organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(2-Hy­droxy­benzyl­­idene­amino)­benzo­nitrile

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: xuhj@seu.edu.cn

(Received 26 April 2008; accepted 24 May 2008; online 7 June 2008)

The mol­ecule of the title compound, C14H10N2O, is nearly planar. There is a strong intra­molecular O—H⋯N hydrogen bond between the imine and hydr­oxy groups. The configuration with respect to the C=N double bond is anti (1E).

Related literature

For related literature, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpenn, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]); Chen et al. (2008[Chen, Z. H., Morimoto, H., Matsunaga, S. & Shibasaki, M. (2008). J. Am. Chem. Soc. 130, 2170-2171.]); Cheng et al. (2005[Cheng, K., You, Z.-L., Li, Y.-G. & Zhu, H.-L. (2005). Acta Cryst. E61, o1137-o1138.], 2006[Cheng, K., Zhu, H.-L., Li, Z.-B. & Yan, Z. (2006). Acta Cryst. E62, o2417-o2418.]); Elmah et al. (1999[Elmah, A., Kabak, M. & Elerman, Y. (1999). J. Mol. Struct. 484, 229-234.]); May et al. (2004[May, J. P., Ting, R., Lermer, L., Thomas, J. M., Roupioz, Y. & Perrin, D. M. (2004). J. Am. Chem. Soc. 126, 4145-4156.]); Weber et al. (2007[Weber, B., Tandon, R. & Himsl, D. (2007). Z. Anorg. Allg. Chem. 633, 1159-1162.]); Xu et al. (2008[Xu, H.-J., Gong, X.-X. & Wang, H. (2008). Acta Cryst. E64, o638.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10N2O

  • Mr = 222.24

  • Monoclinic, C 2/c

  • a = 28.071 (6) Å

  • b = 5.8471 (12) Å

  • c = 14.687 (3) Å

  • β = 109.91 (3)°

  • V = 2266.6 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 (2) K

  • 0.12 × 0.11 × 0.03 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.915, Tmax = 1.00 (expected range = 0.913–0.997)

  • 9782 measured reflections

  • 2223 independent reflections

  • 971 reflections with I > 2σ(I)

  • Rint = 0.132

Refinement
  • R[F2 > 2σ(F2)] = 0.077

  • wR(F2) = 0.176

  • S = 0.97

  • 2223 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1B⋯N1 0.82 1.88 2.609 (4) 147

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The Schiff base compounds have received considerable attention for several decades, primarily due to their importance in the development of coordination chemistry related to magnetism (Weber et al., 2007), catalysis (Chen et al., 2008) and biological process (May et al.,2004). Recently, we have reported a Schiff base compound (Xu et al., 2008). As an extention of our work on the structural characterization of Schiff base compounds, the title compound has been synthesized.

The molecule of the title compound is nearly planar, the two aromatic rings are only twisted by a dihedral angle 3.28 (18) ° (Fig. 1), As expected, the molecule displays a trans configuration about the central C7=N1 imine double bond. Bond lengths and bond angles in the compound are within normal ranges (Allen et al., 1987). The C7=N1 bond length of 1.280 (4) Å indicates a high degree of double-bond character comparable with the corresponding bond lengths in other Schiff bases (1.280 (2) Å; Elmah et al., 1999).

A strong O–H···N intramolecular hydrogen-bond interaction is observed in the molecular structure (Table 1 ) as also found in previous reports (Xu et al., 2008; Cheng et al., 2006, 2005).

Related literature top

For related literature, see: Allen et al. (1987); Chen et al. (2008); Cheng et al. (2005, 2006); Elmah et al. (1999); May et al. (2004); Weber et al. (2007); Xu et al. (2008).

Experimental top

All chemicals were obtained from commercial sources and used without further purification except for salicylaldehyde which is distilled under reduced pressure before use. 4-aminobenzonitrile (1.18 g, 10 mmol) and salicylaldehyde (1.22 g, 10 mmol) were dissolved in ethanol (20 ml). The mixture was heated to reflux for 4 h, then cooled to room temperature overnight then large amounts of a yellow precipitate were formed. Yellow crystals were obtained by recrystallization from ethyl alcohol(yield: 81%). 1H-NMR(CDCl3, 300 MHz): δ6.98 (t, 1 H), 7.04 (d, 1 H), 7.34(d, 2 H), 7.43 (t, 2 H), 7.72 (d, 2H), 8.61 (s, 1 H). 13C-NMR (CDCl3)δ110.1, 117.4, 118.6, 118.7, 119.4, 122.1, 132.8, 133.5, 134.3, 152.4, 161.2, 165.0. Esi-MS: calcd for C14H9N2O – H m/z 221.24, found 221.34. Suitable single crystals of the title compound were obtained after one week by slow evaporation from an ethyl alcohol solution.

Refinement top

All H atoms attached to C atoms and O atom were fixed geometrically and treated as riding with C—H = 0.93 °H (C) and O-H= 0.82 (1)Å with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
4-(2-Hydroxybenzylideneamino)benzonitrile top
Crystal data top
C14H10N2OF(000) = 928
Mr = 222.24Dx = 1.303 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 7031 reflections
a = 28.071 (6) Åθ = 3.1–29.0°
b = 5.8471 (12) ŵ = 0.08 mm1
c = 14.687 (3) ÅT = 293 K
β = 109.91 (3)°Block, yellow
V = 2266.6 (9) Å30.12 × 0.11 × 0.03 mm
Z = 8
Data collection top
Rigaku Mercury2 (2x2 bin mode)
diffractometer
2223 independent reflections
Radiation source: fine-focus sealed tube971 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.132
Detector resolution: 13.6612 pixels mm-1θmax = 26.0°, θmin = 3.5°
ω scansh = 3434
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 77
Tmin = 0.915, Tmax = 1.00l = 1818
9782 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.077Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.176H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0584P)2]
where P = (Fo2 + 2Fc2)/3
2223 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C14H10N2OV = 2266.6 (9) Å3
Mr = 222.24Z = 8
Monoclinic, C2/cMo Kα radiation
a = 28.071 (6) ŵ = 0.08 mm1
b = 5.8471 (12) ÅT = 293 K
c = 14.687 (3) Å0.12 × 0.11 × 0.03 mm
β = 109.91 (3)°
Data collection top
Rigaku Mercury2 (2x2 bin mode)
diffractometer
2223 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
971 reflections with I > 2σ(I)
Tmin = 0.915, Tmax = 1.00Rint = 0.132
9782 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0770 restraints
wR(F2) = 0.176H-atom parameters constrained
S = 0.97Δρmax = 0.18 e Å3
2223 reflectionsΔρmin = 0.19 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C130.34671 (13)0.0317 (6)0.9348 (3)0.0487 (10)
H14A0.33620.09830.95920.058*
C70.22581 (13)0.3041 (6)0.8582 (2)0.0466 (10)
H13A0.23310.44710.83850.056*
N10.26153 (10)0.1571 (4)0.8889 (2)0.0443 (8)
C30.11223 (12)0.0032 (6)0.8792 (3)0.0504 (10)
H12A0.10380.13430.90170.061*
C100.37793 (13)0.4177 (6)0.8639 (3)0.0527 (11)
H11A0.38890.54920.84140.063*
C110.41195 (13)0.2453 (7)0.9055 (3)0.0479 (10)
C80.31195 (12)0.1997 (6)0.8920 (2)0.0396 (9)
C90.32765 (13)0.3953 (6)0.8557 (3)0.0485 (10)
H8A0.30450.50950.82620.058*
O10.19746 (9)0.1128 (4)0.92932 (18)0.0630 (8)
H1B0.22530.06770.93020.095*
C20.16187 (13)0.0481 (6)0.8873 (3)0.0439 (9)
C10.17471 (12)0.2547 (6)0.8532 (2)0.0384 (9)
C60.13639 (13)0.4125 (6)0.8116 (3)0.0497 (10)
H5A0.14440.55050.78880.060*
C140.46381 (14)0.2676 (6)0.9108 (3)0.0591 (12)
C120.39627 (13)0.0523 (6)0.9420 (3)0.0522 (10)
H3A0.41930.06250.97130.063*
C40.07550 (14)0.1627 (7)0.8377 (3)0.0545 (11)
H2A0.04220.13190.83230.065*
C50.08702 (14)0.3697 (7)0.8034 (3)0.0602 (12)
H1A0.06180.47690.77540.072*
N20.50503 (13)0.2785 (6)0.9144 (3)0.0899 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C130.052 (2)0.041 (2)0.055 (3)0.0006 (19)0.020 (2)0.0061 (19)
C70.058 (3)0.045 (2)0.038 (2)0.009 (2)0.0190 (19)0.0019 (18)
N10.0419 (17)0.0436 (18)0.048 (2)0.0016 (15)0.0161 (15)0.0017 (15)
C30.051 (2)0.051 (2)0.051 (3)0.007 (2)0.019 (2)0.003 (2)
C100.055 (2)0.052 (2)0.056 (3)0.011 (2)0.026 (2)0.001 (2)
C110.042 (2)0.055 (2)0.049 (2)0.005 (2)0.0189 (19)0.001 (2)
C80.038 (2)0.046 (2)0.036 (2)0.0043 (18)0.0143 (17)0.0006 (18)
C90.049 (2)0.046 (2)0.051 (3)0.0014 (19)0.0181 (19)0.0106 (19)
O10.0538 (17)0.0503 (16)0.087 (2)0.0003 (13)0.0273 (15)0.0197 (14)
C20.042 (2)0.045 (2)0.044 (2)0.0030 (19)0.0135 (19)0.0047 (18)
C10.038 (2)0.042 (2)0.035 (2)0.0046 (18)0.0124 (17)0.0021 (17)
C60.049 (2)0.050 (2)0.053 (3)0.001 (2)0.0212 (19)0.009 (2)
C140.045 (3)0.061 (3)0.070 (3)0.002 (2)0.017 (2)0.009 (2)
C120.044 (2)0.050 (2)0.062 (3)0.0027 (19)0.017 (2)0.005 (2)
C40.042 (2)0.069 (3)0.056 (3)0.003 (2)0.021 (2)0.003 (2)
C50.054 (3)0.065 (3)0.063 (3)0.014 (2)0.021 (2)0.010 (2)
N20.050 (2)0.097 (3)0.124 (4)0.002 (2)0.033 (2)0.029 (3)
Geometric parameters (Å, º) top
C13—C121.364 (4)C11—C141.437 (5)
C13—C81.376 (4)C8—C91.395 (4)
C13—H14A0.9300C9—H8A0.9300
C7—N11.280 (4)O1—C21.358 (4)
C7—C11.440 (4)O1—H1B0.8200
C7—H13A0.9300C2—C11.401 (4)
N1—C81.422 (4)C1—C61.391 (4)
C3—C41.370 (4)C6—C51.373 (4)
C3—C21.383 (4)C6—H5A0.9300
C3—H12A0.9300C14—N21.142 (4)
C10—C111.380 (5)C12—H3A0.9300
C10—C91.381 (4)C4—C51.391 (5)
C10—H11A0.9300C4—H2A0.9300
C11—C121.384 (4)C5—H1A0.9300
C12—C13—C8121.2 (3)C8—C9—H8A120.3
C12—C13—H14A119.4C2—O1—H1B109.5
C8—C13—H14A119.4O1—C2—C3118.1 (3)
N1—C7—C1122.0 (3)O1—C2—C1121.4 (3)
N1—C7—H13A119.0C3—C2—C1120.5 (3)
C1—C7—H13A119.0C6—C1—C2118.3 (3)
C7—N1—C8123.0 (3)C6—C1—C7119.8 (3)
C4—C3—C2119.5 (3)C2—C1—C7121.8 (3)
C4—C3—H12A120.2C5—C6—C1121.6 (3)
C2—C3—H12A120.2C5—C6—H5A119.2
C11—C10—C9120.1 (3)C1—C6—H5A119.2
C11—C10—H11A119.9N2—C14—C11178.0 (5)
C9—C10—H11A119.9C13—C12—C11119.5 (3)
C10—C11—C12120.2 (3)C13—C12—H3A120.3
C10—C11—C14119.5 (3)C11—C12—H3A120.3
C12—C11—C14120.2 (4)C3—C4—C5121.4 (3)
C13—C8—C9119.5 (3)C3—C4—H2A119.3
C13—C8—N1115.6 (3)C5—C4—H2A119.3
C9—C8—N1124.9 (3)C6—C5—C4118.6 (3)
C10—C9—C8119.4 (3)C6—C5—H1A120.7
C10—C9—H8A120.3C4—C5—H1A120.7
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···N10.821.882.609 (4)147

Experimental details

Crystal data
Chemical formulaC14H10N2O
Mr222.24
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)28.071 (6), 5.8471 (12), 14.687 (3)
β (°) 109.91 (3)
V3)2266.6 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.12 × 0.11 × 0.03
Data collection
DiffractometerRigaku Mercury2 (2x2 bin mode)
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.915, 1.00
No. of measured, independent and
observed [I > 2σ(I)] reflections
9782, 2223, 971
Rint0.132
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.077, 0.176, 0.97
No. of reflections2223
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.19

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···N10.821.882.609 (4)146.6
 

Acknowledgements

Hai-Jun Xu acknowledges a Start-up Grant from Southeast University, People's Republic of China.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpenn, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Google Scholar
First citationChen, Z. H., Morimoto, H., Matsunaga, S. & Shibasaki, M. (2008). J. Am. Chem. Soc. 130, 2170–2171.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCheng, K., You, Z.-L., Li, Y.-G. & Zhu, H.-L. (2005). Acta Cryst. E61, o1137–o1138.  Web of Science CrossRef IUCr Journals Google Scholar
First citationCheng, K., Zhu, H.-L., Li, Z.-B. & Yan, Z. (2006). Acta Cryst. E62, o2417–o2418.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationElmah, A., Kabak, M. & Elerman, Y. (1999). J. Mol. Struct. 484, 229–234.  Google Scholar
First citationMay, J. P., Ting, R., Lermer, L., Thomas, J. M., Roupioz, Y. & Perrin, D. M. (2004). J. Am. Chem. Soc. 126, 4145–4156.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWeber, B., Tandon, R. & Himsl, D. (2007). Z. Anorg. Allg. Chem. 633, 1159–1162.  Web of Science CSD CrossRef CAS Google Scholar
First citationXu, H.-J., Gong, X.-X. & Wang, H. (2008). Acta Cryst. E64, o638.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds