organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages o1240-o1241

rac-(1S,2R)-Di­ethyl 6-hydr­­oxy-1-(4-meth­oxy­phen­yl)-3-oxo-2,3-di­hydro-1H-benzo[f]chromen-2-yl]­phospho­nate

aInstitute of General and Ecological Chemistry, Technical University of Łódź, ul. Żeromskiego 116, 90-924 Łódź, Poland, and bInstitute of Organic Chemistry, Technical University of Łódź, ul. Żeromskiego 116, 90-924 Łódź, Poland
*Correspondence e-mail: wmwolf@p.lodz.pl

(Received 18 May 2008; accepted 26 May 2008; online 7 June 2008)

In the title compound, C24H25O7P, the δ-valerolactonyl ring exists in a distorted screw-boat conformation with the diethoxy­phosphoryl substituent occupying an axial position. The latter adopts an almost syn-periplanar conformation around the P—C bond. The mol­ecules form centrosymmetric dimers connected by O—H⋯O hydrogen bonds.

Related literature

For the biological activity of 4-aryl-3,4-dihydro­coumarins, see: Bailly et al. (2003[Bailly, Ch., Bal, Ch., Barbier, P., Combes, S., Finet, J.-P., Hildebrand, M.-P., Peyrot, V. & Wattez, N. (2003). J. Med. Chem. 46, 5437-5444.]); Roelens et al. (2005[Roelens, F., Huvaere, K., Dhooge, W., Van Cleemput, M., Comhaire, F. & De Keukeleire, D. (2005). Eur. J. Med. Chem. 40, 1042-1051.]); Zhang et al. (2006[Zhang, X., Wang, H., Song, Y., Nie, L., Wang, L., Liu, B., Shen, P. & Liu, Y. (2006). Bioorg. Med. Chem. Lett. 16, 949-953.]). For their synthesis, see: Aoki et al. (2005[Aoki, S., Amammoto, C., Oyamada, J. & Kitamura, T. (2005). Tetrahedron, 61, 9291-9297.]); Krawczyk et al. (2007a[Krawczyk, H., Albrecht, Ł., Wojciechowski, J. & Wolf, W. M. (2007a). Tetrahedron, 63, 12583-12594.]); Li et al. (2005[Li, K., Foresee, L. N. & Tunge, J. A. (2005). J. Org. Chem. 70, 2881-2883.]); Rizzi et al. (2006[Rizzi, E., Dallavalle, S., Merlini, L., Pratesi, G. & Zunino, F. (2006). Synth. Commun. pp. 1117-1122.]). For a comparison structure, see: Krawczyk et al. (2007b[Krawczyk, H., Albrecht, Ł., Wojciechowski, J. & Wolf, W. M. (2007b). Acta Cryst. E63, o4148.]).

For the atomic charges fitted to electrostatic potential, see: Frisch et al. (2004[Frisch, M. J. et al. (2004). GAUSSIAN03. Revision C.02. Gaussian Inc., Pittsbburgh, Pennsylvania, USA.]); Breneman & Wiberg (1990[Breneman, C. M. & Wiberg, K. B. (1990). J. Comput. Chem. 11, 361-373.]). For repulsive interactions between O atoms, see: Gillespie & Popelier, (2001[Gillespie, R. J. & Popelier, P. L. A. (2001). Chemical Bonding and Molecular Geometry: from Lewis to Electron Densities, p. 126. New York: Oxford University Press.]). For hydrogen-bond graph-set terminology, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]). For ring puckering analysis, see: Boeyens (1978[Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317-320.]); Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Frisch et al. (2004[Frisch, M. J. et al. (2004). GAUSSIAN03. Revision C.02. Gaussian Inc., Pittsbburgh, Pennsylvania, USA.]). For details of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C24H25O7P

  • Mr = 456.41

  • Monoclinic, C 2/c

  • a = 21.6231 (17) Å

  • b = 10.0018 (8) Å

  • c = 22.4011 (17) Å

  • β = 111.806 (1)°

  • V = 4498.0 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 293 (2) K

  • 0.30 × 0.20 × 0.15 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SADABS, SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.951, Tmax = 0.976

  • 37601 measured reflections

  • 5076 independent reflections

  • 3585 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.137

  • S = 1.05

  • 5076 reflections

  • 310 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6⋯O4i 0.83 1.87 2.701 (2) 178
Symmetry code: (i) -x+2, -y+1, -z+2.

Data collection: SMART (Bruker, 2003[Bruker (2003). SADABS, SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2003[Bruker (2003). SADABS, SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

The 4-aryl-3,4-dihydrocoumarin (neoflavonoid) moiety is found in several natural compounds which show a wide range of biological activities. Among them, the anti-inflammatory, anti-oxidative and anti-aging properties are best recognized (Zhang et al., 2006). A number of neoflavonoids isolated from various plant sources revealed cytotoxic and chemopreventive activity against cancer (Bailly et al., 2003). Morever, some 4-aryl-3,4-dihydrocoumarin derivatives exhibit estrogenic activity (Roelens et al., 2005). The most common method for the synthesis of 4-aryl-3,4-dihydrocoumarins involves Michael type addition of electron-rich hydroxyarenes to cinnamic acids or their derivatives (Aoki et al., 2005; Li et al., 2005; Rizzi et al., 2006). Unfortunately this method is limited to the reactions of cinnamic acid bearing electron-donationg groups on the aromatic ring. Recently we developed a novel synthesis of the dihydrocoumarins based on CF3SO3H promoted Friedel Crafts reaction of electron-rich hydroxyarenes (Krawczyk et al., 2007a) with the (E)-3-aryl-2-(diethoxyphosphoryl)acrylic acids. The title compound (I) is a key product of that synthesis.

The title compound (I) represents a novel dihydrocoumarine analog in which the δ-valerolactone ring bears the P—C bond. A related compound (II) in which the electron-donating para-methoxy substituent was replaced by the electron-withdrawing Br atom has been published by us recently (Krawczyk et al., 2007b). A search of the Cambridge Structural Database (Version 5.29; Allen, 2002) showed that crystal structures of the related compounds have not been reported so far.

A view of (I), with atom numbering scheme is shown in Fig. 1. The δ-valerolactone and naphtalene moieties are almost coplanar with one another. The former ring adopts conformation close to a 4S3 screw-boat (Boeyens, 1978), with O1, C1, C3, C4 and C9 almost coplanar (the average r.m.s. deviation from the mean plane is 0.09 Å) and C2 situated at the flap. The Cremer & Pople (1975) puckering parameters for the ring atom sequence O1/C1/C2/C3/C4/C9 are: Q = 0.489 (2) Å, θ = 113.6 (2)° and ϕ = 327.5 (3)°. Both exocyclic substituents, namely the diethoxyphosphoryl and phenyl groups occupy axial positions in respect to the δ-valerolactone ring.

The former group adopts an almost synperiplanar conformation along the P—C2 bond (Fig. 2). This arrangement is stabilized by electrostatic interactions of the oppositely charged phosphoryl O4 (-0.70 e) with the carbonyl C1 (0.79 e) atoms [the C1···O2 distance is 2.966 (2) Å] Atomic charges derived from electrostatic potentials were calculated using GAUSSIAN03 (Frisch et al., 2004) at the MP2/6-311++G(d,p) level for the X-ray determined coordinates. Grid points were selected according to the CHELPG procedure of Breneman & Wiberg (1990).

The phosphorus atom is located within the center of distorted tetrahedron with valency angles ranging in value from 99.90 (9) to 115.74 (11)°. On average the O—P—O type angles [111.6 (2)°] are larger then O—P—C [106.9 (2)°]. This is a general feature, often encountered in phosphorus compounds, indicating a significance of repulsive Coulombic type interactions between the oxygen atoms bearing the negative charge (Gillespie & Popelier, 2001).

A superposition of structures (I) and (II), as presented in Fig. 3, clearly shows similarity of the neoflavonoid fragments. The major difference is position of the O5—C22—C23 diethoxy group. In (I) this group points away from the naphtalene fragment while in (II) it is almost paralel and involved in the C—H—π(arom) interaction. The latter stabilizes a virtual eclipsed conformation along the axial P—C bond as was found in (II).

In the crystal molecules form centrosymmetric dimers connected by strong, practically linear hydrogen bonds linking phosphoryl and hydroxyl groups of both monomers. In terms of Etter's graph-set terminology (Etter, 1990; Bernstein, et al., 1995) this system can be described as R22(20).

Related literature top

For the biological activity of 4-aryl-3,4-dihydrocoumarins, see: Bailly et al. (2003); Roelens et al. (2005); Zhang et al. (2006). For their synthesis, see: Aoki et al. (2005); Krawczyk et al. (2007a); Li et al. (2005); Rizzi et al. (2006). For a comparison structure, see: Krawczyk et al. (2007b).

For geometry optimization calculations, see: Frisch et al. (2004); Breneman & Wiberg (1990); Gillespie & Popelier, (2001). For hydrogen-bond graph-set terminology, see: Bernstein et al. (1995); Etter (1990). For ring puckering analysis, see: Boeyens (1978); Cremer & Pople (1975); Frisch et al. (2004). For details of the Cambridge Structural Database, see: Allen (2002).

Experimental top

The solution 1,3-dihydroxynaphtalene in CH2Cl2, trifluoromethanesulfonic acid and (E)-2-diethoxyphosphoryl-3-(4-methoxyphenyl)acrylic acid were added and a resulting mixture was left at room temperature for 1 day. After the acrylic acid was completely reacted, saturated NaHCO3 solution was added. The organic layer was separated, washed with water and dried over MgSO4. Evaporation of the solvent under reduced preasure gave a crude product which was purified by column chromatography and recrystalized from diethyl ether.

Refinement top

H atoms were located on difference Fourier maps and refined as riding on their carrier O or C atoms with Uiso(H) = 1.2Ueq(O or C). The methyl groups were allowed to rotate about their local threefold axis. AFIX 84, AFIX 14, AFIX 24, AFIX 44 and AFIX 138 procedures as in SHELXTL (Sheldrick, 2008) were applied.

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SMART (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. The molecule of the title compound (I). Displacement elipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Newman projection along the C2—P bond.
[Figure 3] Fig. 3. A superposition of structures (I) and (II). The latter is indicated in the dashed line. The least-squares fit was based on all common non-H atoms of the 3,4-dihydrocoumarin moiety; the r.m.s. deviation was 0.10 Å.
[Figure 4] Fig. 4. Supplementary figure.
rac-(1S,2R)-Diethyl 6-hydroxy-1-(4-methoxyphenyl)-3-oxo-2,3-dihydro-1H- benzo[f]chromen-2-yl]phosphonate top
Crystal data top
C24H25O7PDx = 1.348 Mg m3
Mr = 456.41Melting point = 396–398 K
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 21.6231 (17) ÅCell parameters from 8721 reflections
b = 10.0018 (8) Åθ = 2.2–23.3°
c = 22.4011 (17) ŵ = 0.17 mm1
β = 111.806 (1)°T = 293 K
V = 4498.0 (6) Å3Prism, colourless
Z = 80.30 × 0.20 × 0.15 mm
F(000) = 1920
Data collection top
Bruker SMART APEX
diffractometer
5076 independent reflections
Radiation source: fine-focus sealed tube3585 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ω scansθmax = 27.4°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 2727
Tmin = 0.951, Tmax = 0.976k = 1212
37601 measured reflectionsl = 2828
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: difference Fourier map
wR(F2) = 0.137H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0691P)2 + 2.0425P]
where P = (Fo2 + 2Fc2)/3
5076 reflections(Δ/σ)max = 0.001
310 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C24H25O7PV = 4498.0 (6) Å3
Mr = 456.41Z = 8
Monoclinic, C2/cMo Kα radiation
a = 21.6231 (17) ŵ = 0.17 mm1
b = 10.0018 (8) ÅT = 293 K
c = 22.4011 (17) Å0.30 × 0.20 × 0.15 mm
β = 111.806 (1)°
Data collection top
Bruker SMART APEX
diffractometer
5076 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
3585 reflections with I > 2σ(I)
Tmin = 0.951, Tmax = 0.976Rint = 0.044
37601 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 1.05Δρmax = 0.30 e Å3
5076 reflectionsΔρmin = 0.36 e Å3
310 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P0.85826 (2)0.18689 (5)0.93687 (3)0.04719 (16)
O10.86909 (7)0.50338 (13)0.99316 (6)0.0501 (3)
O20.82123 (8)0.38041 (16)1.04447 (7)0.0612 (4)
O30.82989 (9)0.07064 (16)0.96515 (11)0.0843 (6)
O40.92748 (7)0.22132 (16)0.97264 (8)0.0645 (4)
O50.84281 (8)0.14572 (19)0.86632 (8)0.0751 (5)
O61.00680 (7)0.72224 (17)0.90165 (8)0.0694 (5)
O70.54354 (8)0.70103 (17)0.84382 (11)0.0838 (6)
C10.82904 (10)0.40053 (19)0.99520 (10)0.0464 (4)
C20.79907 (9)0.31862 (18)0.93467 (9)0.0445 (4)
C30.77848 (9)0.40694 (18)0.87347 (9)0.0433 (4)
C40.83847 (9)0.49031 (17)0.87772 (9)0.0411 (4)
C50.85316 (9)0.53228 (18)0.82352 (9)0.0432 (4)
C60.91093 (9)0.60975 (19)0.83255 (9)0.0457 (4)
C70.95280 (9)0.6475 (2)0.89610 (10)0.0492 (5)
C80.93774 (10)0.60900 (19)0.94736 (10)0.0484 (5)
C90.88100 (9)0.53133 (18)0.93693 (9)0.0435 (4)
C100.81079 (11)0.5026 (2)0.75920 (10)0.0540 (5)
C110.82642 (13)0.5444 (2)0.70810 (11)0.0616 (6)
C120.88486 (13)0.6152 (2)0.71814 (12)0.0636 (6)
C130.92573 (12)0.6490 (2)0.77862 (11)0.0567 (5)
C140.71632 (9)0.48976 (18)0.86470 (9)0.0436 (4)
C150.65938 (10)0.4277 (2)0.86667 (12)0.0596 (6)
C160.60208 (11)0.4993 (2)0.85812 (13)0.0667 (6)
C170.60088 (11)0.6368 (2)0.84824 (11)0.0589 (5)
C180.65601 (11)0.6988 (2)0.84519 (11)0.0586 (5)
C190.71301 (11)0.6250 (2)0.85320 (10)0.0525 (5)
C200.85865 (19)0.0622 (3)0.97519 (18)0.0957 (10)
C210.80938 (19)0.1530 (3)0.98260 (16)0.0963 (10)
C220.89018 (18)0.1465 (3)0.83444 (15)0.0930 (9)
C230.90252 (16)0.0103 (4)0.81830 (16)0.0989 (10)
C240.54361 (16)0.8430 (3)0.84361 (19)0.1038 (12)
H61.02760.74040.94010.083*
H210.76100.27820.93570.053*
H310.76790.34630.83550.049*
H810.96320.63250.98620.058*
H1010.77060.45250.75140.065*
H1110.79830.52570.66740.074*
H1210.89600.63950.68320.076*
H1310.96460.69940.78480.068*
H1510.66010.32300.87500.071*
H1610.55960.45020.85910.080*
H1810.65530.79100.83770.070*
H1910.74870.66690.85080.063*
H2010.90300.06391.01730.115*
H2020.87080.09130.93510.115*
H2110.76860.15860.93960.116*
H2120.79410.11771.01850.116*
H2130.83030.24730.99500.116*
H2210.93330.18810.86360.112*
H2220.87210.20190.79400.112*
H2310.85830.03650.79500.119*
H2320.92860.04050.85930.119*
H2330.92930.01300.78940.119*
H2410.54740.87360.80600.125*
H2420.57930.87400.87870.125*
H2430.50420.87410.84600.125*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P0.0439 (3)0.0381 (3)0.0599 (3)0.0019 (2)0.0197 (2)0.0012 (2)
O10.0655 (8)0.0447 (7)0.0433 (7)0.0119 (6)0.0239 (6)0.0030 (6)
O20.0725 (10)0.0645 (9)0.0561 (9)0.0060 (7)0.0350 (8)0.0033 (7)
O30.0837 (12)0.0446 (9)0.1457 (18)0.0093 (8)0.0673 (12)0.0225 (10)
O40.0446 (8)0.0607 (9)0.0785 (11)0.0006 (7)0.0117 (7)0.0075 (8)
O50.0616 (9)0.0879 (12)0.0692 (11)0.0157 (8)0.0167 (8)0.0224 (9)
O60.0543 (9)0.0794 (11)0.0696 (10)0.0216 (8)0.0174 (7)0.0139 (8)
O70.0596 (10)0.0626 (11)0.1338 (17)0.0164 (8)0.0414 (10)0.0119 (10)
C10.0509 (10)0.0410 (9)0.0514 (11)0.0028 (8)0.0236 (9)0.0050 (8)
C20.0418 (9)0.0380 (9)0.0562 (11)0.0040 (8)0.0213 (8)0.0010 (8)
C30.0451 (10)0.0381 (9)0.0464 (10)0.0037 (7)0.0169 (8)0.0037 (8)
C40.0412 (9)0.0383 (9)0.0445 (10)0.0008 (7)0.0170 (8)0.0002 (7)
C50.0448 (10)0.0414 (9)0.0437 (10)0.0087 (8)0.0169 (8)0.0033 (8)
C60.0461 (10)0.0426 (10)0.0511 (11)0.0087 (8)0.0214 (8)0.0098 (8)
C70.0418 (10)0.0459 (10)0.0584 (12)0.0003 (8)0.0169 (9)0.0101 (9)
C80.0493 (11)0.0459 (10)0.0443 (11)0.0060 (8)0.0106 (8)0.0032 (8)
C90.0514 (10)0.0378 (9)0.0433 (10)0.0006 (8)0.0198 (8)0.0018 (7)
C100.0553 (12)0.0562 (12)0.0483 (12)0.0062 (9)0.0167 (9)0.0012 (9)
C110.0753 (15)0.0636 (14)0.0431 (11)0.0190 (11)0.0189 (10)0.0050 (10)
C120.0793 (16)0.0655 (14)0.0563 (13)0.0187 (12)0.0371 (12)0.0177 (11)
C130.0600 (12)0.0579 (12)0.0601 (14)0.0096 (10)0.0316 (11)0.0160 (10)
C140.0445 (10)0.0403 (9)0.0432 (10)0.0030 (8)0.0129 (8)0.0045 (8)
C150.0497 (12)0.0424 (11)0.0826 (16)0.0040 (9)0.0200 (11)0.0020 (10)
C160.0469 (12)0.0520 (12)0.0978 (19)0.0041 (10)0.0231 (12)0.0002 (12)
C170.0513 (12)0.0538 (12)0.0698 (14)0.0071 (9)0.0204 (10)0.0034 (10)
C180.0631 (13)0.0425 (11)0.0710 (14)0.0055 (9)0.0262 (11)0.0090 (10)
C190.0526 (11)0.0445 (10)0.0634 (13)0.0034 (9)0.0248 (10)0.0045 (9)
C200.134 (3)0.0501 (14)0.134 (3)0.0191 (15)0.085 (2)0.0209 (15)
C210.150 (3)0.0501 (14)0.093 (2)0.0089 (17)0.050 (2)0.0010 (14)
C220.128 (3)0.091 (2)0.0795 (19)0.0193 (19)0.0617 (19)0.0055 (16)
C230.093 (2)0.109 (2)0.102 (2)0.0270 (19)0.0449 (18)0.0189 (19)
C240.084 (2)0.0640 (17)0.169 (4)0.0255 (15)0.053 (2)0.0175 (19)
Geometric parameters (Å, º) top
P—O41.4524 (15)C11—C121.392 (3)
P—O51.5449 (17)C11—H1110.9082
P—O31.5551 (16)C12—C131.357 (3)
P—C21.8248 (19)C12—H1210.9322
O1—C11.356 (2)C13—H1310.9462
O1—C91.404 (2)C14—C191.374 (3)
O2—C11.194 (2)C14—C151.394 (3)
O3—C201.449 (3)C15—C161.381 (3)
O5—C221.450 (3)C15—H1511.0672
O6—C71.352 (2)C16—C171.391 (3)
O6—H60.8309C16—H1611.0483
O7—C171.367 (3)C17—C181.368 (3)
O7—C241.420 (3)C18—C191.390 (3)
C1—C21.509 (3)C18—H1810.9346
C2—C31.551 (3)C19—H1910.8967
C2—H210.9241C20—C211.455 (4)
C3—C41.515 (2)C20—H2011.0668
C3—C141.528 (3)C20—H2021.0668
C3—H311.0001C21—H2111.0385
C4—C91.366 (3)C21—H2121.0385
C4—C51.428 (3)C21—H2131.0385
C5—C61.419 (3)C22—C231.459 (4)
C5—C101.422 (3)C22—H2211.0092
C6—C131.415 (3)C22—H2221.0092
C6—C71.425 (3)C23—H2311.0166
C7—C81.360 (3)C23—H2321.0166
C8—C91.397 (3)C23—H2331.0166
C8—H810.8711C24—H2410.9270
C10—C111.374 (3)C24—H2420.9270
C10—H1010.9613C24—H2430.9270
O4—P—O5114.48 (10)C11—C12—H121119.9
O4—P—O3115.74 (11)C12—C13—C6120.9 (2)
O5—P—O3104.43 (11)C12—C13—H131119.6
O4—P—C2114.36 (9)C6—C13—H131119.6
O5—P—C2106.37 (9)C19—C14—C15117.34 (18)
O3—P—C299.90 (9)C19—C14—C3122.67 (17)
C1—O1—C9120.89 (15)C15—C14—C3119.98 (17)
C20—O3—P122.52 (17)C16—C15—C14121.5 (2)
C22—O5—P125.35 (18)C16—C15—H151119.3
C7—O6—H6109.5C14—C15—H151119.3
C17—O7—C24117.9 (2)C15—C16—C17119.8 (2)
O2—C1—O1118.05 (18)C15—C16—H161120.1
O2—C1—C2125.32 (18)C17—C16—H161120.1
O1—C1—C2116.61 (16)O7—C17—C18124.5 (2)
C1—C2—C3111.81 (15)O7—C17—C16116.0 (2)
C1—C2—P107.75 (13)C18—C17—C16119.4 (2)
C3—C2—P113.78 (13)C17—C18—C19120.0 (2)
C1—C2—H21107.8C17—C18—H181120.0
C3—C2—H21107.8C19—C18—H181120.0
P—C2—H21107.8C14—C19—C18121.9 (2)
C4—C3—C14113.67 (15)C14—C19—H191119.0
C4—C3—C2107.47 (15)C18—C19—H191119.0
C14—C3—C2111.86 (15)O3—C20—C21107.4 (3)
C4—C3—H31107.9O3—C20—H201110.2
C14—C3—H31107.9C21—C20—H201110.2
C2—C3—H31107.9O3—C20—H202110.2
C9—C4—C5117.07 (17)C21—C20—H202110.2
C9—C4—C3118.56 (16)H201—C20—H202108.5
C5—C4—C3124.35 (16)C20—C21—H211109.5
C6—C5—C10117.40 (18)C20—C21—H212109.5
C6—C5—C4120.10 (17)H211—C21—H212109.5
C10—C5—C4122.48 (18)C20—C21—H213109.5
C13—C6—C5119.73 (19)H211—C21—H213109.5
C13—C6—C7121.19 (19)H212—C21—H213109.5
C5—C6—C7119.08 (17)O5—C22—C23110.2 (3)
O6—C7—C8123.23 (19)O5—C22—H221109.6
O6—C7—C6116.41 (18)C23—C22—H221109.6
C8—C7—C6120.37 (18)O5—C22—H222109.6
C7—C8—C9119.15 (19)C23—C22—H222109.6
C7—C8—H81120.4H221—C22—H222108.1
C9—C8—H81120.4C22—C23—H231109.5
C4—C9—C8124.20 (17)C22—C23—H232109.5
C4—C9—O1121.96 (17)H231—C23—H232109.5
C8—C9—O1113.77 (16)C22—C23—H233109.5
C11—C10—C5121.0 (2)H231—C23—H233109.5
C11—C10—H101119.5H232—C23—H233109.5
C5—C10—H101119.5O7—C24—H241109.5
C10—C11—C12120.7 (2)O7—C24—H242109.5
C10—C11—H111119.7H241—C24—H242109.5
C12—C11—H111119.7O7—C24—H243109.5
C13—C12—C11120.2 (2)H241—C24—H243109.5
C13—C12—H121119.9H242—C24—H243109.5
O4—P—C2—C128.73 (16)C13—C6—C7—C8179.94 (18)
O5—P—C2—C331.54 (16)C5—C6—C7—C80.4 (3)
O4—P—O3—C2058.5 (3)O6—C7—C8—C9179.72 (18)
O5—P—O3—C2068.3 (3)C6—C7—C8—C90.4 (3)
C2—P—O3—C20178.2 (2)C5—C4—C9—C81.1 (3)
O4—P—O5—C223.4 (3)C3—C4—C9—C8179.64 (17)
O3—P—O5—C22131.0 (2)C5—C4—C9—O1175.78 (15)
C2—P—O5—C22123.9 (2)C3—C4—C9—O12.8 (3)
C9—O1—C1—O2179.21 (17)C7—C8—C9—C40.1 (3)
C9—O1—C1—C20.5 (2)C7—C8—C9—O1177.13 (17)
O2—C1—C2—C3143.09 (19)C1—O1—C9—C422.1 (3)
O1—C1—C2—C338.3 (2)C1—O1—C9—C8160.77 (17)
O2—C1—C2—P91.2 (2)C6—C5—C10—C111.8 (3)
O1—C1—C2—P87.41 (17)C4—C5—C10—C11179.95 (18)
O5—P—C2—C1156.12 (13)C5—C10—C11—C121.1 (3)
O3—P—C2—C195.53 (15)C10—C11—C12—C133.0 (3)
O4—P—C2—C395.84 (15)C11—C12—C13—C61.9 (3)
O5—P—C2—C331.54 (16)C5—C6—C13—C121.0 (3)
O3—P—C2—C3139.90 (15)C7—C6—C13—C12178.5 (2)
C1—C2—C3—C452.53 (19)C4—C3—C14—C198.2 (3)
P—C2—C3—C469.83 (17)C2—C3—C14—C19130.13 (19)
C1—C2—C3—C1472.89 (19)C4—C3—C14—C15173.41 (18)
P—C2—C3—C14164.74 (12)C2—C3—C14—C1551.5 (2)
C14—C3—C4—C990.9 (2)C19—C14—C15—C160.7 (3)
C2—C3—C4—C933.4 (2)C3—C14—C15—C16179.2 (2)
C14—C3—C4—C587.6 (2)C14—C15—C16—C171.0 (4)
C2—C3—C4—C5148.11 (17)C24—O7—C17—C187.7 (4)
C9—C4—C5—C61.9 (3)C24—O7—C17—C16170.6 (3)
C3—C4—C5—C6179.65 (16)C15—C16—C17—O7176.4 (2)
C9—C4—C5—C10176.39 (17)C15—C16—C17—C182.0 (4)
C3—C4—C5—C102.1 (3)O7—C17—C18—C19177.0 (2)
C10—C5—C6—C132.8 (3)C16—C17—C18—C191.3 (4)
C4—C5—C6—C13178.90 (17)C15—C14—C19—C181.4 (3)
C10—C5—C6—C7176.76 (17)C3—C14—C19—C18179.84 (19)
C4—C5—C6—C71.6 (3)C17—C18—C19—C140.4 (3)
C13—C6—C7—O60.0 (3)P—O3—C20—C21162.7 (2)
C5—C6—C7—O6179.46 (17)P—O5—C22—C23114.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6···O4i0.831.872.701 (2)178
Symmetry code: (i) x+2, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC24H25O7P
Mr456.41
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)21.6231 (17), 10.0018 (8), 22.4011 (17)
β (°) 111.806 (1)
V3)4498.0 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.30 × 0.20 × 0.15
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.951, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
37601, 5076, 3585
Rint0.044
(sin θ/λ)max1)0.647
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.137, 1.05
No. of reflections5076
No. of parameters310
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.36

Computer programs: SMART (Bruker, 2003), SAINT-Plus (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2008).

Selected geometric parameters (Å, º) top
P—O41.4524 (15)O1—C91.404 (2)
P—O51.5449 (17)O2—C11.194 (2)
P—O31.5551 (16)O3—C201.449 (3)
P—C21.8248 (19)O5—C221.450 (3)
O1—C11.356 (2)O6—C71.352 (2)
O4—P—O5114.48 (10)O4—P—C2114.36 (9)
O4—P—O3115.74 (11)O5—P—C2106.37 (9)
O5—P—O3104.43 (11)O3—P—C299.90 (9)
O4—P—C2—C128.73 (16)O5—P—C2—C331.54 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6···O4i0.831.872.701 (2)178
Symmetry code: (i) x+2, y+1, z+2.
 

Acknowledgements

Atomic charges were calculated in the ACK CYFRONET, Kraków, Poland; support through computational grants 055/1999 and 056/1999 is gratefully acknowledged.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAoki, S., Amammoto, C., Oyamada, J. & Kitamura, T. (2005). Tetrahedron, 61, 9291–9297.  Web of Science CrossRef CAS Google Scholar
First citationBailly, Ch., Bal, Ch., Barbier, P., Combes, S., Finet, J.-P., Hildebrand, M.-P., Peyrot, V. & Wattez, N. (2003). J. Med. Chem. 46, 5437–5444.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBoeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317–320.  CrossRef Web of Science Google Scholar
First citationBreneman, C. M. & Wiberg, K. B. (1990). J. Comput. Chem. 11, 361–373.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2003). SADABS, SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFrisch, M. J. et al. (2004). GAUSSIAN03. Revision C.02. Gaussian Inc., Pittsbburgh, Pennsylvania, USA.  Google Scholar
First citationGillespie, R. J. & Popelier, P. L. A. (2001). Chemical Bonding and Molecular Geometry: from Lewis to Electron Densities, p. 126. New York: Oxford University Press.  Google Scholar
First citationKrawczyk, H., Albrecht, Ł., Wojciechowski, J. & Wolf, W. M. (2007a). Tetrahedron, 63, 12583–12594.  Web of Science CrossRef CAS Google Scholar
First citationKrawczyk, H., Albrecht, Ł., Wojciechowski, J. & Wolf, W. M. (2007b). Acta Cryst. E63, o4148.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, K., Foresee, L. N. & Tunge, J. A. (2005). J. Org. Chem. 70, 2881–2883.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRizzi, E., Dallavalle, S., Merlini, L., Pratesi, G. & Zunino, F. (2006). Synth. Commun. pp. 1117–1122.  Web of Science CrossRef CAS Google Scholar
First citationRoelens, F., Huvaere, K., Dhooge, W., Van Cleemput, M., Comhaire, F. & De Keukeleire, D. (2005). Eur. J. Med. Chem. 40, 1042–1051.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar
First citationZhang, X., Wang, H., Song, Y., Nie, L., Wang, L., Liu, B., Shen, P. & Liu, Y. (2006). Bioorg. Med. Chem. Lett. 16, 949–953.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages o1240-o1241
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds