metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[bis­­(O,O′-diiso­butyl di­thio­phosphato-κ2S,S′)nickel(II)]-μ-1,2-bis­­(4-pyridylmethyl­ene)hydrazine-κ2N:N′] toluene disolvate]

aDepartment of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA
*Correspondence e-mail: edward.tiekink@utsa.edu

(Received 27 May 2008; accepted 6 June 2008; online 13 June 2008)

The polymeric title compound, {[Ni(C8H18O2PS2)2(C12H10N4)]·2C7H7}n, has a linear topology and features octa­hedrally coordinated Ni atoms with a trans-N2S4 donor set. The toluene solvent mol­ecules occupy channels defined by the three-dimensional stacking of the polymeric chains. The Ni atom is located at a centre of inversion and the bridging 1,2-bis­(4-pyridylmethyl­ene)hydrazine4-pyridine mol­ecule is also disposed about a centre of inversion. One isobutoxy group is disordered equally over two positions.

Related literature

For a related structure, see: Berdugo et al. (2007[Berdugo, E., Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2007). Acta Cryst. E63, m764-m766.]). For related literature, see: Lai et al. (2004[Lai, C. S., Liu, S. & Tiekink, E. R. T. (2004). CrystEngComm, 6, 221-226.]); Chen et al. (2006[Chen, D., Lai, C. S. & Tiekink, E. R. T. (2006). CrystEngComm, 8, 51-58.]); Tiekink (2006[Tiekink, E. R. T. (2006). CrystEngComm, 6, 104-118.]); Benson et al. (2007[Benson, R. E., Ellis, C. A., Lewis, C. E. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 930-940.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C8H18O2PS2)2(C12H10N4)]·2C7H7

  • Mr = 935.85

  • Triclinic, [P \overline 1]

  • a = 8.7132 (15) Å

  • b = 12.089 (2) Å

  • c = 12.293 (2) Å

  • α = 82.662 (10)°

  • β = 86.528 (10)°

  • γ = 69.321 (6)°

  • V = 1201.4 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.69 mm−1

  • T = 98 (2) K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Rigaku AFC12K/SATURN724 diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.795, Tmax = 1 (expected range = 0.742–0.934)

  • 8239 measured reflections

  • 5457 independent reflections

  • 4980 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.142

  • S = 1.08

  • 5457 reflections

  • 279 parameters

  • H-atom parameters constrained

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.78 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯S1i 0.95 2.76 3.694 (3) 169
Symmetry code: (i) x+1, y, z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Americas Corporation, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Interest in examining structures related to the title compound (I), Fig. 1, relates in the main to attempts to control polymer formation and when formed topology (Lai et al., 2004; Chen et al. 2006; Tiekink, 2006; Benson et al., 2007 & Berdugo et al., 2007). A linear polymer is found in (I), Fig. 2, in which the Ni atom is located on a centre of inversion and the bridging 4-pyridinealdazine ligand is disposed about another centre of inversion. The Ni atom exists in a trans-N2S4 octahedral coordination geommetry. The polymers are aligned along the c-direction and form layers in the ac-plane that are stabilized by C—H···S contacts, Table 1. Layers stack along the b axis and define approximate squares with Ni···Ni edges 12.1 and 12.3 Å. Despite the fact that the isobutyl residues protrude into the resulting channels, the toluene molecules are accommodated in these as seen in Fig. 3.

Related literature top

For a related structure, see: Berdugo et al. (2007). For related literature, see: Lai et al. (2004); Chen et al. (2006); Tiekink (2006); Benson et al. (2007).

Experimental top

The title compound was prepared by refluxing equimolar amounts of the parent nickel dithiophosphate with 4-pyridinealdazine (Sigma-Aldrich) in toluene (30 ml) for 30 min following a literature procedure (Berdugo et al., 2007). Brown crystals of (I) were isolated by the slow evaporation (3 days) of this toluene solution. The crystals lost crystallinity with standing in air after a few minutes. IR (cm-1): v(C—O) 1126, v(P—O) 951, v(P—S)asymm 672, v(P—S)sym 593.

Refinement top

The methyene-C5 and methine-C6 atoms of the O2—C5—C8 butyl group were disordered over two sites with s.o.f. = 0.5 (from anisotropic refinement); the O2, C7 and C8 atoms were localized in one site only. The H atoms were geometrically placed (C—H = 0.95–1.00 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHEXLS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Coordination geometry of the Ni atom in (I) showing the crystallographic numbering scheme. Displacement ellipsoids are shown at the 70% probability level. Symmetry operation i: 1 - x, 1 - y, 1 - z & ii: 2 - x, 1 - y, 2 - z. Only one orientation of the disordered O2—C5—C8 butyl group is shown for clarity.
[Figure 2] Fig. 2. Polymer topology in (I). Colour code: Ni (orange), S (yellow), P (pink), O (red), N (blue), C (grey) & H (green).
[Figure 3] Fig. 3. A view of the crystal packing in (I) highlighting the channels occupied by the solvent toluene molecules (four shown in space filling mode). Colour code as for Fig. 2.
catena-Poly[[[bis(O,O'-diisobutyl dithiophosphato-κ2S,S')nickel(II)]-µ-1,2- bis(4-pyridylmethylene)hydrazine-κ2N:N'] toluene disolvate] top
Crystal data top
[Ni(C8H18O2PS2)2(C12H10N4)]·2C7H7Z = 1
Mr = 935.85F(000) = 496
Triclinic, P1Dx = 1.294 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71070 Å
a = 8.7132 (15) ÅCell parameters from 4131 reflections
b = 12.089 (2) Åθ = 2.3–40.7°
c = 12.293 (2) ŵ = 0.69 mm1
α = 82.662 (10)°T = 98 K
β = 86.528 (10)°Prism, brown-orange
γ = 69.321 (6)°0.30 × 0.20 × 0.10 mm
V = 1201.4 (4) Å3
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
5457 independent reflections
Radiation source: fine-focus sealed tube4980 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1111
Tmin = 0.795, Tmax = 1k = 1315
8239 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.064P)2 + 1.4047P]
where P = (Fo2 + 2Fc2)/3
5457 reflections(Δ/σ)max < 0.001
279 parametersΔρmax = 0.64 e Å3
0 restraintsΔρmin = 0.78 e Å3
Crystal data top
[Ni(C8H18O2PS2)2(C12H10N4)]·2C7H7γ = 69.321 (6)°
Mr = 935.85V = 1201.4 (4) Å3
Triclinic, P1Z = 1
a = 8.7132 (15) ÅMo Kα radiation
b = 12.089 (2) ŵ = 0.69 mm1
c = 12.293 (2) ÅT = 98 K
α = 82.662 (10)°0.30 × 0.20 × 0.10 mm
β = 86.528 (10)°
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
5457 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
4980 reflections with I > 2σ(I)
Tmin = 0.795, Tmax = 1Rint = 0.033
8239 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.142H-atom parameters constrained
S = 1.08Δρmax = 0.64 e Å3
5457 reflectionsΔρmin = 0.78 e Å3
279 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni0.50000.50000.50000.02039 (14)
S10.38649 (8)0.38353 (7)0.64197 (5)0.02552 (17)
S20.67986 (8)0.29788 (6)0.46088 (5)0.02452 (16)
P10.55031 (9)0.24313 (7)0.58030 (6)0.02530 (17)
O10.6644 (3)0.15123 (18)0.67162 (16)0.0295 (4)
N10.6658 (3)0.5003 (2)0.61646 (17)0.0205 (4)
N20.9368 (3)0.5058 (2)0.96412 (18)0.0256 (5)
C10.7711 (4)0.1916 (3)0.7302 (2)0.0309 (6)
H1A0.70630.24230.78590.037*
H1B0.82050.23960.67820.037*
C20.9051 (4)0.0857 (3)0.7856 (2)0.0303 (6)
H20.96740.03430.72860.036*
C31.0219 (4)0.1321 (3)0.8386 (3)0.0420 (8)
H3A1.10970.06480.87540.063*
H3B0.96100.18550.89230.063*
H3C1.06950.17550.78180.063*
C40.8358 (5)0.0118 (3)0.8709 (3)0.0399 (8)
H4A0.92600.05580.90490.060*
H4B0.76240.01750.83520.060*
H4C0.77440.06130.92730.060*
O20.4688 (3)0.1558 (2)0.54352 (18)0.0365 (5)0.50
C50.3314 (8)0.2219 (5)0.4584 (5)0.0237 (12)0.50
H5A0.29080.30760.46830.028*0.50
H5B0.38210.21430.38420.028*0.50
C60.2185 (9)0.1915 (8)0.4606 (6)0.0447 (17)0.50
H6A0.13300.26270.48810.054*0.50
C70.1788 (5)0.0918 (4)0.5366 (3)0.0565 (11)0.50
H7A0.07210.09030.51730.085*0.50
H7B0.17520.10750.61310.085*0.50
H7C0.26400.01480.52730.085*0.50
C80.1386 (4)0.1940 (3)0.3445 (3)0.0392 (7)0.50
H8A0.04490.16690.35740.059*0.50
H8B0.22100.14130.29850.059*0.50
H8C0.10170.27540.30730.059*0.50
O320.4688 (3)0.1558 (2)0.54352 (18)0.0365 (5)0.50
C350.3937 (10)0.1619 (8)0.4454 (5)0.0359 (15)0.50
H35A0.35740.24680.41490.043*0.50
H35B0.48300.11910.39610.043*0.50
C360.2674 (7)0.1257 (5)0.4299 (5)0.0216 (10)0.50
H36A0.32270.04750.40050.026*0.50
C370.1788 (5)0.0918 (4)0.5366 (3)0.0565 (11)0.50
H37A0.09150.06490.51690.085*0.50
H37B0.13120.16160.57670.085*0.50
H37C0.25820.02780.58300.085*0.50
C380.1386 (4)0.1940 (3)0.3445 (3)0.0392 (7)0.50
H38A0.05800.15460.34380.059*0.50
H38B0.19160.19600.27200.059*0.50
H38C0.08330.27550.36270.059*0.50
C90.6097 (3)0.5338 (2)0.7157 (2)0.0226 (5)
H90.49460.56010.72930.027*
C100.7099 (3)0.5319 (2)0.7990 (2)0.0227 (5)
H100.66480.55760.86760.027*
C110.8794 (3)0.4915 (2)0.7802 (2)0.0214 (5)
C120.9386 (3)0.4578 (2)0.6774 (2)0.0224 (5)
H121.05320.43050.66170.027*
C130.8285 (3)0.4644 (2)0.5982 (2)0.0225 (5)
H130.86990.44250.52780.027*
C140.9924 (3)0.4844 (2)0.8672 (2)0.0236 (5)
H141.10660.46380.85160.028*
C150.5105 (4)0.7783 (3)0.0282 (3)0.0331 (7)
C160.4464 (4)0.6899 (3)0.0108 (3)0.0341 (7)
H160.48410.64240.07820.041*
C170.3289 (4)0.6702 (3)0.0467 (3)0.0396 (7)
H170.28530.61040.01820.048*
C180.2746 (4)0.7376 (3)0.1460 (3)0.0412 (8)
H180.19390.72420.18580.049*
C190.3388 (5)0.8241 (3)0.1867 (3)0.0409 (8)
H190.30240.87000.25500.049*
C200.4562 (4)0.8450 (3)0.1289 (3)0.0374 (7)
H200.49950.90480.15780.045*
C210.6361 (5)0.8005 (3)0.0363 (3)0.0461 (8)
H21A0.62900.76990.11340.069*
H21B0.61500.88620.03040.069*
H21C0.74600.75980.00690.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.0115 (2)0.0342 (3)0.0152 (2)0.00714 (19)0.00478 (17)0.00191 (18)
S10.0150 (3)0.0399 (4)0.0199 (3)0.0084 (3)0.0028 (2)0.0008 (3)
S20.0158 (3)0.0365 (4)0.0203 (3)0.0070 (3)0.0042 (2)0.0037 (3)
P10.0194 (3)0.0345 (4)0.0219 (3)0.0092 (3)0.0064 (3)0.0007 (3)
O10.0293 (11)0.0306 (10)0.0278 (10)0.0096 (9)0.0100 (9)0.0017 (8)
N10.0135 (10)0.0313 (11)0.0171 (10)0.0078 (9)0.0058 (8)0.0010 (8)
N20.0194 (11)0.0366 (12)0.0227 (11)0.0107 (10)0.0096 (9)0.0029 (9)
C10.0312 (15)0.0320 (14)0.0269 (14)0.0061 (12)0.0147 (12)0.0020 (11)
C20.0295 (15)0.0310 (14)0.0238 (13)0.0015 (12)0.0073 (12)0.0019 (11)
C30.0416 (19)0.0414 (17)0.0380 (17)0.0051 (15)0.0229 (15)0.0037 (14)
C40.0437 (19)0.0377 (16)0.0264 (15)0.0022 (14)0.0030 (14)0.0049 (13)
O20.0376 (12)0.0486 (13)0.0326 (11)0.0256 (11)0.0088 (10)0.0040 (10)
C50.020 (3)0.016 (2)0.031 (3)0.001 (2)0.017 (2)0.003 (2)
C60.032 (4)0.058 (5)0.043 (4)0.019 (4)0.015 (3)0.015 (4)
C70.045 (2)0.084 (3)0.049 (2)0.042 (2)0.0094 (18)0.022 (2)
C80.0304 (16)0.0492 (18)0.0411 (18)0.0182 (15)0.0093 (14)0.0007 (15)
O320.0376 (12)0.0486 (13)0.0326 (11)0.0256 (11)0.0088 (10)0.0040 (10)
C350.037 (4)0.053 (5)0.027 (3)0.028 (4)0.006 (3)0.001 (3)
C360.024 (3)0.016 (2)0.027 (3)0.007 (2)0.001 (2)0.008 (2)
C370.045 (2)0.084 (3)0.049 (2)0.042 (2)0.0094 (18)0.022 (2)
C380.0304 (16)0.0492 (18)0.0411 (18)0.0182 (15)0.0093 (14)0.0007 (15)
C90.0167 (12)0.0315 (13)0.0190 (12)0.0071 (10)0.0057 (10)0.0022 (10)
C100.0190 (12)0.0303 (13)0.0192 (12)0.0082 (10)0.0061 (10)0.0024 (10)
C110.0174 (12)0.0281 (12)0.0204 (12)0.0098 (10)0.0075 (10)0.0000 (10)
C120.0135 (11)0.0305 (13)0.0231 (12)0.0080 (10)0.0041 (10)0.0001 (10)
C130.0145 (12)0.0324 (13)0.0207 (12)0.0080 (10)0.0035 (10)0.0019 (10)
C140.0188 (12)0.0301 (13)0.0239 (12)0.0102 (10)0.0075 (10)0.0020 (10)
C150.0297 (15)0.0316 (14)0.0328 (16)0.0039 (12)0.0015 (13)0.0061 (12)
C160.0316 (16)0.0323 (14)0.0305 (15)0.0035 (12)0.0062 (13)0.0006 (12)
C170.0360 (17)0.0420 (17)0.0404 (18)0.0140 (14)0.0092 (14)0.0067 (14)
C180.0318 (17)0.0471 (18)0.0415 (18)0.0079 (15)0.0004 (14)0.0119 (15)
C190.0439 (19)0.0386 (16)0.0303 (16)0.0030 (15)0.0023 (14)0.0010 (13)
C200.0431 (18)0.0309 (15)0.0340 (16)0.0091 (14)0.0030 (14)0.0010 (13)
C210.046 (2)0.0434 (18)0.050 (2)0.0162 (16)0.0097 (17)0.0032 (16)
Geometric parameters (Å, º) top
Ni—N12.096 (2)C8—H8C0.9800
Ni—N1i2.096 (2)O32—C351.388 (7)
Ni—S1i2.4806 (8)C35—C361.352 (8)
Ni—S12.4806 (8)C35—H35A0.9900
Ni—S22.4823 (8)C35—H35B0.9900
Ni—S2i2.4823 (8)C36—C381.519 (6)
S1—P11.9949 (11)C36—C371.564 (7)
S2—P11.9864 (10)C36—H36A1.0000
P1—O321.585 (2)C37—H37A0.9800
P1—O21.585 (2)C37—H37B0.9800
P1—O11.587 (2)C37—H37C0.9800
O1—C11.453 (3)C38—H38A0.9800
N1—C131.342 (3)C38—H38B0.9800
N1—C91.344 (3)C38—H38C0.9800
N2—C141.281 (4)C9—C101.379 (3)
N2—N2ii1.410 (4)C9—H90.9500
C1—C21.511 (4)C10—C111.396 (4)
C1—H1A0.9900C10—H100.9500
C1—H1B0.9900C11—C121.391 (4)
C2—C41.525 (4)C11—C141.472 (3)
C2—C31.533 (4)C12—C131.384 (3)
C2—H21.0000C12—H120.9500
C3—H3A0.9800C13—H130.9500
C3—H3B0.9800C14—H140.9500
C3—H3C0.9800C15—C161.393 (4)
C4—H4A0.9800C15—C201.398 (4)
C4—H4B0.9800C15—C211.505 (5)
C4—H4C0.9800C16—C171.381 (5)
O2—C51.558 (6)C16—H160.9500
C5—C61.164 (9)C17—C181.387 (5)
C5—H5A0.9900C17—H170.9500
C5—H5B0.9900C18—C191.380 (5)
C6—C71.553 (8)C18—H180.9500
C6—C81.617 (8)C19—C201.389 (5)
C6—H6A1.0000C19—H190.9500
C7—H7A0.9800C20—H200.9500
C7—H7B0.9800C21—H21A0.9800
C7—H7C0.9800C21—H21B0.9800
C8—H8A0.9800C21—H21C0.9800
C8—H8B0.9800
N1—Ni—N1i180.0H7B—C7—H7C109.5
N1—Ni—S1i91.71 (6)C6—C8—H8A109.5
N1i—Ni—S1i88.29 (6)C6—C8—H8B109.5
N1—Ni—S188.29 (6)H8A—C8—H8B109.5
N1i—Ni—S191.71 (6)C6—C8—H8C109.5
S1i—Ni—S1180.00 (3)H8A—C8—H8C109.5
N1—Ni—S290.35 (6)H8B—C8—H8C109.5
N1i—Ni—S289.65 (6)C35—O32—P1129.0 (3)
S1i—Ni—S298.04 (3)C36—C35—O32127.6 (6)
S1—Ni—S281.96 (3)C36—C35—H35A105.4
N1—Ni—S2i89.65 (6)O32—C35—H35A105.4
N1i—Ni—S2i90.35 (6)C36—C35—H35B105.4
S1i—Ni—S2i81.96 (3)O32—C35—H35B105.4
S1—Ni—S2i98.04 (3)H35A—C35—H35B106.0
S2—Ni—S2i180.0C35—C36—C38120.7 (5)
P1—S1—Ni84.11 (3)C35—C36—C37115.7 (5)
P1—S2—Ni84.24 (3)C38—C36—C37108.6 (4)
O32—P1—O20.00 (17)C35—C36—H36A103.1
O32—P1—O196.75 (12)C38—C36—H36A103.1
O2—P1—O196.75 (12)C37—C36—H36A103.1
O32—P1—S2113.02 (9)C36—C37—H37A109.5
O2—P1—S2113.02 (9)C36—C37—H37B109.5
O1—P1—S2111.99 (9)H37A—C37—H37B109.5
O32—P1—S1112.44 (10)C36—C37—H37C109.5
O2—P1—S1112.44 (10)H37A—C37—H37C109.5
O1—P1—S1112.53 (9)H37B—C37—H37C109.5
S2—P1—S1109.66 (5)C36—C38—H38A109.5
C1—O1—P1117.69 (18)C36—C38—H38B109.5
C13—N1—C9117.5 (2)H38A—C38—H38B109.5
C13—N1—Ni122.93 (18)C36—C38—H38C109.5
C9—N1—Ni119.51 (17)H38A—C38—H38C109.5
C14—N2—N2ii111.6 (3)H38B—C38—H38C109.5
O1—C1—C2109.9 (2)N1—C9—C10123.6 (2)
O1—C1—H1A109.7N1—C9—H9118.2
C2—C1—H1A109.7C10—C9—H9118.2
O1—C1—H1B109.7C9—C10—C11118.5 (2)
C2—C1—H1B109.7C9—C10—H10120.8
H1A—C1—H1B108.2C11—C10—H10120.8
C1—C2—C4111.8 (3)C12—C11—C10118.4 (2)
C1—C2—C3108.0 (3)C12—C11—C14120.9 (2)
C4—C2—C3110.8 (3)C10—C11—C14120.8 (2)
C1—C2—H2108.7C13—C12—C11119.1 (2)
C4—C2—H2108.7C13—C12—H12120.4
C3—C2—H2108.7C11—C12—H12120.4
C2—C3—H3A109.5N1—C13—C12122.9 (2)
C2—C3—H3B109.5N1—C13—H13118.6
H3A—C3—H3B109.5C12—C13—H13118.6
C2—C3—H3C109.5N2—C14—C11119.9 (2)
H3A—C3—H3C109.5N2—C14—H14120.0
H3B—C3—H3C109.5C11—C14—H14120.0
C2—C4—H4A109.5C16—C15—C20118.4 (3)
C2—C4—H4B109.5C16—C15—C21120.7 (3)
H4A—C4—H4B109.5C20—C15—C21120.9 (3)
C2—C4—H4C109.5C17—C16—C15121.2 (3)
H4A—C4—H4C109.5C17—C16—H16119.4
H4B—C4—H4C109.5C15—C16—H16119.4
C5—O2—P1111.3 (3)C16—C17—C18120.0 (3)
C6—C5—O2117.8 (6)C16—C17—H17120.0
C6—C5—H5A107.9C18—C17—H17120.0
O2—C5—H5A107.9C19—C18—C17119.5 (3)
C6—C5—H5B107.9C19—C18—H18120.2
O2—C5—H5B107.9C17—C18—H18120.2
H5A—C5—H5B107.2C18—C19—C20120.8 (3)
C5—C6—C7130.3 (6)C18—C19—H19119.6
C5—C6—C8117.4 (6)C20—C19—H19119.6
C7—C6—C8104.4 (5)C19—C20—C15120.1 (3)
C5—C6—H6A99.3C19—C20—H20120.0
C7—C6—H6A99.3C15—C20—H20120.0
C8—C6—H6A99.3C15—C21—H21A109.5
C6—C7—H7A109.5C15—C21—H21B109.5
C6—C7—H7B109.5H21A—C21—H21B109.5
H7A—C7—H7B109.5C15—C21—H21C109.5
C6—C7—H7C109.5H21A—C21—H21C109.5
H7A—C7—H7C109.5H21B—C21—H21C109.5
N1—Ni—S1—P191.85 (7)O32—P1—O2—C50 (43)
N1i—Ni—S1—P188.15 (7)O1—P1—O2—C5174.5 (3)
S1i—Ni—S1—P1114 (100)S2—P1—O2—C568.1 (3)
S2—Ni—S1—P11.26 (3)S1—P1—O2—C556.7 (3)
S2i—Ni—S1—P1178.74 (3)P1—O2—C5—C6146.3 (7)
N1—Ni—S2—P189.49 (7)O2—C5—C6—C70.2 (15)
N1i—Ni—S2—P190.51 (7)O2—C5—C6—C8143.8 (5)
S1i—Ni—S2—P1178.74 (3)O2—P1—O32—C350 (59)
S1—Ni—S2—P11.26 (3)O1—P1—O32—C35158.0 (5)
S2i—Ni—S2—P116 (100)S2—P1—O32—C3540.6 (5)
Ni—S2—P1—O32124.67 (10)S1—P1—O32—C3584.2 (5)
Ni—S2—P1—O2124.67 (10)P1—O32—C35—C36147.9 (7)
Ni—S2—P1—O1127.32 (9)O32—C35—C36—C38144.5 (7)
Ni—S2—P1—S11.65 (4)O32—C35—C36—C3710.4 (12)
Ni—S1—P1—O32124.99 (10)C13—N1—C9—C100.6 (4)
Ni—S1—P1—O2124.99 (10)Ni—N1—C9—C10177.1 (2)
Ni—S1—P1—O1127.01 (9)N1—C9—C10—C111.0 (4)
Ni—S1—P1—S21.65 (4)C9—C10—C11—C121.5 (4)
O32—P1—O1—C1178.8 (2)C9—C10—C11—C14178.2 (2)
O2—P1—O1—C1178.8 (2)C10—C11—C12—C130.5 (4)
S2—P1—O1—C160.6 (2)C14—C11—C12—C13179.2 (2)
S1—P1—O1—C163.5 (2)C9—N1—C13—C121.7 (4)
N1i—Ni—N1—C1383 (100)Ni—N1—C13—C12175.9 (2)
S1i—Ni—N1—C1352.9 (2)C11—C12—C13—N11.1 (4)
S1—Ni—N1—C13127.1 (2)N2ii—N2—C14—C11179.8 (3)
S2—Ni—N1—C1345.1 (2)C12—C11—C14—N2173.9 (3)
S2i—Ni—N1—C13134.9 (2)C10—C11—C14—N25.8 (4)
N1i—Ni—N1—C995 (100)C20—C15—C16—C171.6 (5)
S1i—Ni—N1—C9129.46 (19)C21—C15—C16—C17178.8 (3)
S1—Ni—N1—C950.54 (19)C15—C16—C17—C181.0 (5)
S2—Ni—N1—C9132.48 (19)C16—C17—C18—C190.0 (5)
S2i—Ni—N1—C947.52 (19)C17—C18—C19—C200.5 (5)
P1—O1—C1—C2162.1 (2)C18—C19—C20—C150.1 (5)
O1—C1—C2—C462.2 (3)C16—C15—C20—C191.1 (5)
O1—C1—C2—C3175.6 (3)C21—C15—C20—C19179.3 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···S1iii0.952.763.694 (3)169
Symmetry code: (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Ni(C8H18O2PS2)2(C12H10N4)]·2C7H7
Mr935.85
Crystal system, space groupTriclinic, P1
Temperature (K)98
a, b, c (Å)8.7132 (15), 12.089 (2), 12.293 (2)
α, β, γ (°)82.662 (10), 86.528 (10), 69.321 (6)
V3)1201.4 (4)
Z1
Radiation typeMo Kα
µ (mm1)0.69
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerRigaku AFC12K/SATURN724
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.795, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
8239, 5457, 4980
Rint0.033
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.142, 1.08
No. of reflections5457
No. of parameters279
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.64, 0.78

Computer programs: CrystalClear (Rigaku, 2005), SHEXLS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···S1i0.952.763.694 (3)169
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The authors gratefully thank the MBRS–RISE program (GM60655) for support and Cheminova is thanked for the gift of the dithiophosphate used in this study.

References

First citationBenson, R. E., Ellis, C. A., Lewis, C. E. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 930–940.  Web of Science CSD CrossRef CAS Google Scholar
First citationBerdugo, E., Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2007). Acta Cryst. E63, m764–m766.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChen, D., Lai, C. S. & Tiekink, E. R. T. (2006). CrystEngComm, 8, 51–58.  Web of Science CSD CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationLai, C. S., Liu, S. & Tiekink, E. R. T. (2004). CrystEngComm, 6, 221–226.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Americas Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTiekink, E. R. T. (2006). CrystEngComm, 6, 104–118.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds