organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1RS,4SR)-3-Di­chloro­methyl­ene-1,4-di­methyl-2-oxabi­cyclo­[2.2.2]oct-5-ene

aDepartment of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, England
*Correspondence e-mail: andrew.tyrrell@chem.ox.ac.uk

(Received 28 May 2008; accepted 8 June 2008; online 13 June 2008)

X-ray crystallography was used to confirm the structure of the enantio-enriched title compound, C10H12Cl2O, a bicylic enol ether. A bridged boat-like structure is adopted and the dichloro­methyl­ene C atom is positioned significantly removed from the core bicyclic unit. In the crystal structure, mol­ecules pack to form sheets approximately perpendicular to the a and c axes.

Related literature

For related literature, see: Yamabe et al. (1996[Yamabe, S., Dai, T., Minato, T., Machiguchi, T. & Hasegawa, T. (1996). J. Am. Chem. Soc. 118, 6518-6519.]); Machiguchi et al. (1999[Machiguchi, T., Hasegawa, T., Ishiwata, A., Terashima, S., Yamabe, S. & Minato, T. (1999). J. Am. Chem. Soc. 121, 4771-4786.]); Khanjin et al. (1999[Khanjin, N. A., Snyder, J. P. & Menger, F. M. (1999). J. Am. Chem. Soc. 121, 11831-11846.]); Ussing et al. (2006[Ussing, B. R., Hang, C. & Singleton, D. A. (2006). J. Am. Chem. Soc. 128, 7594-7607.]); Robertson & Fowler (2006[Robertson, J. & Fowler, T. (2006). Org. Biomol. Chem. 4, 4307-4318.]).

[Scheme 1]

Experimental

Crystal data
  • C10H12Cl2O

  • Mr = 219.11

  • Monoclinic, P 21 /c

  • a = 9.3365 (1) Å

  • b = 9.6327 (2) Å

  • c = 11.4259 (2) Å

  • β = 92.7347 (11)°

  • V = 1026.43 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.59 mm−1

  • T = 150 K

  • 0.44 × 0.32 × 0.18 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.83, Tmax = 0.90

  • 4320 measured reflections

  • 2321 independent reflections

  • 2094 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.093

  • S = 1.01

  • 2321 reflections

  • 118 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.38 e Å−3

Data collection: COLLECT (Nonius, 2001[Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: Görbitz (1999[Görbitz, C. H. (1999). Acta Cryst. B55, 1090-1098.]) and DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, UK.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Comment top

The reaction between dienes and ketenes to produce cyclobutanones was long considered to be a textbook example of a [2 + 2] cycloaddition that could be understood in terms of a π2s + π2aWoodward–Hoffmann formalism. More recently, evidence has been presented for a stepwise hetero-Diels–Alder/Claisen rearrangement pathway (Yamabe et al., 1996) and it was reported that the periselectivity of these cycloadditions is responsive to the nature of the diene (Machiguchi et al., 1999). The situation is, however, more complex and a combined theoretical and experimental study of the reaction of cyclopentadiene with either dichloro- or diphenylketene revealed that both [4 + 2] and [2 + 2] adducts may be produced directly through parallel reaction pathways traversing a bifurcating energy surface (Ussing et al. 2006). Our studies sought to address certain mechanistic aspects of the Claisen rearrangement of bicyclic enol ethers structurally analogous to those produced in diene/ketene [4 + 2] cycloadditions (Robertson & Fowler, 2006); within this study, although crystals were obtained as a racemate, the title compound was prepared in an enantioenriched form in order to determine if access to non-racemic cyclobutanones could be achieved.

The relationship between computed distances of reacting termini and activation energies has been discussed for structurally similar Claisen precursors in the context of the mechanism of chorismate mutase (Khanjin et al., 1999). The molecular stucture (Fig. 1) shows the dichloromethylene carbon to be significantly removed from the carbon at C5 (3.5523 Å) and yet the title compound can be induced to undergo the Claisen rearrangement under mild thermal conditions to yield (1RS, 6SR)-8,8-dichloro-3,6-dimethylbicyclo[4.2.0]oct-3-en-7-one. Also of note are the sheets of molecules which form approximatedly perpendicular to the a- and c-axes as shown in Fig. 2 and Fig. 3.

Related literature top

For related literature, see: Yamabe et al. (1996), Machiguchi et al. (1999), Khanjin et al. (1999), Ussing et al. (2006) and Robertson & Fowler (2006).

Experimental top

The title compound was crystallized by concentration of a sample dissolved in petroleum ether. [α]D25-36.1 (CHCl3, c = 1.0).

Refinement top

Changes in illuminated volume were kept to a minimum, and were taken into account (Görbitz, 1999) by the multi-scan inter-frame scaling (DENZO/SCALEPACK, Otwinowski & Minor, 1997).

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

Computing details top

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: Görbitz (1999) and DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Figures top
[Figure 1] Fig. 1. The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.
[Figure 2] Fig. 2. The title compound viewed along the a-axis with H atoms omitted.
[Figure 3] Fig. 3. The title compound viewed along the b-axis with H atoms omitted.
(1RS,4SR)-3-Dichloromethylene-1,4-dimethyl-2- oxabicyclo[2.2.2]oct-5-ene top
Crystal data top
C10H12Cl2OF(000) = 456
Mr = 219.11Dx = 1.418 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 15784 reflections
a = 9.3365 (1) Åθ = 5–27°
b = 9.6327 (2) ŵ = 0.59 mm1
c = 11.4259 (2) ÅT = 150 K
β = 92.7347 (11)°Prism, colourless
V = 1026.43 (3) Å30.44 × 0.32 × 0.18 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
2094 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 27.4°, θmin = 5.1°
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
h = 1212
Tmin = 0.83, Tmax = 0.90k = 1212
4320 measured reflectionsl = 1414
2321 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.093 Method = Modified Sheldrick w = 1/[σ2(F2) + (0.05P)2 + 0.71P],
where P = [max(Fo2,0) + 2Fc2]/3
S = 1.01(Δ/σ)max = 0.001
2321 reflectionsΔρmax = 0.36 e Å3
118 parametersΔρmin = 0.38 e Å3
2 restraints
Crystal data top
C10H12Cl2OV = 1026.43 (3) Å3
Mr = 219.11Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.3365 (1) ŵ = 0.59 mm1
b = 9.6327 (2) ÅT = 150 K
c = 11.4259 (2) Å0.44 × 0.32 × 0.18 mm
β = 92.7347 (11)°
Data collection top
Nonius KappaCCD
diffractometer
2321 independent reflections
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
2094 reflections with I > 2σ(I)
Tmin = 0.83, Tmax = 0.90Rint = 0.021
4320 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0342 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.01Δρmax = 0.36 e Å3
2321 reflectionsΔρmin = 0.38 e Å3
118 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.02322 (16)0.72676 (17)0.56170 (14)0.0234
O20.12271 (11)0.62312 (12)0.61475 (10)0.0217
C30.26458 (15)0.64956 (16)0.59821 (13)0.0192
C40.28716 (17)0.77747 (17)0.52291 (14)0.0230
C50.21390 (19)0.89526 (18)0.58719 (15)0.0293
C60.07027 (19)0.86685 (17)0.60962 (15)0.0274
C70.04601 (18)0.72396 (18)0.43089 (14)0.0280
C80.19575 (18)0.75082 (18)0.40893 (14)0.0267
C90.12456 (17)0.6806 (2)0.59357 (17)0.0326
C100.44060 (19)0.8143 (2)0.49372 (17)0.0339
C110.35800 (16)0.56064 (17)0.64983 (14)0.0215
Cl120.29697 (4)0.42007 (4)0.72783 (4)0.0295
Cl130.54194 (4)0.56859 (5)0.64989 (4)0.0320
H510.26310.97750.61230.0403*
H610.00730.92650.65090.0362*
H710.02140.79250.39070.0397*
H720.01580.63440.39980.0386*
H810.19900.82930.35870.0379*
H820.23470.67120.36750.0381*
H910.19170.74920.56520.0477*
H920.12610.67240.68040.0498*
H930.15290.59410.55900.0483*
H1010.43190.89760.44400.0529*
H1020.50320.83740.56080.0543*
H1030.48640.74090.44720.0531*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0213 (7)0.0229 (7)0.0254 (8)0.0045 (6)0.0044 (6)0.0009 (6)
O20.0175 (5)0.0225 (6)0.0251 (5)0.0016 (4)0.0005 (4)0.0041 (4)
C30.0188 (7)0.0205 (7)0.0183 (7)0.0023 (5)0.0005 (5)0.0019 (6)
C40.0257 (7)0.0220 (7)0.0209 (7)0.0043 (6)0.0022 (5)0.0018 (6)
C50.0373 (8)0.0221 (8)0.0275 (8)0.0009 (7)0.0073 (7)0.0031 (7)
C60.0339 (8)0.0229 (8)0.0251 (8)0.0055 (7)0.0030 (6)0.0032 (6)
C70.0347 (8)0.0264 (8)0.0223 (8)0.0014 (7)0.0067 (6)0.0013 (6)
C80.0352 (8)0.0268 (8)0.0178 (7)0.0025 (7)0.0026 (6)0.0010 (6)
C90.0212 (8)0.0328 (9)0.0435 (10)0.0028 (7)0.0005 (7)0.0031 (8)
C100.0309 (9)0.0345 (10)0.0360 (9)0.0126 (7)0.0013 (7)0.0072 (8)
C110.0189 (7)0.0234 (7)0.0222 (7)0.0011 (6)0.0001 (5)0.0004 (6)
Cl120.0292 (2)0.0261 (2)0.0329 (2)0.00012 (15)0.00257 (16)0.01006 (16)
Cl130.0183 (2)0.0372 (3)0.0401 (3)0.00107 (15)0.00273 (16)0.00256 (18)
Geometric parameters (Å, º) top
C1—O21.4741 (18)C7—C81.455 (2)
C1—C61.514 (2)C7—H711.008
C1—C71.520 (2)C7—H720.970
C1—C91.511 (2)C8—H810.950
O2—C31.3707 (17)C8—H820.980
C3—C41.523 (2)C9—H910.957
C3—C111.339 (2)C9—H920.996
C4—C51.531 (2)C9—H930.954
C4—C81.544 (2)C10—H1010.985
C4—C101.528 (2)C10—H1020.968
C5—C61.404 (3)C10—H1030.993
C5—H510.953C11—Cl121.7324 (16)
C6—H610.962C11—Cl131.7190 (15)
O2—C1—C6106.78 (12)C1—C7—H72108.9
O2—C1—C7106.10 (12)C8—C7—H72111.1
C6—C1—C7108.65 (14)H71—C7—H72104.6
O2—C1—C9105.44 (13)C4—C8—C7112.39 (13)
C6—C1—C9115.34 (14)C4—C8—H81110.2
C7—C1—C9113.84 (14)C7—C8—H81107.7
C1—O2—C3114.30 (12)C4—C8—H82109.5
O2—C3—C4112.89 (12)C7—C8—H82109.0
O2—C3—C11115.71 (13)H81—C8—H82107.9
C4—C3—C11131.40 (14)C1—C9—H91107.8
C3—C4—C5104.57 (13)C1—C9—H92108.7
C3—C4—C8104.84 (12)H91—C9—H92110.5
C5—C4—C8106.63 (13)C1—C9—H93113.3
C3—C4—C10117.88 (14)H91—C9—H93107.4
C5—C4—C10112.19 (14)H92—C9—H93109.1
C8—C4—C10109.92 (13)C4—C10—H101105.3
C4—C5—C6113.31 (14)C4—C10—H102114.7
C4—C5—H51122.7H101—C10—H102107.4
C6—C5—H51123.9C4—C10—H103112.5
C1—C6—C5111.77 (14)H101—C10—H103107.3
C1—C6—H61122.4H102—C10—H103109.2
C5—C6—H61125.8C3—C11—Cl12120.21 (12)
C1—C7—C8110.31 (13)C3—C11—Cl13126.97 (12)
C1—C7—H71108.8Cl12—C11—Cl13112.82 (9)
C8—C7—H71112.9

Experimental details

Crystal data
Chemical formulaC10H12Cl2O
Mr219.11
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)9.3365 (1), 9.6327 (2), 11.4259 (2)
β (°) 92.7347 (11)
V3)1026.43 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.59
Crystal size (mm)0.44 × 0.32 × 0.18
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.83, 0.90
No. of measured, independent and
observed [I > 2σ(I)] reflections
4320, 2321, 2094
Rint0.021
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.093, 1.01
No. of reflections2321
No. of parameters118
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.38

Computer programs: COLLECT (Nonius, 2001), Görbitz (1999) and DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), CAMERON (Watkin et al., 1996).

 

Acknowledgements

The authors thank the Oxford Chemical Crystallography Service for use of instrumentation and Dr Amber L. Thompson for her advice.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGörbitz, C. H. (1999). Acta Cryst. B55, 1090–1098.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhanjin, N. A., Snyder, J. P. & Menger, F. M. (1999). J. Am. Chem. Soc. 121, 11831–11846.  Web of Science CrossRef CAS Google Scholar
First citationMachiguchi, T., Hasegawa, T., Ishiwata, A., Terashima, S., Yamabe, S. & Minato, T. (1999). J. Am. Chem. Soc. 121, 4771–4786.  Web of Science CrossRef CAS Google Scholar
First citationNonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRobertson, J. & Fowler, T. (2006). Org. Biomol. Chem. 4, 4307–4318.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationUssing, B. R., Hang, C. & Singleton, D. A. (2006). J. Am. Chem. Soc. 128, 7594–7607.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, UK.  Google Scholar
First citationYamabe, S., Dai, T., Minato, T., Machiguchi, T. & Hasegawa, T. (1996). J. Am. Chem. Soc. 118, 6518–6519.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds