organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[(1S,2S,3R,4R)-3-Hydr­­oxy-4,7,7-tri­methyl­bi­cyclo­[2.2.1]heptan-2-yl]methyl[(E)-3-(tri­methyl­silyl)prop-2-enyl]selen­onium bromide

aSchool of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, People's Republic of China, and bState Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, People's Republic of China
*Correspondence e-mail: llyyjz@nju.edu.cn

(Received 23 May 2008; accepted 3 June 2008; online 7 June 2008)

The title compound, a seleno­nium bromide, C17H33OSeSi+·Br, was obtained from the reaction of enanti­omerically pure 4,7,7-trimethyl-2-methyl­selanylbicyclo­[2.2.1]heptan-3-ol and (3-bromopropen­yl)trimethyl­silane in acetone. Due to the chiral bicyclic substituent, the crystal structure is not centrosymmetric and has no symmetry plane, with four chiral C atoms in the cation. The asymmetric unit contains one seleno­nium cation and one bromide anion. C–H⋯Br and O–H⋯Br hydrogen bonds link the ions, forming a one-dimensional R-helical chain-like supra­molecular structure.

Related literature

For related literature, see: Li et al. (2005[Li, X. L., Wang, Y. & Huang, Z. Z. (2005). Aust. J. Chem. 58, 749-752.]); Goodridge et al. (1988[Goodridge, R. J., Hambley, T. W., Hayes, R. K. & Ridley, D. D. (1988). J. Org. Chem. 53, 2881-2889.]); Reich et al. (1975[Reich, H. J., Renga, J. M. & Reich, I. J. (1975). J. Am. Chem. Soc. 97, 5434-5447.]); Ye et al. (2002[Ye, S., Huang, Z. Z., Xia, C. A., Tang, Y. & Dai, L. X. (2002). J. Am. Chem. Soc. 124, 2432-2433.]).

[Scheme 1]

Experimental

Crystal data
  • C17H33OSeSi+·Br

  • Mr = 440.39

  • Monoclinic, P 21

  • a = 7.555 (2) Å

  • b = 10.023 (2) Å

  • c = 14.423 (3) Å

  • β = 101.29 (3)°

  • V = 1071.0 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.67 mm−1

  • T = 291 (2) K

  • 0.30 × 0.26 × 0.24 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.35, Tmax = 0.41

  • 4460 measured reflections

  • 3374 independent reflections

  • 1732 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.102

  • S = 1.07

  • 3374 reflections

  • 170 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.74 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1140 Friedel pairs

  • Flack parameter: 0.01 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1D⋯Br1 0.87 (8) 2.28 (8) 3.143 (5) 175 (7)
C5—H5⋯Br1i 0.98 2.88 3.827 (5) 164
C11—H11C⋯Br1ii 0.96 2.94 3.874 (7) 165
C12—H12B⋯Br1i 0.97 2.97 3.855 (5) 152
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z]; (ii) x, y-1, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART; data reduction: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, an efficient asymmetric synthesis of cyclopropanes via camphor-derived sulfonium ylides was reported (Ye et al., 2002). Thus, we expected that camphor-derived selenonium ylides could be used in the highly enantioselective synthesis of cyclopropanes, epoxides and aziridines. First, the camphor-derived selenide (1) was prepared from commercially available D-camphor according to a literature method (Reich et al., 1975; Goodridge et al., 1988, and Li et al., 2005). Then compound (1) was reacted with (3-bromo-propenyl)-trimethylsilane (3) to give the selenonium salt (2). We performed the X-ray crystallographic analysis of (2) in order to elucidate the conformation and configuration.

The structural analysis shows that the selenonium ion of the title compound, (2) (Fig. 1), is not centrosymmetric and has no symmetry plane, showing the four chiral C atoms, C4, C5, C6, and C7, with the R, R, S, and S configuration preserved from the enatiomerically pure starting compound (1). The asymmetric unit contains one selenonium salt cation, and one bromide ion. In the crystal packing, the Br atom plays an important role, acting as a bridge linking neighboring molecules via C–H···Br and O–H···Br hydrogen bonds (O1—H1D···Br1, C5—H5···Br1ii, C11—H11c···Br1i, and C12—H12B···Br1ii; symmetry code i: x,-1 + y,z; ii: 1 - x,-1/2 + y, -z), forming a one dimensional R-helical chains-like structure along [010] axis (Fig. 2).

Related literature top

For related literature, see: Li et al. (2005); Goodridge et al. (1988); Reich et al. (1975); Ye et al. (2002)

Experimental top

A solution of 4,7,7-trimethyl-2-methylselanyl-bicyclo[2.2.1]heptan-3-ol (1) (2.4 g, 9.7 mmol) and (3-bromo-propenyl)-trimethylsilane (3) (1.9 g, 9.7 mmol) in acetone (5 mL) was stirred at 273 K. The solid was collected and washed with ethyl ether to afford the selenonium salt (2) in 91% yield. Single crystals of (2) were obtained by slow evaporation from 10 mL of a methanolic solution containing 50 mg (2).

Refinement top

H atoms bonded to O atoms were located in a difference map and refined with distance restraints of O—H = 0.87 (10), and with Uiso(H) = 1.2Ueq(O). Other H atoms were positioned geometrically and refined using a riding model (including free rotation about the ethanol C—C bond), with C—H = 0.96–0.98 Å and with Uiso(H) = 1.2(1.5 for methyl groups) times Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SMART (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : View of the title compound, showing the labelling of the non-H atoms and 30% probability ellipsoids. H atoms have been omitted for clarity, except for H1D which is involved in hydrogen bonding.
[Figure 2] Fig. 2. : A view of the onedimensional R-helical chains along the [010] axis. H atoms have been omitted for clarity, except for H1D, H5, H11c, and H12B which are involved in hydrogen bonding.
[Figure 3] Fig. 3. : Reaction scheme.
[(1S,2S,3R,4R)-3-Hydroxy-4,7,7- trimethylbicyclo[2.2.1]hept-2-yl]methyl[(E)-3-(trimethylsilyl)prop-2- enyl]selenonium bromide top
Crystal data top
C17H33OSeSi+·BrF(000) = 452
Mr = 440.39Dx = 1.366 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 895 reflections
a = 7.555 (2) Åθ = 2.1–24.5°
b = 10.023 (2) ŵ = 3.67 mm1
c = 14.423 (3) ÅT = 291 K
β = 101.29 (3)°Bloc, colourless
V = 1071.0 (4) Å30.30 × 0.26 × 0.24 mm
Z = 2
Data collection top
Bruker SMART Apex CCD
diffractometer
3374 independent reflections
Radiation source: sealed tube1732 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
phi and ω scansθmax = 26.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 99
Tmin = 0.35, Tmax = 0.41k = 012
4460 measured reflectionsl = 017
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.046P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
3374 reflectionsΔρmax = 0.64 e Å3
170 parametersΔρmin = 0.74 e Å3
1 restraintAbsolute structure: Flack (1983), 1140 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (2)
Crystal data top
C17H33OSeSi+·BrV = 1071.0 (4) Å3
Mr = 440.39Z = 2
Monoclinic, P21Mo Kα radiation
a = 7.555 (2) ŵ = 3.67 mm1
b = 10.023 (2) ÅT = 291 K
c = 14.423 (3) Å0.30 × 0.26 × 0.24 mm
β = 101.29 (3)°
Data collection top
Bruker SMART Apex CCD
diffractometer
3374 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1732 reflections with I > 2σ(I)
Tmin = 0.35, Tmax = 0.41Rint = 0.035
4460 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.053H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.102Δρmax = 0.64 e Å3
S = 1.07Δρmin = 0.74 e Å3
3374 reflectionsAbsolute structure: Flack (1983), 1140 Friedel pairs
170 parametersAbsolute structure parameter: 0.01 (2)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.32321 (7)1.05851 (10)0.09364 (5)0.0584 (2)
C10.6248 (8)0.4347 (6)0.3285 (4)0.0404 (14)
H1A0.63350.34420.30790.061*
H1B0.53630.44000.36790.061*
H1C0.73990.46300.36370.061*
C20.7389 (6)0.5504 (10)0.2095 (4)0.0425 (13)
H2A0.81540.60830.25290.064*
H2B0.70850.59280.14880.064*
H2C0.80130.46830.20360.064*
C30.5706 (8)0.5219 (6)0.2454 (5)0.0498 (18)
C40.4232 (11)0.4559 (8)0.1682 (5)0.0445 (19)
H40.46150.37240.14280.053*
C50.3867 (6)0.5695 (8)0.0960 (4)0.0361 (12)
H50.48220.57100.05880.043*
C60.3996 (9)0.6917 (8)0.1552 (5)0.0398 (16)
H60.49630.74960.14220.048*
C70.4459 (9)0.6398 (7)0.2553 (4)0.0473 (15)
C80.2804 (6)0.5707 (9)0.2761 (4)0.0406 (14)
H8A0.17440.62640.25780.049*
H8B0.29550.54990.34280.049*
C90.2627 (8)0.4411 (7)0.2161 (5)0.0460 (15)
H9A0.27280.36190.25550.055*
H9B0.14990.43840.17040.055*
C100.5215 (9)0.7500 (7)0.3273 (5)0.047
H10A0.64070.77410.31960.071*
H10B0.52620.71750.39030.071*
H10C0.44440.82690.31660.071*
C110.2014 (9)0.3828 (7)0.0510 (5)0.043
H11A0.30200.39550.08160.064*
H11B0.09710.35760.09700.064*
H11C0.22940.31370.00430.064*
C120.2030 (8)0.6908 (7)0.0809 (4)0.0415 (15)
H12A0.16830.77800.06140.050*
H12B0.33100.69260.08200.050*
C130.0925 (8)0.6561 (7)0.1810 (4)0.0430 (15)
H130.03220.66630.19180.052*
C140.1643 (8)0.6141 (6)0.2502 (4)0.0385 (13)
H140.28930.60680.23950.046*
C150.0572 (9)0.3993 (7)0.3683 (5)0.047
H15A0.16960.40270.34680.071*
H15B0.02620.34360.32670.071*
H15C0.07710.36310.43110.071*
C160.1393 (8)0.6949 (7)0.4057 (5)0.041
H16A0.20220.67640.46890.061*
H16B0.08370.78130.40390.061*
H16C0.22310.69370.36360.061*
C170.1943 (7)0.5796 (7)0.4543 (4)0.049
H17A0.26310.49870.45220.073*
H17B0.27460.65360.43720.073*
H17C0.12590.59260.51710.073*
O10.2297 (6)0.7626 (5)0.1376 (3)0.0473 (11)
H1D0.248 (10)0.845 (8)0.125 (5)0.057*
Se10.15165 (6)0.54982 (7)0.01059 (4)0.04094 (15)
Si10.03564 (18)0.5673 (2)0.36882 (11)0.0395 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0503 (3)0.0494 (4)0.0775 (5)0.0034 (4)0.0172 (3)0.0074 (5)
C10.043 (3)0.043 (4)0.040 (3)0.000 (3)0.020 (3)0.000 (3)
C20.031 (2)0.049 (3)0.043 (3)0.012 (4)0.0060 (19)0.021 (5)
C30.038 (3)0.046 (4)0.053 (4)0.019 (3)0.020 (3)0.003 (3)
C40.059 (4)0.038 (4)0.034 (4)0.005 (3)0.004 (3)0.008 (3)
C50.035 (2)0.037 (3)0.035 (3)0.019 (3)0.0062 (18)0.005 (3)
C60.034 (3)0.048 (4)0.040 (4)0.005 (3)0.013 (3)0.003 (3)
C70.052 (3)0.047 (3)0.037 (4)0.001 (3)0.003 (3)0.006 (3)
C80.042 (2)0.049 (4)0.035 (3)0.016 (3)0.017 (2)0.009 (3)
C90.034 (3)0.046 (4)0.055 (4)0.004 (3)0.004 (3)0.005 (3)
C100.0490.0490.0490.0000.0210.000
C110.0440.0440.0440.0000.0180.000
C120.039 (3)0.051 (4)0.036 (3)0.020 (3)0.012 (3)0.009 (3)
C130.045 (3)0.048 (4)0.033 (3)0.005 (3)0.002 (3)0.014 (3)
C140.044 (3)0.044 (3)0.029 (3)0.004 (2)0.012 (2)0.002 (3)
C150.0490.0490.0490.0000.0210.000
C160.0430.0430.0430.0000.0200.000
C170.0500.0500.0500.0000.0200.000
O10.046 (2)0.049 (3)0.038 (2)0.010 (2)0.0126 (19)0.003 (2)
Se10.0358 (2)0.0516 (3)0.0339 (3)0.0028 (4)0.00292 (19)0.0086 (4)
Si10.0420 (7)0.0402 (9)0.0380 (8)0.0077 (9)0.0119 (6)0.0030 (10)
Geometric parameters (Å, º) top
Br1—O13.143 (5)C10—H10B0.9600
C1—C31.475 (9)C10—H10C0.9600
C1—H1A0.9600C11—Se11.965 (7)
C1—H1B0.9600C11—H11A0.9600
C1—H1C0.9600C11—H11B0.9600
C2—C31.492 (8)C11—H11C0.9600
C2—H2A0.9600C12—C131.560 (9)
C2—H2B0.9600C12—Se12.022 (6)
C2—H2C0.9600C12—H12A0.9700
C3—C71.535 (9)C12—H12B0.9700
C3—C41.559 (9)C13—C141.295 (8)
C4—C91.515 (10)C13—H130.9300
C4—C51.531 (10)C14—Si11.855 (6)
C4—H40.9800C14—H140.9300
C5—C61.484 (10)C15—Si11.825 (7)
C5—Se11.963 (5)C15—H15A0.9600
C5—H50.9800C15—H15B0.9600
C6—O11.446 (8)C15—H15C0.9600
C6—C71.510 (9)C16—Si11.842 (7)
C6—H60.9800C16—H16A0.9600
C7—C81.510 (9)C16—H16B0.9600
C7—C101.546 (9)C16—H16C0.9600
C8—C91.552 (10)C17—Si11.884 (5)
C8—H8A0.9700C17—H17A0.9600
C8—H8B0.9700C17—H17B0.9600
C9—H9A0.9700C17—H17C0.9600
C9—H9B0.9700O1—H1D0.87 (8)
C10—H10A0.9600
C3—C1—H1A109.5C7—C10—H10A109.5
C3—C1—H1B109.5C7—C10—H10B109.5
H1A—C1—H1B109.5H10A—C10—H10B109.5
C3—C1—H1C109.5C7—C10—H10C109.5
H1A—C1—H1C109.5H10A—C10—H10C109.5
H1B—C1—H1C109.5H10B—C10—H10C109.5
C3—C2—H2A109.5Se1—C11—H11A109.5
C3—C2—H2B109.5Se1—C11—H11B109.5
H2A—C2—H2B109.5H11A—C11—H11B109.5
C3—C2—H2C109.5Se1—C11—H11C109.5
H2A—C2—H2C109.5H11A—C11—H11C109.5
H2B—C2—H2C109.5H11B—C11—H11C109.5
C1—C3—C2106.0 (5)C13—C12—Se1108.2 (4)
C1—C3—C7117.3 (6)C13—C12—H12A110.1
C2—C3—C7117.8 (6)Se1—C12—H12A110.1
C1—C3—C4112.0 (5)C13—C12—H12B110.1
C2—C3—C4111.8 (6)Se1—C12—H12B110.1
C7—C3—C491.6 (5)H12A—C12—H12B108.4
C9—C4—C5109.2 (6)C14—C13—C12123.8 (5)
C9—C4—C3103.9 (6)C14—C13—H13118.1
C5—C4—C3100.3 (5)C12—C13—H13118.1
C9—C4—H4114.0C13—C14—Si1124.7 (5)
C5—C4—H4114.0C13—C14—H14117.6
C3—C4—H4114.0Si1—C14—H14117.6
C6—C5—C4103.8 (5)Si1—C15—H15A109.5
C6—C5—Se1113.2 (4)Si1—C15—H15B109.5
C4—C5—Se1111.9 (5)H15A—C15—H15B109.5
C6—C5—H5109.3Si1—C15—H15C109.5
C4—C5—H5109.3H15A—C15—H15C109.5
Se1—C5—H5109.3H15B—C15—H15C109.5
O1—C6—C5110.4 (5)Si1—C16—H16A109.5
O1—C6—C7111.6 (5)Si1—C16—H16B109.5
C5—C6—C7104.1 (6)H16A—C16—H16B109.5
O1—C6—H6110.2Si1—C16—H16C109.5
C5—C6—H6110.2H16A—C16—H16C109.5
C7—C6—H6110.2H16B—C16—H16C109.5
C6—C7—C8107.5 (5)Si1—C17—H17A109.5
C6—C7—C3102.0 (5)Si1—C17—H17B109.5
C8—C7—C3102.2 (5)H17A—C17—H17B109.5
C6—C7—C10112.5 (6)Si1—C17—H17C109.5
C8—C7—C10114.0 (6)H17A—C17—H17C109.5
C3—C7—C10117.4 (5)H17B—C17—H17C109.5
C7—C8—C9105.0 (5)C6—O1—Br1105.8 (4)
C7—C8—H8A110.8C6—O1—H1D109 (5)
C9—C8—H8A110.8C5—Se1—C1198.0 (3)
C7—C8—H8B110.8C5—Se1—C1294.2 (3)
C9—C8—H8B110.8C11—Se1—C12102.9 (3)
H8A—C8—H8B108.8C15—Si1—C16112.8 (3)
C4—C9—C8100.5 (5)C15—Si1—C14111.2 (3)
C4—C9—H9A111.7C16—Si1—C14107.9 (3)
C8—C9—H9A111.7C15—Si1—C17110.9 (3)
C4—C9—H9B111.7C16—Si1—C17106.1 (3)
C8—C9—H9B111.7C14—Si1—C17107.6 (3)
H9A—C9—H9B109.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1D···Br10.87 (8)2.28 (8)3.143 (5)175 (7)
C5—H5···Br1i0.982.883.827 (5)164
C11—H11C···Br1ii0.962.943.874 (7)165
C12—H12B···Br1i0.972.973.855 (5)152
Symmetry codes: (i) x+1, y1/2, z; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC17H33OSeSi+·Br
Mr440.39
Crystal system, space groupMonoclinic, P21
Temperature (K)291
a, b, c (Å)7.555 (2), 10.023 (2), 14.423 (3)
β (°) 101.29 (3)
V3)1071.0 (4)
Z2
Radiation typeMo Kα
µ (mm1)3.67
Crystal size (mm)0.30 × 0.26 × 0.24
Data collection
DiffractometerBruker SMART Apex CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.35, 0.41
No. of measured, independent and
observed [I > 2σ(I)] reflections
4460, 3374, 1732
Rint0.035
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.102, 1.07
No. of reflections3374
No. of parameters170
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.64, 0.74
Absolute structureFlack (1983), 1140 Friedel pairs
Absolute structure parameter0.01 (2)

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1D···Br10.87 (8)2.28 (8)3.143 (5)175 (7)
C5—H5···Br1i0.982.883.827 (5)163.5
C11—H11C···Br1ii0.962.943.874 (7)164.5
C12—H12B···Br1i0.972.973.855 (5)152.0
Symmetry codes: (i) x+1, y1/2, z; (ii) x, y1, z.
 

Acknowledgements

We thank the National Natural Science Foundation of China for its financial support of projects 20332050 and 20572042

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGoodridge, R. J., Hambley, T. W., Hayes, R. K. & Ridley, D. D. (1988). J. Org. Chem. 53, 2881–2889.  CSD CrossRef CAS Google Scholar
First citationLi, X. L., Wang, Y. & Huang, Z. Z. (2005). Aust. J. Chem. 58, 749–752.  Web of Science CrossRef CAS Google Scholar
First citationReich, H. J., Renga, J. M. & Reich, I. J. (1975). J. Am. Chem. Soc. 97, 5434–5447.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYe, S., Huang, Z. Z., Xia, C. A., Tang, Y. & Dai, L. X. (2002). J. Am. Chem. Soc. 124, 2432–2433.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds