organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Pyrazine­diium bis­­(3-carb­­oxy-4-hy­droxy­benzene­sulfonate) dihydrate

aCollege of Chemical Engineering, Ningbo University of Technology, Ningbo, Zhejiang 315016, People's Republic of China, and bHunan Jiuzhitang Co. Ltd, Changsha, Hunan 410008, People's Republic of China
*Correspondence e-mail: jr_wang@126.com

(Received 17 May 2008; accepted 12 June 2008; online 19 June 2008)

Pyrazine and 5-sulfosalicylic acid crystallize from a methanol solution containing water as the title salt, C4H6N22+·2C7H5O6S·2H2O. The pyrazine­diium cation sits on an inversion center. The component ions and water mol­ecules are linked by inter­molecular O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds into layers running parallel to the (10[\overline{2}]) plane.

Related literature

For related literature, see: Smith et al. (2004[Smith, G., Wermuth, U. D. & White, J. M. (2004). Acta Cryst. C60, o575-o581.], 2005[Smith, G., Wermuth, U. D. & Healy, P. C. (2005). Acta Cryst. C61, o555-o558.]); Meng et al. (2008[Meng, X.-G., Xiao, Y.-L., Wang, Z.-L. & Liu, C.-L. (2008). Acta Cryst. C64, o53-o57.]).

[Scheme 1]

Experimental

Crystal data
  • C4H6N22+·2C7H5O6S·2H2O

  • Mr = 552.48

  • Triclinic, [P \overline 1]

  • a = 6.7887 (5) Å

  • b = 6.9256 (6) Å

  • c = 13.0349 (10) Å

  • α = 100.663 (7)°

  • β = 97.761 (9)°

  • γ = 107.735 (9)°

  • V = 561.52 (9) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 298 (2) K

  • 0.20 × 0.10 × 0.08 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.929, Tmax = 0.975

  • 5286 measured reflections

  • 2412 independent reflections

  • 1977 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.131

  • S = 1.08

  • 2412 reflections

  • 178 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O6 0.93 2.40 3.273 (3) 156
C9—H9⋯O6i 0.93 2.41 3.240 (3) 149
C6—H6⋯O1ii 0.93 2.49 3.249 (2) 139
N1—H1B⋯O7 0.87 (3) 1.71 (3) 2.580 (3) 176 (3)
O7—H7A⋯O5 0.83 (3) 1.84 (3) 2.659 (2) 171 (3)
O7—H7B⋯O4i 0.83 (3) 1.81 (3) 2.631 (3) 172 (3)
O3—H3A⋯O2 0.83 (3) 1.92 (3) 2.625 (2) 143 (3)
O1—H1A⋯O5ii 0.82 (3) 1.92 (3) 2.719 (2) 163 (3)
Symmetry codes: (i) x, y-1, z; (ii) -x, -y+1, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART; data reduction: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

5-sulfosalicylic acid is strong organic acid (pKa = 2.85) which can release its sulfonic acid H to Lewis base N atoms, forming 1:1 molecular adducts in general (Smith et al., 2004 and 2005). In order to gain more insight into these analogues, we have recently prepared an organic salt containing 5-H2SSA, whose crystal structure is reported here.

There are a half of a pyrazinediium cation, one each a 5-HSSA- anion and a water molecule in the asymmetric unit. Similarly to analogous organic adducts reported by others (Meng et al., 2008), the H atom is transferred from the sulfonic acid group to the pyrazine N atoms (Fig.1). Except for this, the other bond lengths and angles are usual.

By a combination of seven intermolecular hydrogen bonds (Table 1), these components are linked into a two-dimensional layers (Fig.2) running parallel to the (102) plane in the crystal.

Program PLATON (Spek, 2003) reports two distances indicating possible aromatic π-π stacking interactions between symmetry-center related benzene rings comprising atoms C1 to C6 in this crystal. Centroid distances between the closest symmetry-related benzene rings are 3.848 (2) and 4.239 (2) Å, respectively (symmetry codes: 1-x,1 -y, 1-z for the former one and 1-x, 2-y, 1-z for the latter one).

Related literature top

For related literature, see: Smith et al. (2004, 2005); Meng et al. (2008).

Experimental top

All the reagents and solvents were used as obtained without further purification. Equimolar amount of pyrazine (0.2 mmol, 16.0 mg) and 5-sulfosalicylic acid dihydrate (0.2 mmol, 50.8 g) were dissolved in 95% methanol (10 ml). The mixture was stirred for ten minutes at ambient temperature and then filtered. The resulting colorless solution was kept in air for two weeks. Plate shaped colorless crystals suitable for single-crystal X-ray diffraction analysis were grown by slow evaporation of the solvent.

Refinement top

H atoms bonded to C atoms were positioned geometrically with C–H = 0.93Å (aromatic) and refined in a riding mode [Uiso(H) = 1.2Ueq(aromatic C)]. H atoms bonded to N and O atoms were found in difference Fourier maps with N—H and O—H distances being refined freely [the refined distances are given in Table 1; Uiso(H)= 1.2Ueq(N) or 1.5Ueq(O)].

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SMART (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title salt showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H-bonds are shown in dashed lines. Symmetry code: (A) 2 - x, 1 - y, 2 - z.
[Figure 2] Fig. 2. Excerpt from the crystal structure showing the formation of the two-dimensional layers running parallel to the [102] direction. Hydrogen bonds are shown as dashed lines. For the sake of clarity, H atoms not involved in the motif have been omitted from the drawing.
Pyrazinediium bis(3-carboxy-4-hydroxybenzenesulfonate) dihydrate top
Crystal data top
C4H6N22+·2C7H5O6S·2H2OZ = 1
Mr = 552.48F(000) = 286
Triclinic, P1Dx = 1.634 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.7887 (5) ÅCell parameters from 2269 reflections
b = 6.9256 (6) Åθ = 1.6–25.2°
c = 13.0349 (10) ŵ = 0.32 mm1
α = 100.663 (7)°T = 298 K
β = 97.761 (9)°Plate, colourless
γ = 107.735 (9)°0.20 × 0.10 × 0.08 mm
V = 561.52 (9) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2412 independent reflections
Radiation source: fine focus sealed Siemens Mo tube1977 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
0.3° wide ω exposures scansθmax = 27.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 88
Tmin = 0.929, Tmax = 0.975k = 58
5286 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0732P)2 + 0.0236P]
where P = (Fo2 + 2Fc2)/3
2412 reflections(Δ/σ)max = 0.001
178 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
C4H6N22+·2C7H5O6S·2H2Oγ = 107.735 (9)°
Mr = 552.48V = 561.52 (9) Å3
Triclinic, P1Z = 1
a = 6.7887 (5) ÅMo Kα radiation
b = 6.9256 (6) ŵ = 0.32 mm1
c = 13.0349 (10) ÅT = 298 K
α = 100.663 (7)°0.20 × 0.10 × 0.08 mm
β = 97.761 (9)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2412 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
1977 reflections with I > 2σ(I)
Tmin = 0.929, Tmax = 0.975Rint = 0.064
5286 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.32 e Å3
2412 reflectionsΔρmin = 0.51 e Å3
178 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4240 (3)0.7285 (3)0.48381 (14)0.0311 (4)
C20.6433 (3)0.7939 (3)0.48820 (17)0.0361 (5)
C30.7816 (3)0.8439 (3)0.58633 (18)0.0439 (5)
H30.92650.88510.58950.053*
C40.7052 (3)0.8328 (3)0.67817 (17)0.0425 (5)
H40.79850.86710.74320.051*
C50.4881 (3)0.7704 (3)0.67421 (15)0.0338 (4)
C60.3486 (3)0.7183 (3)0.57800 (14)0.0323 (4)
H60.20400.67620.57580.039*
C70.2761 (3)0.6708 (3)0.38006 (15)0.0362 (5)
C80.9086 (4)0.6243 (4)0.96127 (19)0.0543 (6)
H80.84590.71190.93460.065*
C90.8819 (4)0.3018 (4)0.99291 (18)0.0511 (6)
H90.80120.16410.98840.061*
N10.7935 (3)0.4275 (3)0.95466 (13)0.0466 (5)
H1B0.658 (4)0.377 (4)0.928 (2)0.056*
O10.0776 (2)0.6158 (3)0.38832 (11)0.0484 (4)
H1A0.005 (5)0.578 (5)0.331 (2)0.073*
O20.3328 (3)0.6740 (3)0.29528 (11)0.0531 (4)
O30.7255 (3)0.8128 (3)0.40112 (14)0.0523 (4)
H3A0.633 (5)0.788 (5)0.348 (3)0.078*
O40.2517 (3)0.8910 (3)0.79365 (12)0.0535 (4)
O50.2546 (2)0.5428 (2)0.78053 (11)0.0467 (4)
O60.5615 (3)0.8329 (3)0.88036 (11)0.0522 (4)
O70.3909 (3)0.2940 (3)0.88232 (12)0.0475 (4)
H7A0.346 (5)0.362 (5)0.844 (2)0.071*
H7B0.340 (5)0.169 (5)0.849 (2)0.071*
S10.38501 (8)0.76139 (8)0.79128 (3)0.0378 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0308 (9)0.0259 (10)0.0391 (9)0.0108 (8)0.0074 (8)0.0115 (8)
C20.0321 (10)0.0272 (10)0.0533 (11)0.0111 (8)0.0152 (8)0.0130 (9)
C30.0247 (10)0.0414 (12)0.0655 (13)0.0105 (9)0.0075 (9)0.0150 (10)
C40.0325 (10)0.0412 (12)0.0495 (11)0.0106 (9)0.0022 (9)0.0113 (9)
C50.0319 (10)0.0293 (10)0.0391 (9)0.0103 (8)0.0030 (8)0.0090 (8)
C60.0265 (9)0.0316 (11)0.0391 (9)0.0101 (8)0.0044 (7)0.0103 (8)
C70.0369 (11)0.0349 (11)0.0396 (10)0.0125 (9)0.0085 (8)0.0145 (8)
C80.0648 (16)0.0550 (16)0.0518 (13)0.0315 (13)0.0084 (11)0.0173 (11)
C90.0617 (15)0.0454 (14)0.0481 (12)0.0214 (12)0.0105 (11)0.0113 (10)
N10.0443 (10)0.0565 (13)0.0383 (9)0.0203 (10)0.0045 (8)0.0073 (9)
O10.0322 (8)0.0695 (12)0.0376 (7)0.0083 (8)0.0005 (6)0.0184 (7)
O20.0521 (9)0.0701 (12)0.0390 (8)0.0189 (9)0.0136 (7)0.0176 (7)
O30.0404 (9)0.0604 (11)0.0606 (10)0.0151 (8)0.0235 (7)0.0190 (8)
O40.0572 (10)0.0634 (11)0.0488 (8)0.0343 (9)0.0092 (7)0.0126 (7)
O50.0447 (9)0.0477 (10)0.0400 (7)0.0053 (7)0.0014 (6)0.0148 (7)
O60.0515 (9)0.0557 (10)0.0383 (7)0.0133 (8)0.0093 (7)0.0064 (7)
O70.0571 (10)0.0444 (10)0.0467 (8)0.0238 (8)0.0082 (7)0.0152 (7)
S10.0369 (3)0.0405 (3)0.0328 (3)0.0128 (2)0.0006 (2)0.0074 (2)
Geometric parameters (Å, º) top
C1—C61.398 (3)C8—N11.329 (3)
C1—C21.408 (3)C8—C9i1.363 (4)
C1—C71.478 (2)C8—H80.9300
C2—O31.341 (3)C9—N11.329 (3)
C2—C31.397 (3)C9—C8i1.363 (4)
C3—C41.373 (3)C9—H90.9300
C3—H30.9300N1—H1B0.87 (3)
C4—C51.395 (3)O1—H1A0.82 (3)
C4—H40.9300O3—H3A0.83 (3)
C5—C61.380 (2)O4—S11.4556 (17)
C5—S11.766 (2)O5—S11.4721 (15)
C6—H60.9300O6—S11.4421 (14)
C7—O21.220 (2)O7—H7A0.83 (3)
C7—O11.310 (2)O7—H7B0.83 (3)
C6—C1—C2119.40 (17)O1—C7—C1113.11 (16)
C6—C1—C7120.76 (17)N1—C8—C9i120.2 (2)
C2—C1—C7119.84 (17)N1—C8—H8119.9
O3—C2—C3118.37 (18)C9i—C8—H8119.9
O3—C2—C1122.21 (19)N1—C9—C8i119.6 (2)
C3—C2—C1119.41 (18)N1—C9—H9120.2
C4—C3—C2120.51 (19)C8i—C9—H9120.2
C4—C3—H3119.7C8—N1—C9120.2 (2)
C2—C3—H3119.7C8—N1—H1B122.3 (17)
C3—C4—C5120.19 (19)C9—N1—H1B117.4 (18)
C3—C4—H4119.9C7—O1—H1A113 (2)
C5—C4—H4119.9C2—O3—H3A111 (2)
C6—C5—C4120.25 (18)H7A—O7—H7B107 (3)
C6—C5—S1118.43 (15)O6—S1—O4114.02 (10)
C4—C5—S1121.30 (15)O6—S1—O5111.78 (9)
C5—C6—C1120.23 (17)O4—S1—O5109.60 (10)
C5—C6—H6119.9O6—S1—C5107.54 (10)
C1—C6—H6119.9O4—S1—C5106.61 (9)
O2—C7—O1123.31 (18)O5—S1—C5106.90 (9)
O2—C7—C1123.58 (18)
C6—C1—C2—O3177.99 (18)C6—C1—C7—O2179.0 (2)
C7—C1—C2—O32.2 (3)C2—C1—C7—O20.8 (3)
C6—C1—C2—C31.1 (3)C6—C1—C7—O11.0 (3)
C7—C1—C2—C3178.71 (18)C2—C1—C7—O1179.17 (18)
O3—C2—C3—C4178.12 (19)C9i—C8—N1—C90.2 (4)
C1—C2—C3—C41.0 (3)C8i—C9—N1—C80.2 (4)
C2—C3—C4—C50.3 (3)C6—C5—S1—O6176.94 (15)
C3—C4—C5—C60.3 (3)C4—C5—S1—O61.7 (2)
C3—C4—C5—S1178.24 (16)C6—C5—S1—O454.28 (18)
C4—C5—C6—C10.2 (3)C4—C5—S1—O4124.33 (19)
S1—C5—C6—C1178.39 (14)C6—C5—S1—O562.88 (17)
C2—C1—C6—C50.5 (3)C4—C5—S1—O5118.51 (18)
C7—C1—C6—C5179.32 (17)
Symmetry code: (i) x+2, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O60.932.403.273 (3)156
C9—H9···O6ii0.932.413.240 (3)149
C6—H6···O1iii0.932.493.249 (2)139
N1—H1B···O70.87 (3)1.71 (3)2.580 (3)176 (3)
O7—H7A···O50.83 (3)1.84 (3)2.659 (2)171 (3)
O7—H7B···O4ii0.83 (3)1.81 (3)2.631 (3)172 (3)
O3—H3A···O20.83 (3)1.92 (3)2.625 (2)143 (3)
O1—H1A···O5iii0.82 (3)1.92 (3)2.719 (2)163 (3)
Symmetry codes: (ii) x, y1, z; (iii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC4H6N22+·2C7H5O6S·2H2O
Mr552.48
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)6.7887 (5), 6.9256 (6), 13.0349 (10)
α, β, γ (°)100.663 (7), 97.761 (9), 107.735 (9)
V3)561.52 (9)
Z1
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.20 × 0.10 × 0.08
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.929, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
5286, 2412, 1977
Rint0.064
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.131, 1.08
No. of reflections2412
No. of parameters178
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.51

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O60.932.403.273 (3)156
C9—H9···O6i0.932.413.240 (3)149
C6—H6···O1ii0.932.493.249 (2)139
N1—H1B···O70.87 (3)1.71 (3)2.580 (3)176 (3)
O7—H7A···O50.83 (3)1.84 (3)2.659 (2)171 (3)
O7—H7B···O4i0.83 (3)1.81 (3)2.631 (3)172 (3)
O3—H3A···O20.83 (3)1.92 (3)2.625 (2)143 (3)
O1—H1A···O5ii0.82 (3)1.92 (3)2.719 (2)163 (3)
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z+1.
 

Acknowledgements

The authors thank the Ningbo Natural Science Fund (No. 2006 A610075) for financial support of this work.

References

First citationBruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMeng, X.-G., Xiao, Y.-L., Wang, Z.-L. & Liu, C.-L. (2008). Acta Cryst. C64, o53–o57.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D. & Healy, P. C. (2005). Acta Cryst. C61, o555–o558.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D. & White, J. M. (2004). Acta Cryst. C60, o575–o581.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds