organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4′-Di­methyl-2,2′-[(3-aza­pentane-1,5-di­yl)bis­­(nitrilo­methyl­­idyne)]diphenol

aSchool of Science, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China, and bXi'an LiBang Pharmaceutical Co. Ltd, Xi'an 710086, People's Republic of China
*Correspondence e-mail: fangfangdang@yahoo.com.cn

(Received 14 June 2008; accepted 22 June 2008; online 28 June 2008)

In the crystal structure of the title Schiff base, C20H25N3O2, the salicylaldimine groups at each end of the mol­ecule are essentially planar and make a dihedral angle of 84.94 (3)° with each other. There are strong intra­molecular O—H⋯N hydrogen bonds and a weak inter­molecular N—H⋯O hydrogen bond.

Related literature

For related literature, see: Rodriguez de Barbarin et al. (1994[Rodriguez de Barbarin, C. O., Bailey, N. A., Fenton, D. E. & He, Q. (1994). Inorg. Chim. Acta, 219, 205-207.]).

[Scheme 1]

Experimental

Crystal data
  • C20H25N3O2

  • Mr = 339.43

  • Orthorhombic, P c a 21

  • a = 9.132 (4) Å

  • b = 5.834 (3) Å

  • c = 34.365 (16) Å

  • V = 1830.8 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 (2) K

  • 0.34 × 0.32 × 0.28 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.970, Tmax = 0.981

  • 14593 measured reflections

  • 2125 independent reflections

  • 1867 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.108

  • S = 1.07

  • 2125 reflections

  • 228 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N1 0.82 1.89 2.614 (4) 146
O2—H2A⋯N2 0.82 1.88 2.602 (3) 146
N3—H3A⋯O1i 0.86 2.54 3.140 (3) 128
Symmetry code: (i) x, y-1, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

It was reported that zinc coordinated by phenolate groups in a Schiff-base ligand can act as a nucleophile to catalyze ester hydrolysis (Rodriguez de Barbarin et al., 1994). These results promoted us to investigate linear amine-phenol ligands obtained by reducing Schiff bases, which have greater flexibility, better water solubility and more inertness to hydrolytic decomposition than corresponding Schiff bases. While a number of their complexes with transition metals and main group metals have been reported, the crystal structures of these Schiff-base ligands remain relatively unexplored. So we present here the crystal structure of the title compound, N,N'-bis(5-methylsalicylidene)-1,5-diamino-3-azapentane, (I).

The molecular structure of (I) is illustrated in Fig. 1. Compound (I) is a typical salicylaldehyde schiff derivative with normal geometric parameters. The two pendant moieties attached to the ends of the C—C—N—C—C backbone adopt a cis conformation. The N3 atom exhibits tetrahedral sp3 hybridization, whereas the two amide N atoms display planar sp2 hybridization. The C8—N1 and C13—N2 bonds show the expected double-bond character. In our case, the salicylaldimine moiety is nearly planar. The dihedral angle between the salicylaldimine groups is 84.94 (3)°. The crystal structure of (I) is stabilized by intramolecular O—H···N hydrogen bonds and an intermolecular N—H···O hydrogen bond (Table 1).

Related literature top

For related literature, see: Rodriguez de Barbarin et al. (1994).

Experimental top

N-(2-aminoethyl)ethane-1,2-diamine (0.01 mol, 1.03 g) and 2-hydroxy-5-methylbenzaldehyde (0.02 mol, 2.72 g) were dissolved in ethanol and the solution was refluxed for 1 h. After evaporation, a crude product was recrystallized twice from ethanol to give a pure yellow product. Yield: 80.5%. Calcd. for C20H25N3O2: C 70.77, H 7.42, N 12.38; Found: C 71.02, H 7.47, N 12.27%.

Refinement top

All H atoms were located from a difference Fourier map. Then H atoms were placed in geometrically idealized positions (C—H = 0.93–0.97 Å, O—H = 0.82 Å and N—H = 0.86 Å) and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C, N) or 1.5Ueq(O). In the absence of significant anomalous scattering effects, Friedel pairs have been merged.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.
4,4'-Dimethyl-2,2'-[(3-azapentane-1,5-diyl)bis(nitrilomethylidyne)]diphenol top
Crystal data top
C20H25N3O2F(000) = 728
Mr = 339.43Dx = 1.231 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 2105 reflections
a = 9.132 (4) Åθ = 1.0–27.5°
b = 5.834 (3) ŵ = 0.08 mm1
c = 34.365 (16) ÅT = 296 K
V = 1830.8 (15) Å3Block, yellow
Z = 40.34 × 0.32 × 0.28 mm
Data collection top
Bruker APEXII area-detector
diffractometer
2125 independent reflections
Radiation source: fine-focus sealed tube1867 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.970, Tmax = 0.981k = 77
14593 measured reflectionsl = 4444
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0588P)2 + 0.2052P]
where P = (Fo2 + 2Fc2)/3
2125 reflections(Δ/σ)max < 0.001
228 parametersΔρmax = 0.15 e Å3
1 restraintΔρmin = 0.18 e Å3
Crystal data top
C20H25N3O2V = 1830.8 (15) Å3
Mr = 339.43Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 9.132 (4) ŵ = 0.08 mm1
b = 5.834 (3) ÅT = 296 K
c = 34.365 (16) Å0.34 × 0.32 × 0.28 mm
Data collection top
Bruker APEXII area-detector
diffractometer
2125 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1867 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.981Rint = 0.031
14593 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0371 restraint
wR(F2) = 0.108H-atom parameters constrained
S = 1.07Δρmax = 0.15 e Å3
2125 reflectionsΔρmin = 0.18 e Å3
228 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.8321 (3)1.4932 (4)0.36346 (6)0.0766 (7)
H1A0.88621.41810.34930.115*
O20.7661 (2)0.0213 (3)0.18913 (5)0.0594 (5)
H2A0.83050.09600.19990.089*
N11.0105 (2)1.1600 (4)0.34511 (6)0.0506 (5)
N20.9202 (2)0.3855 (3)0.20445 (5)0.0479 (4)
N31.0062 (2)0.7202 (3)0.29474 (6)0.0520 (5)
H3A1.02100.65830.31710.062*
C10.8251 (3)1.0370 (4)0.43648 (7)0.0455 (5)
H1C0.86860.89600.44160.055*
C20.6782 (4)0.9888 (6)0.49830 (9)0.0762 (9)
H2B0.75440.88300.50510.114*
H2C0.58950.90590.49310.114*
H2D0.66221.09330.51950.114*
C30.7226 (3)1.1209 (4)0.46259 (7)0.0495 (6)
C40.6605 (3)1.3338 (5)0.45429 (7)0.0545 (6)
H4A0.59231.39470.47150.065*
C50.6967 (3)1.4566 (4)0.42153 (8)0.0563 (6)
H5A0.65261.59770.41700.068*
C60.7992 (3)1.3710 (4)0.39506 (7)0.0487 (5)
C70.8657 (2)1.1551 (4)0.40291 (6)0.0399 (5)
C80.9752 (2)1.0605 (4)0.37676 (7)0.0437 (5)
H8A1.02080.92330.38330.052*
C91.1263 (3)1.0645 (5)0.32037 (7)0.0584 (7)
H9A1.18360.95600.33540.070*
H9B1.19111.18710.31220.070*
C101.0648 (3)0.9444 (4)0.28455 (7)0.0532 (6)
H10A0.98791.03760.27320.064*
H10B1.14160.92660.26530.064*
C110.9210 (3)0.6085 (4)0.26450 (6)0.0472 (5)
H11A0.84770.71520.25500.057*
H11B0.86980.47880.27580.057*
C121.0123 (3)0.5243 (5)0.23003 (7)0.0521 (6)
H12A1.05100.65430.21580.063*
H12B1.09400.43350.23940.063*
C130.8784 (3)0.4705 (4)0.17204 (7)0.0441 (5)
H13A0.91250.61430.16470.053*
C140.7784 (2)0.3473 (3)0.14626 (6)0.0412 (5)
C150.7306 (3)0.4500 (4)0.11167 (7)0.0466 (5)
H15A0.76830.59250.10480.056*
C160.5766 (4)0.4651 (6)0.05050 (9)0.0746 (8)
H16A0.47340.43990.04740.112*
H16B0.62790.40360.02850.112*
H16C0.59550.62660.05240.112*
C170.6291 (3)0.3464 (4)0.08737 (7)0.0519 (6)
C180.5756 (3)0.1310 (4)0.09836 (8)0.0562 (6)
H18A0.50740.05820.08250.067*
C190.6215 (3)0.0237 (4)0.13212 (8)0.0534 (6)
H19A0.58380.11930.13870.064*
C200.7242 (3)0.1288 (4)0.15635 (7)0.0448 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0892 (16)0.0680 (11)0.0725 (13)0.0077 (11)0.0161 (12)0.0338 (10)
O20.0733 (12)0.0477 (9)0.0574 (10)0.0009 (8)0.0025 (9)0.0103 (8)
N10.0448 (10)0.0629 (12)0.0440 (10)0.0085 (9)0.0049 (8)0.0061 (9)
N20.0467 (10)0.0535 (11)0.0434 (10)0.0017 (9)0.0034 (9)0.0054 (9)
N30.0551 (11)0.0628 (12)0.0381 (9)0.0069 (10)0.0017 (9)0.0057 (9)
C10.0484 (13)0.0446 (11)0.0435 (12)0.0005 (9)0.0054 (10)0.0057 (9)
C20.091 (2)0.085 (2)0.0526 (15)0.0057 (18)0.0175 (17)0.0134 (15)
C30.0516 (14)0.0570 (13)0.0400 (12)0.0081 (11)0.0041 (10)0.0013 (10)
C40.0518 (14)0.0562 (14)0.0554 (14)0.0016 (11)0.0111 (11)0.0116 (11)
C50.0554 (15)0.0471 (12)0.0664 (16)0.0058 (11)0.0051 (13)0.0010 (11)
C60.0491 (13)0.0460 (12)0.0511 (12)0.0032 (10)0.0004 (10)0.0066 (10)
C70.0378 (11)0.0429 (10)0.0391 (11)0.0038 (8)0.0007 (9)0.0001 (8)
C80.0377 (11)0.0502 (12)0.0432 (11)0.0037 (9)0.0034 (9)0.0039 (9)
C90.0437 (13)0.0815 (17)0.0501 (13)0.0115 (13)0.0066 (11)0.0145 (13)
C100.0551 (14)0.0640 (14)0.0405 (12)0.0100 (11)0.0078 (11)0.0025 (11)
C110.0450 (12)0.0540 (12)0.0427 (12)0.0070 (10)0.0053 (10)0.0001 (10)
C120.0410 (11)0.0667 (14)0.0487 (13)0.0014 (11)0.0006 (10)0.0066 (11)
C130.0424 (11)0.0437 (11)0.0463 (12)0.0010 (9)0.0062 (9)0.0030 (9)
C140.0428 (11)0.0384 (10)0.0422 (11)0.0013 (9)0.0085 (9)0.0041 (9)
C150.0522 (13)0.0417 (11)0.0460 (12)0.0025 (10)0.0059 (10)0.0008 (9)
C160.089 (2)0.083 (2)0.0516 (15)0.0001 (18)0.0152 (15)0.0008 (14)
C170.0567 (15)0.0551 (13)0.0438 (12)0.0038 (11)0.0019 (11)0.0057 (10)
C180.0580 (15)0.0545 (14)0.0559 (15)0.0049 (11)0.0013 (12)0.0167 (12)
C190.0575 (15)0.0396 (11)0.0632 (15)0.0071 (10)0.0107 (12)0.0086 (11)
C200.0494 (12)0.0386 (11)0.0463 (12)0.0021 (9)0.0108 (10)0.0029 (9)
Geometric parameters (Å, º) top
O1—C61.333 (3)C9—H9A0.9700
O1—H1A0.8200C9—H9B0.9700
O2—C201.345 (3)C10—H10A0.9700
O2—H2A0.8200C10—H10B0.9700
N1—C81.274 (3)C11—C121.530 (3)
N1—C91.467 (3)C11—H11A0.9700
N2—C131.277 (3)C11—H11B0.9700
N2—C121.461 (3)C12—H12A0.9700
N3—C111.453 (3)C12—H12B0.9700
N3—C101.456 (3)C13—C141.461 (3)
N3—H3A0.8600C13—H13A0.9300
C1—C31.386 (3)C8—H8A0.9300
C1—C71.394 (3)C14—C151.401 (3)
C1—H1C0.9300C14—C201.411 (3)
C2—C31.505 (4)C15—C171.386 (3)
C2—H2B0.9600C15—H15A0.9300
C2—H2C0.9600C16—C171.521 (4)
C2—H2D0.9600C16—H16A0.9600
C3—C41.395 (4)C16—H16B0.9600
C4—C51.375 (4)C16—H16C0.9600
C4—H4A0.9300C17—C181.400 (4)
C5—C61.397 (3)C18—C191.383 (4)
C5—H5A0.9300C18—H18A0.9300
C6—C71.424 (3)C19—C201.396 (3)
C7—C81.453 (3)C19—H19A0.9300
C9—C101.524 (3)
C6—O1—H1A109.5N3—C11—C12113.95 (19)
C20—O2—H2A109.5N3—C11—H11A108.8
C8—N1—C9120.3 (2)C12—C11—H11A108.8
C13—N2—C12118.8 (2)N3—C11—H11B108.8
C11—N3—C10115.3 (2)C12—C11—H11B108.8
C11—N3—H3A122.3H11A—C11—H11B107.7
C10—N3—H3A122.3N2—C12—C11109.28 (19)
C3—C1—C7122.7 (2)N2—C12—H12A109.8
C3—C1—H1C118.6C11—C12—H12A109.8
C7—C1—H1C118.6N2—C12—H12B109.8
C3—C2—H2B109.5C11—C12—H12B109.8
C3—C2—H2C109.5H12A—C12—H12B108.3
H2B—C2—H2C109.5N2—C13—C14121.6 (2)
C3—C2—H2D109.5N2—C13—H13A119.2
H2B—C2—H2D109.5C14—C13—H13A119.2
H2C—C2—H2D109.5N1—C8—C7121.9 (2)
C1—C3—C4117.2 (2)N1—C8—H8A119.0
C1—C3—C2122.0 (2)C7—C8—H8A119.0
C4—C3—C2120.9 (2)C15—C14—C20119.0 (2)
C5—C4—C3122.3 (2)C15—C14—C13119.9 (2)
C5—C4—H4A118.9C20—C14—C13121.0 (2)
C3—C4—H4A118.9C17—C15—C14122.2 (2)
C4—C5—C6120.5 (2)C17—C15—H15A118.9
C4—C5—H5A119.7C14—C15—H15A118.9
C6—C5—H5A119.7C17—C16—H16A109.5
O1—C6—C5119.4 (2)C17—C16—H16B109.5
O1—C6—C7122.0 (2)H16A—C16—H16B109.5
C5—C6—C7118.6 (2)C17—C16—H16C109.5
C1—C7—C6118.7 (2)H16A—C16—H16C109.5
C1—C7—C8120.4 (2)H16B—C16—H16C109.5
C6—C7—C8120.8 (2)C15—C17—C18117.5 (2)
N1—C9—C10112.2 (2)C15—C17—C16120.9 (2)
N1—C9—H9A109.2C18—C17—C16121.5 (3)
C10—C9—H9A109.2C19—C18—C17121.8 (2)
N1—C9—H9B109.2C19—C18—H18A119.1
C10—C9—H9B109.2C17—C18—H18A119.1
H9A—C9—H9B107.9C18—C19—C20120.3 (2)
N3—C10—C9110.8 (2)C18—C19—H19A119.8
N3—C10—H10A109.5C20—C19—H19A119.8
C9—C10—H10A109.5O2—C20—C19119.1 (2)
N3—C10—H10B109.5O2—C20—C14121.8 (2)
C9—C10—H10B109.5C19—C20—C14119.1 (2)
H10A—C10—H10B108.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.821.892.614 (4)146
O2—H2A···N20.821.882.602 (3)146
N3—H3A···O1i0.862.543.140 (3)128
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC20H25N3O2
Mr339.43
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)296
a, b, c (Å)9.132 (4), 5.834 (3), 34.365 (16)
V3)1830.8 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.34 × 0.32 × 0.28
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.970, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
14593, 2125, 1867
Rint0.031
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.108, 1.07
No. of reflections2125
No. of parameters228
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.18

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.821.892.614 (4)146
O2—H2A···N20.821.882.602 (3)146
N3—H3A···O1i0.862.543.140 (3)128
Symmetry code: (i) x, y1, z.
 

Acknowledgements

We are grateful to the Starting Fund for the Doctoral Program of Xi'an University of Architecture & Technology (DB12051) for financial support.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationRodriguez de Barbarin, C. O., Bailey, N. A., Fenton, D. E. & He, Q. (1994). Inorg. Chim. Acta, 219, 205–207.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds