organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[Bis(3,5-di­methyl­phen­yl)­phosphor­yl]­propan-2-ol hemihydrate

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: zhuhj@njut.edu.cn

(Received 29 May 2008; accepted 31 May 2008; online 7 June 2008)

In the organic mol­ecule of the title compound, C19H25O2P·0.5H2O, the benzene rings are oriented at a dihedral angle of 54.04 (3)°. Intra­molecular C—H⋯O hydrogen bonds result in the formation of two five-membered planar rings, which are oriented with respect to the adjacent benzene rings at dihedral angles of 2.66 (3) and 2.79 (3)°. In the crystal structure, inter­molecular O—H⋯O hydrogen bonds link the mol­ecules. The water oxygen atom lies on a twofold rotation axis.

Related literature

For related literature, see: Takao & Kazuhiko (1997[Takao, S. & Kazuhiko, M. (1997). EP Patent No. 0 755 937.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C19H25O2P·0.5H2O

  • Mr = 324.87

  • Monoclinic, C 2/c

  • a = 30.129 (6) Å

  • b = 6.2830 (13) Å

  • c = 20.192 (4) Å

  • β = 106.76 (3)°

  • V = 3660.1 (14) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 298 (2) K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.969, Tmax = 0.984

  • 6573 measured reflections

  • 3298 independent reflections

  • 1904 reflections with I > 2σ(I)

  • Rint = 0.049

  • 3 standard reflections frequency: 120 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.205

  • S = 1.03

  • 3298 reflections

  • 206 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
OW—HWA⋯O2i 0.85 2.24 2.811 (3) 124
O1—H1A⋯O2ii 0.82 1.96 2.775 (4) 178
C3—H3A⋯O2 0.93 2.47 2.928 (5) 110
C11—H11A⋯O2 0.93 2.49 2.939 (5) 110
Symmetry codes: (i) [-x+1, y, -z+{\script{3\over 2}}]; (ii) x, y-1, z.

Data collection: CAD-4 Software (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

2-(Bis(3,5-dimethylphenyl)phosphoryl)propan-2-ol was first synthesized by the nucleophillic addition of acetone with di(3,5-dimethylphenyl)phosphine oxide at room temperature. We report herein its crystal structure.

In the molecule of the title compound, (I), (Fig. 1) the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (C1-C6) and B (C10-C15) are, of course, planar, and the dihedral angle between them is A/B = 54.04 (3)°. The intramolecular C-H···O hydrogen bonds (Table 1) result in the formation of two five-membered planar rings: C (C3/C4/P/O2/H3A) and D (C11/C12/P/O2/H11A). The dihedral angles between the adjacent rings are A/C = 2.66 (3)° and B/D = 2.79 (3)°. So, rings A, C and B, D are nearly coplanar. The coplanar ring systems are oriented at a dihedral angle of 54.70 (3)°.

In the crystal structure, intermolecular O-H···O hydrogen bonds (Table 1) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For related literature, see: Takao & Kazuhiko (1997). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound, (I) was synthesized by the reaction of di(3,5-dimethyl- phenyl)phosphine oxide (0.20 g, 0.70 mmol) (Takao & Kazuhiko, 1997) and acetone (25 ml). Crystals suitable for X-ray analysis were obtained by dissolving (I) in acetone and evaporating the solvent slowly at room temperature for about 7 d.

Refinement top

H atoms were positioned geometrically, with O-H = 0.85 Å (for H2O) and 0.82 Å (for OH) and C-H = 0.93 and 0.96 Å for aromatic and methyl H and constrained to ride on their parent atoms with Uiso(H) = xUeq(C,O), where x = 1.5 for OH and methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. A packing diagram of (I). Hydrogen bonds are shown as dashed lines.
2-[Bis(3,5-dimethylphenyl)phosphoryl]propan-2-ol hemihydrate top
Crystal data top
C19H25O2P·0.5H2OF(000) = 1396
Mr = 324.87Dx = 1.179 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 25 reflections
a = 30.129 (6) Åθ = 9–12°
b = 6.2830 (13) ŵ = 0.16 mm1
c = 20.192 (4) ÅT = 298 K
β = 106.76 (3)°Needle, colorless
V = 3660.1 (14) Å30.20 × 0.10 × 0.10 mm
Z = 8
Data collection top
Enraf–Nonius CAD-4
diffractometer
1904 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.049
Graphite monochromatorθmax = 25.2°, θmin = 1.4°
ω/2θ scansh = 3634
Absorption correction: ψ scan
(North et al., 1968)
k = 07
Tmin = 0.969, Tmax = 0.984l = 024
6573 measured reflections3 standard reflections every 120 min
3298 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.205H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
3298 reflections(Δ/σ)max = 0.001
206 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.55 e Å3
Crystal data top
C19H25O2P·0.5H2OV = 3660.1 (14) Å3
Mr = 324.87Z = 8
Monoclinic, C2/cMo Kα radiation
a = 30.129 (6) ŵ = 0.16 mm1
b = 6.2830 (13) ÅT = 298 K
c = 20.192 (4) Å0.20 × 0.10 × 0.10 mm
β = 106.76 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1904 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.049
Tmin = 0.969, Tmax = 0.9843 standard reflections every 120 min
6573 measured reflections intensity decay: none
3298 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.205H-atom parameters constrained
S = 1.03Δρmax = 0.49 e Å3
3298 reflectionsΔρmin = 0.55 e Å3
206 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
P0.40003 (3)0.20845 (15)0.59292 (5)0.0338 (3)
OW0.50000.4938 (10)0.75000.146 (3)
HWA0.51270.54530.78990.175*0.50
O10.39553 (9)0.2053 (4)0.58847 (14)0.0526 (8)
H1A0.40580.32390.60130.079*
C10.44847 (16)0.5766 (9)0.3932 (3)0.0735 (15)
H1B0.44610.56510.34490.110*
H1C0.48040.56510.41990.110*
H1D0.43640.71170.40200.110*
O20.42908 (8)0.3898 (4)0.62967 (13)0.0428 (7)
C20.42087 (13)0.3997 (7)0.4134 (2)0.0493 (10)
C30.41939 (12)0.3820 (6)0.4812 (2)0.0434 (9)
H3A0.43450.48330.51350.052*
C40.39592 (11)0.2167 (6)0.50207 (18)0.0371 (8)
C50.37267 (12)0.0663 (6)0.45310 (19)0.0425 (9)
H5A0.35670.04500.46640.051*
C60.37332 (13)0.0829 (7)0.3851 (2)0.0485 (11)
C70.39760 (14)0.2487 (7)0.3663 (2)0.0538 (11)
H7A0.39820.25870.32060.065*
C80.34811 (16)0.0813 (9)0.3322 (2)0.0685 (14)
H8A0.35230.04810.28800.103*
H8B0.31570.07930.32880.103*
H8C0.36050.22020.34650.103*
C90.28814 (17)0.5685 (10)0.7141 (3)0.0817 (17)
H9A0.25710.56310.71780.123*
H9B0.29370.70590.69730.123*
H9C0.30970.54420.75870.123*
C100.29420 (14)0.3982 (7)0.6642 (2)0.0515 (11)
C110.33647 (13)0.3767 (6)0.65031 (19)0.0437 (9)
H11A0.36070.46850.67100.052*
C120.34291 (12)0.2187 (6)0.60557 (17)0.0350 (8)
C130.30647 (12)0.0836 (6)0.57377 (19)0.0405 (9)
H13A0.31070.02140.54370.049*
C140.26351 (13)0.1041 (7)0.5865 (2)0.0452 (10)
C150.25866 (14)0.2611 (7)0.6316 (2)0.0489 (10)
H15A0.23020.27550.64050.059*
C160.22411 (15)0.0427 (8)0.5522 (3)0.0649 (13)
H16A0.21890.03890.50300.097*
H16B0.19650.00250.56290.097*
H16C0.23170.18520.56870.097*
C170.42596 (12)0.0481 (6)0.62715 (19)0.0369 (8)
C180.42841 (16)0.0606 (7)0.7034 (2)0.0587 (12)
H18A0.44250.19270.72220.088*
H18B0.39770.05280.70820.088*
H18C0.44660.05580.72770.088*
C190.47388 (13)0.0667 (7)0.6165 (2)0.0540 (11)
H19A0.48740.20090.63430.081*
H19B0.49320.04690.64060.081*
H19C0.47120.05770.56810.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P0.0353 (5)0.0217 (5)0.0407 (5)0.0001 (4)0.0049 (4)0.0001 (4)
OW0.183 (7)0.085 (5)0.102 (5)0.0000.065 (5)0.000
O10.0576 (17)0.0242 (13)0.0655 (18)0.0009 (13)0.0012 (14)0.0037 (13)
C10.065 (3)0.073 (3)0.094 (4)0.003 (3)0.041 (3)0.018 (3)
O20.0418 (14)0.0225 (13)0.0552 (17)0.0023 (12)0.0003 (12)0.0026 (12)
C20.042 (2)0.049 (3)0.061 (3)0.009 (2)0.023 (2)0.012 (2)
C30.042 (2)0.036 (2)0.051 (2)0.0029 (18)0.0110 (18)0.0028 (19)
C40.0331 (18)0.0357 (19)0.041 (2)0.0043 (17)0.0092 (15)0.0052 (17)
C50.038 (2)0.044 (2)0.045 (2)0.0040 (18)0.0094 (17)0.0009 (19)
C60.042 (2)0.060 (3)0.042 (2)0.006 (2)0.0092 (18)0.008 (2)
C70.052 (2)0.068 (3)0.045 (2)0.013 (2)0.0178 (19)0.010 (2)
C80.070 (3)0.081 (4)0.048 (3)0.003 (3)0.007 (2)0.020 (3)
C90.070 (3)0.091 (4)0.086 (4)0.008 (3)0.026 (3)0.044 (3)
C100.049 (2)0.049 (3)0.055 (3)0.005 (2)0.012 (2)0.010 (2)
C110.042 (2)0.040 (2)0.044 (2)0.0018 (19)0.0036 (17)0.0072 (19)
C120.044 (2)0.0252 (17)0.0344 (18)0.0025 (16)0.0082 (15)0.0033 (16)
C130.045 (2)0.028 (2)0.045 (2)0.0007 (17)0.0090 (17)0.0051 (17)
C140.039 (2)0.044 (2)0.052 (2)0.0008 (19)0.0119 (18)0.002 (2)
C150.043 (2)0.049 (3)0.055 (2)0.007 (2)0.0163 (19)0.002 (2)
C160.044 (2)0.066 (3)0.082 (3)0.012 (2)0.013 (2)0.007 (3)
C170.0374 (19)0.0245 (17)0.046 (2)0.0037 (16)0.0073 (16)0.0044 (16)
C180.076 (3)0.045 (3)0.053 (3)0.011 (2)0.016 (2)0.011 (2)
C190.042 (2)0.046 (2)0.072 (3)0.010 (2)0.014 (2)0.009 (2)
Geometric parameters (Å, º) top
P—O21.497 (2)C9—H9A0.9600
P—C41.803 (4)C9—H9B0.9600
P—C121.812 (4)C9—H9C0.9600
P—C171.837 (4)C10—C151.384 (6)
OW—HWA0.8500C10—C111.387 (5)
O1—C171.419 (4)C11—C121.393 (5)
O1—H1A0.8200C11—H11A0.9300
C1—C21.513 (6)C12—C131.390 (5)
C1—H1B0.9600C13—C141.397 (5)
C1—H1C0.9600C13—H13A0.9300
C1—H1D0.9600C14—C151.378 (6)
C2—C71.383 (6)C14—C161.505 (6)
C2—C31.388 (5)C15—H15A0.9300
C3—C41.389 (5)C16—H16A0.9600
C3—H3A0.9300C16—H16B0.9600
C4—C51.400 (5)C16—H16C0.9600
C5—C61.383 (5)C17—C181.521 (5)
C5—H5A0.9300C17—C191.524 (5)
C6—C71.388 (6)C18—H18A0.9600
C6—C81.521 (6)C18—H18B0.9600
C7—H7A0.9300C18—H18C0.9600
C8—H8A0.9600C19—H19A0.9600
C8—H8B0.9600C19—H19B0.9600
C8—H8C0.9600C19—H19C0.9600
C9—C101.516 (6)
O2—P—C4109.95 (17)C15—C10—C11118.2 (4)
O2—P—C12110.28 (16)C15—C10—C9122.0 (4)
C4—P—C12110.66 (16)C11—C10—C9119.8 (4)
O2—P—C17110.91 (15)C10—C11—C12120.5 (4)
C4—P—C17107.75 (18)C10—C11—H11A119.7
C12—P—C17107.23 (17)C12—C11—H11A119.7
C17—O1—H1A109.5C13—C12—C11119.7 (3)
C2—C1—H1B109.5C13—C12—P124.7 (3)
C2—C1—H1C109.5C11—C12—P115.6 (3)
H1B—C1—H1C109.5C12—C13—C14120.6 (3)
C2—C1—H1D109.5C12—C13—H13A119.7
H1B—C1—H1D109.5C14—C13—H13A119.7
H1C—C1—H1D109.5C15—C14—C13117.9 (4)
C7—C2—C3118.0 (4)C15—C14—C16121.5 (4)
C7—C2—C1121.8 (4)C13—C14—C16120.5 (4)
C3—C2—C1120.1 (4)C14—C15—C10123.0 (4)
C2—C3—C4121.5 (4)C14—C15—H15A118.5
C2—C3—H3A119.2C10—C15—H15A118.5
C4—C3—H3A119.2C14—C16—H16A109.5
C3—C4—C5119.0 (4)C14—C16—H16B109.5
C3—C4—P116.0 (3)H16A—C16—H16B109.5
C5—C4—P124.9 (3)C14—C16—H16C109.5
C6—C5—C4120.2 (4)H16A—C16—H16C109.5
C6—C5—H5A119.9H16B—C16—H16C109.5
C4—C5—H5A119.9O1—C17—C18110.9 (3)
C5—C6—C7119.2 (4)O1—C17—C19110.9 (3)
C5—C6—C8119.9 (4)C18—C17—C19111.5 (3)
C7—C6—C8120.9 (4)O1—C17—P105.5 (2)
C2—C7—C6122.0 (4)C18—C17—P108.5 (3)
C2—C7—H7A119.0C19—C17—P109.4 (3)
C6—C7—H7A119.0C17—C18—H18A109.5
C6—C8—H8A109.5C17—C18—H18B109.5
C6—C8—H8B109.5H18A—C18—H18B109.5
H8A—C8—H8B109.5C17—C18—H18C109.5
C6—C8—H8C109.5H18A—C18—H18C109.5
H8A—C8—H8C109.5H18B—C18—H18C109.5
H8B—C8—H8C109.5C17—C19—H19A109.5
C10—C9—H9A109.5C17—C19—H19B109.5
C10—C9—H9B109.5H19A—C19—H19B109.5
H9A—C9—H9B109.5C17—C19—H19C109.5
C10—C9—H9C109.5H19A—C19—H19C109.5
H9A—C9—H9C109.5H19B—C19—H19C109.5
H9B—C9—H9C109.5
C7—C2—C3—C40.9 (6)C4—P—C12—C1352.7 (4)
C1—C2—C3—C4177.4 (4)C17—P—C12—C1364.6 (3)
C2—C3—C4—C51.0 (5)O2—P—C12—C114.9 (3)
C2—C3—C4—P176.7 (3)C4—P—C12—C11126.8 (3)
O2—P—C4—C30.2 (3)C17—P—C12—C11116.0 (3)
C12—P—C4—C3122.3 (3)C11—C12—C13—C140.3 (5)
C17—P—C4—C3120.8 (3)P—C12—C13—C14179.8 (3)
O2—P—C4—C5177.7 (3)C12—C13—C14—C150.3 (6)
C12—P—C4—C560.3 (4)C12—C13—C14—C16179.9 (4)
C17—P—C4—C556.7 (3)C13—C14—C15—C100.2 (6)
C3—C4—C5—C60.2 (5)C16—C14—C15—C10179.8 (4)
P—C4—C5—C6177.2 (3)C11—C10—C15—C140.4 (7)
C4—C5—C6—C70.6 (6)C9—C10—C15—C14179.5 (4)
C4—C5—C6—C8179.8 (4)O2—P—C17—O1179.9 (2)
C3—C2—C7—C60.1 (6)C4—P—C17—O159.6 (3)
C1—C2—C7—C6178.2 (4)C12—P—C17—O159.6 (3)
C5—C6—C7—C20.7 (6)O2—P—C17—C1861.2 (3)
C8—C6—C7—C2179.9 (4)C4—P—C17—C18178.4 (3)
C15—C10—C11—C121.0 (6)C12—P—C17—C1859.2 (3)
C9—C10—C11—C12178.8 (4)O2—P—C17—C1960.6 (3)
C10—C11—C12—C131.0 (6)C4—P—C17—C1959.8 (3)
C10—C11—C12—P179.5 (3)C12—P—C17—C19178.9 (3)
O2—P—C12—C13174.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW—HWA···O2i0.852.242.811 (3)124
O1—H1A···O2ii0.821.962.775 (4)178
C3—H3A···O20.932.472.928 (5)110
C11—H11A···O20.932.492.939 (5)110
Symmetry codes: (i) x+1, y, z+3/2; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC19H25O2P·0.5H2O
Mr324.87
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)30.129 (6), 6.2830 (13), 20.192 (4)
β (°) 106.76 (3)
V3)3660.1 (14)
Z8
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.969, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
6573, 3298, 1904
Rint0.049
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.205, 1.03
No. of reflections3298
No. of parameters206
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.55

Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW—HWA···O2i0.852.242.811 (3)124.00
O1—H1A···O2ii0.821.962.775 (4)178.00
C3—H3A···O20.932.472.928 (5)110.00
C11—H11A···O20.932.492.939 (5)110.00
Symmetry codes: (i) x+1, y, z+3/2; (ii) x, y1, z.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for its support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakao, S. & Kazuhiko, M. (1997). EP Patent No. 0 755 937.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds