (4)C18—C19—C20—O3179.4 (4)
O2—C1—C2—O14.0 (5)O4—C19—C20—C15178.2 (4)
C6—C1—C2—O1173.0 (3)C18—C19—C20—C151.5 (6)
O2—C1—C2—C3177.7 (4)
Symmetry codes: (i) y, x+1/2, z+1/2; (ii) y+1/2, x, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O4i0.84 (4)1.72 (4)2.535 (4)164 (5)
O2W—H1W2···O50.85 (8)2.28 (9)3.032 (4)147 (4)
O1W—H2W1···O50.83 (4)1.95 (4)2.772 (5)174 (4)
C3—H3A···O3iii0.932.573.271 (5)132
C21—H21C···O4iv0.962.523.454 (7)165
C21—H21B···Cg1v0.962.813.475 (6)127
Symmetry codes: (i) y, x+1/2, z+1/2; (iii) x+1/2, y+1/2, z; (iv) y+1, x+1/2, z1/2; (v) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Zn8(C20H12N2O4)4(H2O)4]·4C2H6OS·2H2O
Mr2321.03
Crystal system, space groupTetragonal, P42/n
Temperature (K)100
a, c (Å)18.1324 (3), 13.3813 (3)
V3)4399.56 (14)
Z2
Radiation typeMo Kα
µ (mm1)2.32
Crystal size (mm)0.57 × 0.13 × 0.10
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.352, 0.796
No. of measured, independent and
observed [I > 2σ(I)] reflections
26700, 5851, 3700
Rint0.085
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.138, 1.02
No. of reflections5851
No. of parameters314
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.67, 1.34

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O4i0.84 (4)1.72 (4)2.535 (4)164 (5)
O2W—H1W2···O50.85 (8)2.28 (9)3.032 (4)147 (4)
O1W—H2W1···O50.83 (4)1.95 (4)2.772 (5)174 (4)
C3—H3A···O3ii0.932.573.271 (5)132
C21—H21C···O4iii0.962.523.454 (7)165
C21—H21B···Cg1iv0.962.813.475 (6)127
Symmetry codes: (i) y, x+1/2, z+1/2; (ii) x+1/2, y+1/2, z; (iii) y+1, x+1/2, z1/2; (iv) x+1, y+1, z.
 

Footnotes

On study leave from International University of Africa, Sudan. E-mail: nasertaha90@hotmail.com.

§Additional correspondence author; e-mail: suchada.c@psu.ac.th.

Acknowledgements

The authors thank the Malaysian Government, the Ministry of Science, Technology and Innovation, Malaysia (MOSTI) and Universiti Sains Malaysia for the E-Science Fund research grant (PKIMIA/613308) and facilities. The International University of Africa (Sudan) is acknowledged for providing study leave to NEE. SC thanks Prince of Songkla University for generous support. The authors also thank Universiti Sains Malaysia for the Research University Golden Goose Grant No. 1001/PFIZIK/811012.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBasak, S., Sen, S., Banerjee, S., Mitra, S., Rosair, G. & Garland Rodriguez, M. T. (2007). Polyhedron, 26, 5104–5112.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCollinson, S. R. & Fenton, D. E. (1996). Coord. Chem. Rev. 148, 19–40.  CrossRef CAS Web of Science Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Ibrahim, K. (2007a). Acta Cryst. E63, m1633–m1634.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Ibrahim, K. (2007b). Acta Cryst. E63, m1672–m1673.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Ibrahim, K. (2007c). Acta Cryst. E63, m2024–m2025.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPal, S., Barik, A. K., Gupta, S., Hazra, A., Kar, S. K., Peng, S.-M., Lee, G.-H., Butcher, R. J., El Fallah, M. S. & Ribas, J. (2005). Inorg. Chem. 44, 3880–3889.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTarafder, M. T. H., Chew, K.-B., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2002). Polyhedron, 21, 2683–2690.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages m912-m913
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds