organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages o1306-o1307

4-Meth­­oxy-5-[4-(4-meth­­oxy-1,3-benzodioxol-5-yl)perhydro-1H,3H-furo[3,4-c]furan-1-yl]-1,3-benzodioxole

aDepartment of Pharmaceutics, Padmavathi College of Pharmacy, Dharmapuri 635 205, India, bDepartment of Chemistry, Urumu Dhanalakshmi College, Tiruchirappalli 620 019, India, and cDepartment of Chemistry, National Institute of Technology, Tiruchirappalli 620 015, India
*Correspondence e-mail: vembu57@yahoo.com

(Received 7 June 2008; accepted 15 June 2008; online 19 June 2008)

The 1,3-benzodioxole ring systems in the title compound, C22H22O8, are almost planar. The perhydro­furofuranyl system linking them adopts a distorted double-envelope conformation. Supra­molecular aggregation is effected by C—H⋯O, C—H⋯π and ππ [centroid–centroid distance of 3.755 Å, inter­planar distance of 3.633 Å and dihedral angle of 14.6°] inter­actions.

Related literature

For related literature, see: Fu et al. (2006[Fu, X.-S., Zhang, Y., Sun, J.-W. & Yu, X.-X. (2006). Acta Cryst. E62, o3135-o3136.]); Sonar et al. (2006[Sonar, V. N., Venkataraj, M., Parkin, S. & Crooks, P. A. (2006). Acta Cryst. E62, o5742-o5744.]); Hu et al. (2007[Hu, Z.-Q., Zheng, L., Li, C.-J. & Chang, J.-B. (2007). Acta Cryst. E63, o156-o157.]); Zhou et al. (2007[Zhou, Q.-L., Wang, C.-L. & Jing, Z.-L. (2007). Acta Cryst. E63, o898-o899.]); Liang (2004[Liang, Z.-P. (2004). Acta Cryst. E60, o339-o340.]); Wang et al. (2004[Wang, L.-W., Chen, T., Sun, H.-X., Xiong, Y., Zhou, C.-X. & Zhao, Y. (2004). Acta Cryst. E60, o513-o514.]); Zheng et al. (2005a[Zheng, L., Guo, B., Zheng, X., Chen, J. & Chang, J. (2005a). Acta Cryst. E61, o2508-o2509.],b[Zheng, L., Zhen, X. F., Zhang, D. & Chang, J. B. (2005b). Acta Cryst. E61, o3786-o3787.]); Hu et al. (2005[Hu, S. L., She, N.-F. & Wu, A.-X. (2005). Acta Cryst. E61, o3317-o3318.]); Qi et al. (2006[Qi, X.-X., Suo, J.-S., Wang, L.-M., Guo, X.-H. & Cheng, S.-X. (2006). Acta Cryst. E62, o1269-o1270.]); Hussain et al. (2006[Hussain, M., Ali, S., Altaf, M. & Stoeckli-Evans, H. (2006). Acta Cryst. E62, o5323-o5325.]); Yu et al. (2006[Yu, Z.-F., Li, J. & Zhao, Z.-M. (2006). Acta Cryst. E62, o5614-o5615.]); Zhang et al. (2007[Zhang, L., Wang, S.-Q. & Yu, X. (2007). Acta Cryst. E63, o2278-o2279.]); Betz et al. (2007[Betz, R., Klüfers, P. & Reichvilser, M. M. (2007). Acta Cryst. E63, o3769.]); Yin et al. (2007[Yin, Z.-G., Qian, H.-Y., Jie, H. & Yu-Li, F. (2007). Acta Cryst. E63, o4406.]); Beroza & Barthel (1957[Beroza, M. & Barthel, W. F. (1957). J. Agr. Food. Chem. 5, 855-859.]); Mitscher et al. (1979[Mitscher, A. L., Flynn, L. D., Gracey, E. H. & Drake, D. S. (1979). J. Med. Chem. 22, 1354-1357.]); Chien & Cheng (1970[Chien, P.-L. & Cheng, C. C. (1970). J. Med. Chem. 13, 867-870.]); Rao et al. (1981[Rao, S. T., Westhof, E. & Sundaralingam, M. (1981). Acta Cryst. A37, 421-425.]). For hydrogen bonds, see: Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press.]); Desiraju (1989[Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.]). For graph-set notations, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1357-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C22H22O8

  • Mr = 414.40

  • Monoclinic, P 21

  • a = 4.754 (5) Å

  • b = 13.982 (4) Å

  • c = 14.672 (5) Å

  • β = 97.97 (6)°

  • V = 965.8 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 (2) K

  • 0.3 × 0.3 × 0.3 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.805, Tmax = 0.999

  • 2000 measured reflections

  • 1777 independent reflections

  • 1505 reflections with I > 2σ(I)

  • Rint = 0.009

  • 2 standard reflections every 100 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.110

  • S = 1.05

  • 1777 reflections

  • 272 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Selected torsion angles (°)

O2—C7—C8—C9 −13.3 (3)
C7—C8—C9—C10 −10.7 (3)
C11—C8—C9—C12 −9.0 (3)
C8—C9—C10—O2 32.0 (3)
C9—C8—C11—O1 −11.5 (3)
C8—C9—C12—O1 26.4 (3)

Table 2
Hydrogen-bond geometry (Å, °)

Cg5 is the centroid of the C1–C6 ring and Cg6 is the centroid of the C13—C18 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O2 0.93 2.34 2.721 (5) 104
C9—H9⋯O3 0.98 2.48 2.997 (4) 113
C11—H11B⋯O4 0.97 2.56 3.042 (5) 111
C14—H14⋯O1 0.93 2.45 2.808 (5) 103
C19—H19C⋯O7 0.96 2.41 3.065 (6) 125
C20—H20B⋯O5 0.96 2.33 2.939 (7) 121
C7—H7⋯Cg5i 0.98 2.85 3.724 148
C22—H22ACg6ii 0.97 2.97 3.646 128
Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z.

Data collection: CAD-4 Software (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo,1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

1,3-benzodioxole (methylenedioxyphenyl) moiety is frequently found in natural products, and has been reported to possess some interesting biological activities (Beroza & Barthel, 1957 ; Hu et al., 2005 ; Hu et al., 2007 ; Sonar et al., 2006 ; Wang et al., 2004 ; Yin et al., 2007 ; Yu et al., 2006 ; Zheng et al., 2005a,b). The methylenedioxy positional isomers of oxolinic acid have been found to have widespread clinical applications and are used in the treatment of urinary tract infections (Mitscher et al., 1979). They are also used for the synthesis of antimalarial drugs (Chien & Cheng, 1970). The title compound, (I), is obtained as part of our investigation on 1,3-benzodioxole derivatives.

In (I) (Fig. 1), both the 1,3-benzodioxole rings are almost planar. The planarity of the dioxole moiety is similar to those observed in related compounds (Zhou et al. 2007; Liang 2004, Zhang et al. 2007; Betz et al. 2007) and in contrast to the envelope conformation observed for these rings in few related compounds (Fu et al. 2006; Qi et al. 2006; Hussain et al. 2006). The O-methoxy group attached to each of the 1,3-benzodioxole rings differ in their orientation as shown by the corresponding torsion angles which probably explains the acentricity of the crystal. The tetrahydro furofuranyl ring adopts a distorted envelope-distorted envelope conformation as shown by the corresponding torsion angles (Table 1). The two five membered rings are fused in such a way that they share a common base described by the bond C8—C9 (Fig. 1). The Cremer & Pople (1975) puckering parameters for the O1—C11—C8—C9—C12 ring are Q(2) = 0.311 (3)Å and ϕ(2) = 163.0 (6)° whereas those for the O2—C7—C8—C9—C10 ring are Q(2) = 0.371 (3)Å and ϕ(2) = 162.9 (5)°. These values indicate that the extent of puckering is almost similar in both the rings. The pseudorotation parameters (Rao et al. 1981) for O1—C11—C8—C9—C12 ring are P = 254.8 (3)° & τ(M) = 34.7 (2)° for the C8—C9 reference bond with the closest pucker descriptor being twisted on C12—O1 and those for O2—C7—C8—C9—C10 ring are P = 254.1 (3)° and τ(M) = 41.4 (2)° for the C8—C9 reference bond with the closest puckering descriptor being twisted on C10—O2.

The crystal structure of (I) is stabilized by the interplay of intramolecular C—H···O, intermolecular C—H···π (Table 2) and ππ interactions (Fig. 2). The H-bond distances found in (I) agree with those reported in literature (Desiraju & Steiner, 1999; Desiraju, 1989). S(5) motifs (Bernstein et al., 1995; Etter, 1990) are generated by each of C5—H5···O2 and C14—H14···O1 interactions. Each of the C9—H9···O3, C19—H19C···O7 and C20—H20B···O5 interactions generate an S(6) motif. An S(7) motif is generated by C11—H11B···O4 interaction. In Table 2, Cg3 refers to the centroid of the ring formed by O5, C2, C3, O6 & C21, Cg4 refers to the centroid of the ring formed by O7, C17, C16, O8 & C22, Cg5 refers to the centroid of the ring formed by C1—C6 and Cg6 refers to the centroid of the ring formed by C13—C18. A significant ππ stacking is observed between Cg4 and Cg6 (1 + x, y, z) with a centroid to centroid distance of 3.755 Å, a plane to plane distance of 3.633Å and an offset angle of 14.6°.

Related literature top

For related literature, see : Fu et al. (2006); Sonar et al. (2006); Hu et al. (2007); Zhou et al. (2007); Liang (2004); Wang et al. (2004); Zheng et al. (2005a,b); Hu et al. (2005); Qi et al. (2006); Hussain et al. (2006); Yu et al. (2006); Zhang et al. (2007); Betz et al. (2007); Yin et al. (2007); Beroza & Barthel (1957); Mitscher et al. (1979); Chien & Cheng (1970); Rao et al. (1981).. For hydrogen bonds, see: Desiraju & Steiner (1999); Desiraju (1989). For graph-set notations, see: Bernstein et al. (1995); Etter (1990). For puckering parameters, see: Cremer & Pople (1975). Cg5 is the centroid of the C1–C6 ring Cg6 is the centroid of the C13—C18 ring.

Experimental top

Ethanolic extract of powdered root of Ecbolium Viride (Forssk) spring was charged on a column and eluted with solvents ranging from non-polar to polar at the rate of 30 drops per minute. 34 fractions were collected, each of volume 25 ml with different ratios of solvents. The fractions collected were monitored by thin layer chromatography (TLC) for homogenity and similar fractions were pooled together. The title compound was isolated from one such pool. Diffraction quality crystals of the title compound were obtained by recrystallization from chloroform.

Refinement top

Hydrogen atoms were positioned geometrically (aromatic C—H = 0.93 Å, methine C—H = 0.98 Å, methylene C—H = 0.97Å & methyl C—H = 0.96 Å) and refined using a riding model. The hydrogen atom isotropic displacement parameters were fixed; Uiso(aromatic H, methine H, methylene H) = 1.2 times Ueq of the parent atom; Uiso(methyl H) = 1.5 times Ueq of the parent atom.

In the absence of significant anomalous scattering, the absolute configuration could not be reliably determined and then the Friedel pairs were merged and any references to the Flack parameter were removed.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1994); cell refinement: CAD-4 Software (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo,1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) with the atoms labelled and displacement ellipsoids depicted at the 50% probability level for all non-H atoms. H-atoms are drawn as spheres of arbitrary radius.
rac-4-Methoxy-5-[4-(4-methoxy-1,3-benzodioxol-5-yl)perhydro- 1H,3H-furo[3,4-c]furan-1-yl]-1,3-benzodioxole top
Crystal data top
C22H22O8F(000) = 436
Mr = 414.40Dx = 1.425 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 25 reflections
a = 4.754 (5) Åθ = 10–14°
b = 13.982 (4) ŵ = 0.11 mm1
c = 14.672 (5) ÅT = 293 K
β = 97.97 (6)°Prismatic, colorless
V = 965.8 (10) Å30.3 × 0.3 × 0.3 mm
Z = 2
Data collection top
Enraf–Nonius CAD-4
diffractometer
1505 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.009
Graphite monochromatorθmax = 25.0°, θmin = 2.0°
ω–2θ scansh = 05
Absorption correction: ψ scan
(North et al., 1968)
k = 016
Tmin = 0.805, Tmax = 0.999l = 1717
2000 measured reflections2 standard reflections every 100 reflections
1777 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0741P)2 + 0.1102P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1777 reflectionsΔρmax = 0.20 e Å3
272 parametersΔρmin = 0.20 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.015 (4)
Crystal data top
C22H22O8V = 965.8 (10) Å3
Mr = 414.40Z = 2
Monoclinic, P21Mo Kα radiation
a = 4.754 (5) ŵ = 0.11 mm1
b = 13.982 (4) ÅT = 293 K
c = 14.672 (5) Å0.3 × 0.3 × 0.3 mm
β = 97.97 (6)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1505 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.009
Tmin = 0.805, Tmax = 0.9992 standard reflections every 100 reflections
2000 measured reflections intensity decay: none
1777 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0401 restraint
wR(F2) = 0.110H-atom parameters constrained
S = 1.05Δρmax = 0.20 e Å3
1777 reflectionsΔρmin = 0.20 e Å3
272 parameters
Special details top

Experimental. Psi-scan (North, et al.,1968). Number of psi-scan sets used was 3 Theta correction was applied. Averaged transmission function was used. No Fourier smoothing was applied.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.0773 (8)0.1633 (3)1.4216 (2)0.0526 (8)
C21.2921 (8)0.1468 (3)1.4925 (2)0.0561 (9)
C31.4503 (8)0.2198 (3)1.5347 (2)0.0570 (9)
C41.4085 (9)0.3134 (3)1.5089 (3)0.0639 (10)
H41.51870.36271.53760.077*
C51.1918 (8)0.3303 (3)1.4372 (2)0.0573 (9)
H51.15550.39311.41820.069*
C61.0278 (7)0.2588 (2)1.3927 (2)0.0453 (7)
C70.7982 (7)0.2786 (2)1.3134 (2)0.0442 (7)
H70.61630.25571.32940.053*
C80.8479 (6)0.2337 (2)1.2209 (2)0.0427 (7)
H81.04460.21181.22320.051*
C90.7821 (6)0.3148 (2)1.1502 (2)0.0447 (7)
H90.95490.33881.12850.054*
C100.6472 (8)0.3900 (3)1.2056 (2)0.0538 (8)
H10A0.67940.45371.18290.065*
H10B0.44420.37951.20160.065*
C110.6397 (8)0.1550 (3)1.1852 (2)0.0539 (8)
H11A0.73980.10241.16090.065*
H11B0.54360.13081.23460.065*
C120.5768 (6)0.2704 (3)1.0716 (2)0.0464 (7)
H120.43490.31851.04830.056*
C130.7205 (6)0.2343 (2)0.9919 (2)0.0456 (7)
C140.7185 (8)0.1376 (3)0.9672 (2)0.0536 (8)
H140.62410.09441.00040.064*
C150.8500 (8)0.1038 (3)0.8959 (3)0.0589 (9)
H150.84750.03910.88090.071*
C160.9849 (7)0.1695 (3)0.8480 (2)0.0517 (8)
C170.9892 (7)0.2650 (3)0.8700 (2)0.0488 (8)
C180.8592 (8)0.2999 (2)0.9410 (2)0.0477 (8)
C190.7762 (12)0.4613 (3)0.8991 (3)0.0808 (13)
H19A0.79300.52440.92490.121*
H19B0.58120.44880.87540.121*
H19C0.89000.45670.85000.121*
C201.0043 (15)0.0036 (3)1.3671 (4)0.1010 (18)
H20A0.85690.03591.33540.151*
H20B1.06900.02341.42640.151*
H20C1.15980.00701.33190.151*
C211.6026 (13)0.0854 (4)1.6057 (3)0.0889 (15)
H21A1.55410.06591.66500.107*
H21B1.77490.05221.59560.107*
C221.2286 (9)0.2467 (3)0.7507 (3)0.0673 (11)
H22A1.43410.24670.75510.081*
H22B1.15010.26210.68780.081*
O10.4386 (5)0.19560 (19)1.11427 (16)0.0549 (6)
O20.7797 (5)0.37966 (17)1.29739 (16)0.0551 (6)
O30.8695 (7)0.39473 (18)0.96665 (16)0.0666 (8)
O40.8987 (7)0.0950 (2)1.3780 (2)0.0811 (9)
O51.3775 (8)0.0610 (2)1.5348 (2)0.0890 (10)
O61.6475 (7)0.1843 (3)1.60497 (19)0.0784 (9)
O71.1404 (7)0.3157 (2)0.81173 (18)0.0717 (8)
O81.1315 (7)0.1546 (2)0.77478 (18)0.0698 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.066 (2)0.0420 (19)0.0494 (16)0.0059 (16)0.0081 (15)0.0034 (15)
C20.072 (2)0.049 (2)0.0470 (16)0.0097 (18)0.0078 (16)0.0039 (15)
C30.066 (2)0.064 (2)0.0413 (16)0.0050 (18)0.0093 (15)0.0087 (16)
C40.070 (2)0.060 (2)0.060 (2)0.0094 (19)0.0025 (18)0.0160 (18)
C50.072 (2)0.0424 (19)0.0578 (19)0.0023 (18)0.0101 (17)0.0048 (16)
C60.0534 (17)0.0396 (18)0.0451 (16)0.0021 (14)0.0140 (13)0.0019 (14)
C70.0504 (16)0.0331 (15)0.0510 (17)0.0020 (14)0.0133 (14)0.0033 (12)
C80.0403 (15)0.0387 (16)0.0506 (17)0.0012 (13)0.0114 (12)0.0020 (13)
C90.0425 (15)0.0436 (18)0.0485 (16)0.0009 (14)0.0076 (13)0.0026 (14)
C100.0589 (19)0.0419 (18)0.0607 (19)0.0068 (16)0.0085 (15)0.0016 (15)
C110.0611 (19)0.042 (2)0.0588 (19)0.0079 (15)0.0077 (16)0.0042 (15)
C120.0387 (14)0.0482 (18)0.0520 (17)0.0019 (14)0.0055 (13)0.0007 (15)
C130.0396 (15)0.0458 (18)0.0492 (16)0.0050 (14)0.0017 (12)0.0042 (14)
C140.0576 (19)0.0450 (19)0.0572 (18)0.0077 (16)0.0045 (15)0.0040 (16)
C150.069 (2)0.0413 (19)0.065 (2)0.0019 (17)0.0010 (18)0.0112 (16)
C160.0542 (18)0.052 (2)0.0465 (16)0.0090 (16)0.0004 (14)0.0085 (15)
C170.0527 (17)0.0468 (19)0.0455 (16)0.0056 (15)0.0018 (13)0.0025 (14)
C180.0589 (18)0.0386 (17)0.0449 (16)0.0080 (14)0.0049 (14)0.0018 (13)
C190.119 (4)0.043 (2)0.078 (3)0.010 (2)0.006 (3)0.008 (2)
C200.138 (5)0.050 (3)0.106 (4)0.008 (3)0.015 (4)0.011 (2)
C210.112 (4)0.076 (3)0.072 (3)0.026 (3)0.012 (3)0.004 (2)
C220.066 (2)0.084 (3)0.054 (2)0.002 (2)0.0141 (17)0.010 (2)
O10.0417 (10)0.0593 (16)0.0635 (14)0.0085 (11)0.0067 (10)0.0018 (12)
O20.0706 (15)0.0394 (12)0.0549 (13)0.0086 (11)0.0078 (12)0.0048 (10)
O30.109 (2)0.0374 (13)0.0530 (13)0.0118 (14)0.0112 (13)0.0009 (11)
O40.094 (2)0.0412 (16)0.098 (2)0.0100 (14)0.0195 (17)0.0001 (14)
O50.127 (3)0.0578 (18)0.0730 (18)0.0080 (18)0.0191 (18)0.0092 (15)
O60.0845 (19)0.086 (2)0.0592 (15)0.0131 (17)0.0101 (14)0.0071 (15)
O70.100 (2)0.0573 (16)0.0647 (15)0.0025 (15)0.0367 (15)0.0019 (13)
O80.0881 (19)0.0635 (18)0.0603 (15)0.0155 (15)0.0191 (14)0.0102 (13)
Geometric parameters (Å, º) top
C1—C21.373 (5)C12—H120.9800
C1—O41.375 (5)C13—C141.399 (5)
C1—C61.411 (5)C13—C181.403 (5)
C2—C31.364 (6)C14—C151.374 (5)
C2—O51.385 (5)C14—H140.9300
C3—C41.370 (6)C15—C161.370 (6)
C3—O61.385 (5)C15—H150.9300
C4—C51.387 (6)C16—C171.372 (5)
C4—H40.9300C16—O81.375 (4)
C5—C61.376 (5)C17—C181.373 (5)
C5—H50.9300C17—O71.386 (5)
C6—C71.506 (5)C18—O31.377 (4)
C7—O21.433 (4)C19—O31.387 (5)
C7—C81.544 (4)C19—H19A0.9600
C7—H70.9800C19—H19B0.9600
C8—C111.524 (5)C19—H19C0.9600
C8—C91.539 (4)C20—O41.390 (6)
C8—H80.9800C20—H20A0.9600
C9—C101.525 (5)C20—H20B0.9600
C9—C121.535 (5)C20—H20C0.9600
C9—H90.9800C21—O61.400 (6)
C10—O21.412 (4)C21—O51.426 (6)
C10—H10A0.9700C21—H21A0.9700
C10—H10B0.9700C21—H21B0.9700
C11—O11.430 (5)C22—O71.419 (5)
C11—H11A0.9700C22—O81.428 (6)
C11—H11B0.9700C22—H22A0.9700
C12—O11.425 (4)C22—H22B0.9700
C12—C131.520 (4)
C2—C1—O4125.6 (3)C13—C12—H12108.7
C2—C1—C6117.5 (3)C9—C12—H12108.7
O4—C1—C6116.8 (3)C14—C13—C18118.7 (3)
C3—C2—C1121.6 (3)C14—C13—C12122.2 (3)
C3—C2—O5109.6 (3)C18—C13—C12119.1 (3)
C1—C2—O5128.8 (4)C15—C14—C13122.8 (3)
C2—C3—C4122.7 (3)C15—C14—H14118.6
C2—C3—O6110.1 (4)C13—C14—H14118.6
C4—C3—O6127.2 (4)C16—C15—C14117.0 (3)
C3—C4—C5115.9 (4)C16—C15—H15121.5
C3—C4—H4122.1C14—C15—H15121.5
C5—C4—H4122.1C15—C16—C17121.6 (3)
C6—C5—C4123.3 (4)C15—C16—O8128.6 (3)
C6—C5—H5118.4C17—C16—O8109.8 (3)
C4—C5—H5118.4C16—C17—C18122.1 (3)
C5—C6—C1119.1 (3)C16—C17—O7110.1 (3)
C5—C6—C7122.3 (3)C18—C17—O7127.8 (3)
C1—C6—C7118.6 (3)C17—C18—O3123.2 (3)
O2—C7—C6109.3 (3)C17—C18—C13117.7 (3)
O2—C7—C8105.6 (3)O3—C18—C13119.1 (3)
C6—C7—C8114.9 (3)O3—C19—H19A109.5
O2—C7—H7109.0O3—C19—H19B109.5
C6—C7—H7109.0H19A—C19—H19B109.5
C8—C7—H7109.0O3—C19—H19C109.5
C11—C8—C9103.8 (3)H19A—C19—H19C109.5
C11—C8—C7115.1 (3)H19B—C19—H19C109.5
C9—C8—C7104.6 (2)O4—C20—H20A109.5
C11—C8—H8111.0O4—C20—H20B109.5
C9—C8—H8111.0H20A—C20—H20B109.5
C7—C8—H8111.0O4—C20—H20C109.5
C10—C9—C12114.1 (3)H20A—C20—H20C109.5
C10—C9—C8102.1 (2)H20B—C20—H20C109.5
C12—C9—C8104.9 (3)O6—C21—O5109.3 (4)
C10—C9—H9111.7O6—C21—H21A109.8
C12—C9—H9111.7O5—C21—H21A109.8
C8—C9—H9111.7O6—C21—H21B109.8
O2—C10—C9105.8 (3)O5—C21—H21B109.8
O2—C10—H10A110.6H21A—C21—H21B108.3
C9—C10—H10A110.6O7—C22—O8108.8 (3)
O2—C10—H10B110.6O7—C22—H22A109.9
C9—C10—H10B110.6O8—C22—H22A109.9
H10A—C10—H10B108.7O7—C22—H22B109.9
O1—C11—C8107.4 (3)O8—C22—H22B109.9
O1—C11—H11A110.2H22A—C22—H22B108.3
C8—C11—H11A110.2C12—O1—C11108.0 (2)
O1—C11—H11B110.2C10—O2—C7105.5 (3)
C8—C11—H11B110.2C18—O3—C19117.0 (3)
H11A—C11—H11B108.5C1—O4—C20118.8 (4)
O1—C12—C13112.2 (3)C2—O5—C21105.2 (4)
O1—C12—C9104.5 (2)C3—O6—C21105.7 (3)
C13—C12—C9113.9 (3)C17—O7—C22105.4 (3)
O1—C12—H12108.7C16—O8—C22105.8 (3)
O4—C1—C2—C3176.8 (4)C9—C12—C13—C1863.3 (4)
C6—C1—C2—C30.9 (5)C18—C13—C14—C150.9 (5)
O4—C1—C2—O50.5 (6)C12—C13—C14—C15179.3 (3)
C6—C1—C2—O5178.1 (4)C13—C14—C15—C160.5 (5)
C1—C2—C3—C40.7 (6)C14—C15—C16—C170.1 (5)
O5—C2—C3—C4178.5 (4)C14—C15—C16—O8179.8 (3)
C1—C2—C3—O6178.7 (3)C15—C16—C17—C180.0 (5)
O5—C2—C3—O60.9 (4)O8—C16—C17—C18179.8 (3)
C2—C3—C4—C50.7 (6)C15—C16—C17—O7179.6 (3)
O6—C3—C4—C5178.6 (3)O8—C16—C17—O70.2 (4)
C3—C4—C5—C60.8 (6)C16—C17—C18—O3177.5 (3)
C4—C5—C6—C11.0 (5)O7—C17—C18—O32.0 (5)
C4—C5—C6—C7178.5 (3)C16—C17—C18—C130.4 (5)
C2—C1—C6—C51.0 (5)O7—C17—C18—C13179.1 (3)
O4—C1—C6—C5176.9 (3)C14—C13—C18—C170.8 (4)
C2—C1—C6—C7178.5 (3)C12—C13—C18—C17179.4 (3)
O4—C1—C6—C73.6 (5)C14—C13—C18—O3178.0 (3)
C5—C6—C7—O22.0 (4)C12—C13—C18—O32.2 (4)
C1—C6—C7—O2178.5 (3)C13—C12—O1—C1189.0 (3)
C5—C6—C7—C8116.5 (3)C9—C12—O1—C1134.9 (3)
C1—C6—C7—C863.0 (4)C8—C11—O1—C1229.6 (3)
O2—C7—C8—C11126.6 (3)C9—C10—O2—C742.3 (3)
C6—C7—C8—C11112.9 (3)C6—C7—O2—C10158.5 (3)
O2—C7—C8—C913.3 (3)C8—C7—O2—C1034.3 (3)
C6—C7—C8—C9133.8 (3)C17—C18—O3—C1955.8 (5)
C11—C8—C9—C10110.4 (3)C13—C18—O3—C19127.2 (4)
C7—C8—C9—C1010.7 (3)C2—C1—O4—C2034.0 (6)
C11—C8—C9—C129.0 (3)C6—C1—O4—C20148.4 (4)
C7—C8—C9—C12130.0 (3)C3—C2—O5—C210.7 (5)
C12—C9—C10—O2144.6 (3)C1—C2—O5—C21178.2 (4)
C8—C9—C10—O232.0 (3)O6—C21—O5—C20.2 (6)
C9—C8—C11—O111.5 (3)C2—C3—O6—C210.8 (5)
C7—C8—C11—O1102.2 (3)C4—C3—O6—C21178.6 (5)
C10—C9—C12—O184.5 (3)O5—C21—O6—C30.3 (6)
C8—C9—C12—O126.4 (3)C16—C17—O7—C220.7 (4)
C10—C9—C12—C13152.6 (3)C18—C17—O7—C22179.7 (3)
C8—C9—C12—C1396.4 (3)O8—C22—O7—C171.0 (4)
O1—C12—C13—C141.6 (4)C15—C16—O8—C22179.8 (4)
C9—C12—C13—C14116.9 (4)C17—C16—O8—C220.4 (4)
O1—C12—C13—C18178.2 (3)O7—C22—O8—C160.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O20.932.342.721 (5)104
C9—H9···O30.982.482.997 (4)113
C11—H11B···O40.972.563.042 (5)111
C14—H14···O10.932.452.808 (5)103
C19—H19C···O70.962.413.065 (6)125
C20—H20B···O50.962.332.939 (7)121
C7—H7···Cg5i0.982.863.724148
C22—H22A···Cg6ii0.972.973.646128
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC22H22O8
Mr414.40
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)4.754 (5), 13.982 (4), 14.672 (5)
β (°) 97.97 (6)
V3)965.8 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.3 × 0.3 × 0.3
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.805, 0.999
No. of measured, independent and
observed [I > 2σ(I)] reflections
2000, 1777, 1505
Rint0.009
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.110, 1.05
No. of reflections1777
No. of parameters272
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.20

Computer programs: CAD-4 Software (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo,1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Selected torsion angles (º) top
O2—C7—C8—C913.3 (3)C8—C9—C10—O232.0 (3)
C7—C8—C9—C1010.7 (3)C9—C8—C11—O111.5 (3)
C11—C8—C9—C129.0 (3)C8—C9—C12—O126.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O20.932.342.721 (5)103.9
C9—H9···O30.982.482.997 (4)112.7
C11—H11B···O40.972.563.042 (5)110.9
C14—H14···O10.932.452.808 (5)103.2
C19—H19C···O70.962.413.065 (6)125.3
C20—H20B···O50.962.332.939 (7)120.8
C7—H7···Cg5i0.982.8553.724148.19
C22—H22A···Cg6ii0.972.9713.646127.64
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.
 

Acknowledgements

NV thanks Dr Frank R. Fronczek, Department of Chemistry, Louisiana State University, Baton Rouge, USA, for discussions. RPE thanks Mr P. Perumal and Mr M. K. Senthilkumar, JKK Natarajah College of Pharmacy, Komara­palayam, Namakkal District, Tamil Nadu, India, for their help with the IR and HPLC experiments and extraction of the title compound from plant sources, respectively.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBeroza, M. & Barthel, W. F. (1957). J. Agr. Food. Chem. 5, 855–859.  CrossRef CAS Web of Science Google Scholar
First citationBetz, R., Klüfers, P. & Reichvilser, M. M. (2007). Acta Cryst. E63, o3769.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChien, P.-L. & Cheng, C. C. (1970). J. Med. Chem. 13, 867–870.  CrossRef CAS PubMed Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1357–1358.  Google Scholar
First citationDesiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.  Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press.  Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFu, X.-S., Zhang, Y., Sun, J.-W. & Yu, X.-X. (2006). Acta Cryst. E62, o3135–o3136.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationHu, S. L., She, N.-F. & Wu, A.-X. (2005). Acta Cryst. E61, o3317–o3318.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHu, Z.-Q., Zheng, L., Li, C.-J. & Chang, J.-B. (2007). Acta Cryst. E63, o156–o157.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHussain, M., Ali, S., Altaf, M. & Stoeckli-Evans, H. (2006). Acta Cryst. E62, o5323–o5325.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiang, Z.-P. (2004). Acta Cryst. E60, o339–o340.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMitscher, A. L., Flynn, L. D., Gracey, E. H. & Drake, D. S. (1979). J. Med. Chem. 22, 1354–1357.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationQi, X.-X., Suo, J.-S., Wang, L.-M., Guo, X.-H. & Cheng, S.-X. (2006). Acta Cryst. E62, o1269–o1270.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRao, S. T., Westhof, E. & Sundaralingam, M. (1981). Acta Cryst. A37, 421–425.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSonar, V. N., Venkataraj, M., Parkin, S. & Crooks, P. A. (2006). Acta Cryst. E62, o5742–o5744.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, L.-W., Chen, T., Sun, H.-X., Xiong, Y., Zhou, C.-X. & Zhao, Y. (2004). Acta Cryst. E60, o513–o514.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYin, Z.-G., Qian, H.-Y., Jie, H. & Yu-Li, F. (2007). Acta Cryst. E63, o4406.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYu, Z.-F., Li, J. & Zhao, Z.-M. (2006). Acta Cryst. E62, o5614–o5615.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, L., Wang, S.-Q. & Yu, X. (2007). Acta Cryst. E63, o2278–o2279.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZheng, L., Guo, B., Zheng, X., Chen, J. & Chang, J. (2005a). Acta Cryst. E61, o2508–o2509.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZheng, L., Zhen, X. F., Zhang, D. & Chang, J. B. (2005b). Acta Cryst. E61, o3786–o3787.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhou, Q.-L., Wang, C.-L. & Jing, Z.-L. (2007). Acta Cryst. E63, o898–o899.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages o1306-o1307
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds