metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
RETRACTED ARTICLE

This article has been retracted. To view the retraction notice, click here.

Retracted: Di­azido­bis­(2,2′-bi­imidazole)iron(II)

aCollege of Food and Biological Engineering, Shandong Institute of Light Industry, Jinan 250353, People's Republic of China, and bMaize Research Insitute, Shandong Academy of Agricultural Science, Jinan 250100, People's Republic of China
*Correspondence e-mail: lujianghao001@yahoo.com.cn

(Received 16 June 2008; accepted 19 June 2008; online 25 June 2008)

In the title compound, [Fe(N3)2(C6H6N4)2], the Fe atom is bonded to two azide ions located in axial positions and to two equatorially positioned bidentate biimidazole ligands, forming a slightly distorterd octa­hedron. The non-H atoms of the equatorial plane are coplanar, with a mean deviation of 0.0355 (2) Å. The FeII cation lies on an inversion centre. Thus, the asymmetric unit comprises one half-mol­ecule.

Related literature

For related literature, see: Caneschi et al. (1989[Caneschi, A., Gatteschi, D., Renard, J. P., Rey, P. & Sessoli, R. (1989). J. Am. Chem. Soc. 111, 785-786.]); Tsukuda et al. (2002[Tsukuda, T., Suzuki, T. & Kaizaki, S. (2002). J. Chem. Soc. Dalton Trans. pp. 1721-1726.]); Vostrikova et al. (2000[Vostrikova, K. E., Luneau, D., Wernsdorfer, W., Rey, P. & Verdaguer, M. (2000). J. Am. Chem. Soc. 122, 718-719.]); Kuchar et al. (2003[Kuchar, J., Cernak, J., Zak, Z. & Massa, W. (2003). Monogr. Ser. Int. Conf. Coord. Chem. 6, 127-132.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(N3)2(C6H6N4)2]

  • Mr = 404.17

  • Monoclinic, C 2/c

  • a = 12.487 (3) Å

  • b = 9.012 (2) Å

  • c = 14.222 (3) Å

  • β = 91.91 (3)°

  • V = 1599.6 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.98 mm−1

  • T = 293 (2) K

  • 0.14 × 0.12 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.875, Tmax = 0.909

  • 1964 measured reflections

  • 1504 independent reflections

  • 1250 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.118

  • S = 1.00

  • 1504 reflections

  • 124 parameters

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Selected geometric parameters (Å, °)

Fe1—N5 2.100 (2)
Fe1—N4 2.123 (2)
Fe1—N2 2.134 (3)
N5—Fe1—N5i 180
N5—Fe1—N4 78.40 (9)
N5—Fe1—N2 88.84 (10)
N4—Fe1—N4i  
N4—Fe1—N2 88.71 (10)
N2i—Fe1—N2 180
Symmetry code: (i) [-x+{\script{3\over 2}}, -y+{\script{5\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Different kinds of metal-radical coordination architectures with appropriate organic radicals and coligands have been an important subject during the last decade because of their potential use for molecule-based magnetic materials and optical devices (Caneschi et al., 1989; Tsukuda et al., 2002; Vostrikova et al., 2000; Kuchar et al., 2003). The organic species, such as tridentate nitronyl nitroxide radical, and bidentate nitroxide radical could result in a large number of building blocks with the potential applications. In this paper, we report the structure of the title compound, (I).

The Fe atom, located at the inversion centre, is bonded to two azide ions and the two bidentate biimidizole ligands, forming a slightly distorterd octahedron (Fig. 1). The four nitrogen atoms belonging to two biimidizole ligands lie in the equatorial plane and the two nitrogen atoms from azide groups lie at the axial coordination sites. In the equatorial plane the Fe—N(imidzole) bond lengths are in the range of 2.095 (2)–2.113 (2) /%A (Table 1).

Related literature top

For related literature, see: Caneschi et al. (1989); Tsukuda et al. (2002); Vostrikova et al. (2000); Kuchar et al. (2003).

Experimental top

A mixture of iron(II) dichloride anhydrous (1 mmoL), 2,2'-biimidazole(1 mmoL), and sodium azide (2 mmol) in 20 mL methanol was refluxed for several h. The above cooled solution was filterated and the filtrate was kept in the ice box. One week later, colourless blocks of (I) were obtained with the yield of ca 8%. Anal. Calc. for C12H8FeN14: C 35.63, H 1.98, N 48.49%; Found: C 35.58, H 1.96, N 48.45%.

Refinement top

All H atoms were placed in calculated positions with C—H = 0.93Å and refined as riding with Uiso(H) = 1.2Ueq(carrier).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) around FeII drawn with the 30% probability displacement ellipsoids for the non-hydrogen atoms.
Diazidobis(2,2'-biimidazole)iron(II) top
Crystal data top
[Fe(N3)2(C6H6N4)2]F(000) = 816
Mr = 404.17Dx = 1.678 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1504 reflections
a = 12.487 (3) Åθ = 2.8–25.7°
b = 9.012 (2) ŵ = 0.98 mm1
c = 14.222 (3) ÅT = 293 K
β = 91.91 (3)°Block, colourless
V = 1599.6 (6) Å30.14 × 0.12 × 0.10 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
1504 independent reflections
Radiation source: fine-focus sealed tube1250 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 25.7°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 115
Tmin = 0.875, Tmax = 0.909k = 110
1964 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.075P)2 + 1.004P]
where P = (Fo2 + 2Fc2)/3
1504 reflections(Δ/σ)max = 0.006
124 parametersΔρmax = 0.65 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
[Fe(N3)2(C6H6N4)2]V = 1599.6 (6) Å3
Mr = 404.17Z = 4
Monoclinic, C2/cMo Kα radiation
a = 12.487 (3) ŵ = 0.98 mm1
b = 9.012 (2) ÅT = 293 K
c = 14.222 (3) Å0.14 × 0.12 × 0.10 mm
β = 91.91 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
1504 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1250 reflections with I > 2σ(I)
Tmin = 0.875, Tmax = 0.909Rint = 0.022
1964 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.00Δρmax = 0.65 e Å3
1504 reflectionsΔρmin = 0.26 e Å3
124 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.75001.25000.50000.0610 (9)
C10.6773 (3)1.0317 (4)0.3216 (2)0.0554 (7)
H10.62791.09050.28830.067*
C20.7058 (3)0.8903 (4)0.2969 (2)0.0583 (8)
H20.68050.83740.24460.070*
C30.9629 (2)0.9250 (4)0.6284 (2)0.0555 (8)
H31.01260.88250.67040.067*
C40.9159 (2)1.0612 (4)0.63750 (19)0.0543 (7)
H40.92901.12700.68690.065*
C50.7896 (2)0.9564 (3)0.42568 (19)0.0456 (6)
C60.8539 (2)0.9633 (3)0.51069 (18)0.0454 (6)
N10.60420 (19)1.0322 (3)0.57863 (17)0.0519 (6)
N20.6173 (2)1.1634 (3)0.57318 (18)0.0544 (6)
N30.5894 (2)0.9020 (3)0.5859 (2)0.0697 (8)
N40.73154 (18)1.0735 (3)0.40187 (16)0.0499 (6)
N50.84709 (18)1.0851 (3)0.56302 (15)0.0491 (6)
N60.92402 (18)0.8623 (3)0.54644 (16)0.0498 (6)
N70.7786 (2)0.8422 (3)0.36365 (16)0.0517 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.064 (2)0.067 (2)0.0510 (18)0.0005 (18)0.0087 (15)0.0092 (16)
C10.0573 (17)0.0577 (18)0.0505 (15)0.0058 (14)0.0099 (13)0.0031 (14)
C20.0618 (18)0.064 (2)0.0489 (16)0.0009 (16)0.0092 (14)0.0094 (14)
C30.0499 (16)0.069 (2)0.0472 (15)0.0174 (15)0.0050 (12)0.0040 (14)
C40.0513 (16)0.0661 (19)0.0448 (14)0.0160 (15)0.0081 (12)0.0049 (13)
C50.0440 (14)0.0452 (15)0.0473 (14)0.0058 (12)0.0004 (11)0.0026 (12)
C60.0454 (14)0.0474 (16)0.0435 (13)0.0084 (12)0.0018 (11)0.0004 (11)
N10.0492 (14)0.0514 (16)0.0547 (14)0.0132 (11)0.0061 (11)0.0075 (11)
N20.0528 (14)0.0487 (16)0.0614 (15)0.0104 (12)0.0006 (11)0.0037 (12)
N30.0706 (18)0.0500 (17)0.088 (2)0.0088 (14)0.0093 (15)0.0077 (15)
N40.0497 (13)0.0521 (15)0.0474 (12)0.0085 (11)0.0060 (10)0.0052 (11)
N50.0462 (13)0.0545 (15)0.0463 (12)0.0117 (11)0.0042 (10)0.0045 (11)
N60.0476 (13)0.0525 (14)0.0491 (12)0.0130 (11)0.0005 (10)0.0034 (11)
N70.0553 (14)0.0513 (15)0.0482 (12)0.0048 (12)0.0012 (10)0.0068 (11)
Geometric parameters (Å, º) top
Fe1—N52.100 (2)C3—C41.368 (4)
Fe1—N5i2.100 (2)C3—H30.9300
Fe1—N4i2.123 (2)C4—N51.359 (3)
Fe1—N42.123 (2)C4—H40.9300
Fe1—N2i2.134 (3)C5—N41.318 (4)
Fe1—N22.134 (3)C5—N71.360 (4)
C1—N41.361 (4)C5—C61.430 (4)
C1—C21.373 (4)C6—N51.330 (4)
C1—H10.9300C6—N61.351 (4)
C2—N71.363 (4)N1—N31.193 (4)
C2—H20.9300N1—N21.197 (3)
C3—N61.369 (4)
N5—Fe1—N5i180.000 (1)N6—C3—H3126.0
N5—Fe1—N4i101.60 (9)C4—C3—H3126.0
N5i—Fe1—N4i78.40 (9)N5—C4—C3109.3 (3)
N5—Fe1—N478.40 (9)N5—C4—H4125.4
N5i—Fe1—N4101.60 (9)C3—C4—H4125.4
N4i—Fe1—N4180.000 (1)N4—C5—N7113.3 (2)
N5—Fe1—N2i91.16 (10)N4—C5—C6118.1 (2)
N5i—Fe1—N2i88.84 (10)N7—C5—C6128.6 (3)
N4i—Fe1—N2i88.71 (10)N5—C6—N6113.4 (2)
N4—Fe1—N2i91.29 (10)N5—C6—C5117.7 (2)
N5—Fe1—N288.84 (10)N6—C6—C5128.9 (3)
N5i—Fe1—N291.16 (10)N3—N1—N2178.3 (3)
N4i—Fe1—N291.29 (10)N1—N2—Fe1120.2 (2)
N4—Fe1—N288.71 (10)C5—N4—C1104.4 (2)
N2i—Fe1—N2180.0C5—N4—Fe1112.58 (18)
N4—C1—C2110.2 (3)C1—N4—Fe1143.0 (2)
N4—C1—H1124.9C6—N5—C4104.8 (2)
C2—C1—H1124.9C6—N5—Fe1113.05 (17)
N7—C2—C1106.8 (3)C4—N5—Fe1141.8 (2)
N7—C2—H2126.6C6—N6—C3104.4 (2)
C1—C2—H2126.6C5—N7—C2105.2 (2)
N6—C3—C4108.0 (2)
Symmetry code: (i) x+3/2, y+5/2, z+1.

Experimental details

Crystal data
Chemical formula[Fe(N3)2(C6H6N4)2]
Mr404.17
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)12.487 (3), 9.012 (2), 14.222 (3)
β (°) 91.91 (3)
V3)1599.6 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.98
Crystal size (mm)0.14 × 0.12 × 0.10
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.875, 0.909
No. of measured, independent and
observed [I > 2σ(I)] reflections
1964, 1504, 1250
Rint0.022
(sin θ/λ)max1)0.611
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.118, 1.00
No. of reflections1504
No. of parameters124
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.65, 0.26

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Fe1—N52.100 (2)Fe1—N22.134 (3)
Fe1—N42.123 (2)
N5—Fe1—N5i180.000 (1)N4—Fe1—N288.71 (10)
N5—Fe1—N478.40 (9)N2i—Fe1—N2180.0
N5—Fe1—N288.84 (10)
Symmetry code: (i) x+3/2, y+5/2, z+1.
 

Acknowledgements

The authors thank the National Ministry of Science and Technology of China for support (grant No. 2001CB6105–07).

References

First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCaneschi, A., Gatteschi, D., Renard, J. P., Rey, P. & Sessoli, R. (1989). J. Am. Chem. Soc. 111, 785–786.  CrossRef CAS Web of Science Google Scholar
First citationKuchar, J., Cernak, J., Zak, Z. & Massa, W. (2003). Monogr. Ser. Int. Conf. Coord. Chem. 6, 127–132.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTsukuda, T., Suzuki, T. & Kaizaki, S. (2002). J. Chem. Soc. Dalton Trans. pp. 1721–1726.  Web of Science CSD CrossRef Google Scholar
First citationVostrikova, K. E., Luneau, D., Wernsdorfer, W., Rey, P. & Verdaguer, M. (2000). J. Am. Chem. Soc. 122, 718–719.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds