organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A new polymorph of dimesitylborinic acid

aDepartment of Chemistry, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
*Correspondence e-mail: parvez@ucalgary.ca

(Received 16 May 2008; accepted 23 May 2008; online 7 June 2008)

A new polymorph of dimesitylborinic acid (or hydroxy­dimesitylborane), C18H23BO, showcasing different crystal packing and symmetry, complements the previously reported polymorph [Weese, Bartlett, Murray, Olmstead & Power (1987[Weese, K. J., Bartlett, R. A., Murray, B. D., Olmstead, M. M. & Power, P. P. (1987). Inorg. Chem. 26, 2409-2413.]). Inorg. Chem. 26, 2409–2413; Entwistle, Batsanov & Marder (2007[Entwistle, C. D., Batsanov, A. S. & Marder, T. B. (2007). Acta Cryst. E63, o2639-o2641.]). Acta Cryst. E63, o2639–o2641]. The structure of the title compound contains only one mol­ecule in the asymmetric unit, and no O—H⋯O inter­actions are observed. However, mol­ecules are linked by weak inter­molecuar O—H⋯π(arene) inter­actions to form centrosymmetric dimers.

Related literature

For related literature, see: Cornet et al. (2003[Cornet, S. M., Dillon, K. B., Entwistle, C. D., Fox, M. A., Goeta, A. E., Goodwin, H. P., Marder, T. B. & Thompson, A. L. (2003). Dalton Trans. pp. 4395-4405.]); Entwistle et al. (2007[Entwistle, C. D., Batsanov, A. S. & Marder, T. B. (2007). Acta Cryst. E63, o2639-o2641.]); Fraenk et al. (2001[Fraenk, W., Klapotke, T. M., Krumm, B., Mayer, P., Noth, H., Piotrowski, H. & Suter, M. (2001). J. Fluorine Chem. 112, 73-81.]); Kuhlmann et al. (2008[Kuhlmann, M., Boone, M. P. & Baumgartner, T. (2008). Unpublished.]); Weese et al. (1987[Weese, K. J., Bartlett, R. A., Murray, B. D., Olmstead, M. M. & Power, P. P. (1987). Inorg. Chem. 26, 2409-2413.]).

[Scheme 1]

Experimental

Crystal data
  • C18H23BO

  • Mr = 266.17

  • Monoclinic, P 21 /c

  • a = 8.942 (4) Å

  • b = 8.801 (2) Å

  • c = 19.947 (8) Å

  • β = 97.800 (16)°

  • V = 1555.3 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 173 (2) K

  • 0.32 × 0.24 × 0.12 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.979, Tmax = 0.992

  • 6119 measured reflections

  • 3542 independent reflections

  • 2728 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.134

  • S = 0.91

  • 3542 reflections

  • 188 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C11–C16 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯Cgi 0.84 (2) 2.83 (2) 3.523 (2) 141 (2)
Symmetry code: (i) -x, -y, -z.

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the course of our studies on the synthesis and photophysical properties of boron-functionalized dithieno[3,2-b;2',3'-d]phospholes (Kuhlmann et al., 2008), we obtained a new polymorph of the title compound. It crystallizes in space group P21/c, which is distinct from the previously reported space group C2/c (Weese et al., 1987; Entwistle et al., 2007).

The structure is composed of unique molecules (Fig. 1) separated by normal van der Waals distances. The mean planes of the phenyl rings are inclined at approximately right angles (86.09 (4)°) with respect to each other. The structure is devoid of any classical hydrogen bonding despite the presence of a hydroxyl group. The previously reported polymorph crystallized as tetramers due to hydrogen bonding involving the OH groups (Weese et al., 1987). There are no indications of π-π stacking interactions between the phenyl groups of the symmetry related molecules in the title compound. However, the hydroxyl group is oriented towards a phenyl ring (C11-C16), thus linking the molecules by rather weak intermolecular O—H···π(arene) interactions to form centrosymmetric dimers about inversion centers (Fig. 2). The boron centers are planar with C2—B1—C11 angle 123.21 (12)°, compared to a wider corresponding angle of 126.0 (4)° reported in the other polymorph (Weese et al., 1987). The structures of trifluoromethyl analogues have also been reported, and they exhibit a similar molecular conformation (Fraenk et al., 2001; Cornet et al., 2003).

Related literature top

For related literature, see: Cornet et al. (2003); Entwistle et al. (2007); Fraenk et al. (2001); Kuhlmann et al. (2008); Sheldrick (2008); Weese et al. (1987). Cg is the centroid of the C11–C16 phenyl ring.

Experimental top

The title compound was obtained as hydrolysis by-product in the synthesis of 2-(dimetsitylboryl)-5-phenyl-dithieno[3,2 - b;2',3'-d]phosphole, during the recrystallization of the sample from a concentrated pentane solution at 277 K.

Refinement top

The H-atoms bonded to C9 and C18 were disordered into two sets of methyl groups; the HFIX 123 command in SHELXTL (Sheldrick, 2008) was used to model these methyl groups. H-atoms bonded to C-atoms were included at geometrically idealized positions and refined in the riding-model approximation with the following constraints: C—H distances were set to 0.95 Å (aryl) and 0.98 Å (methyl) with Uiso(H) = 1.2Ueq(C). The position of the H-atom bonded to O1 was determined from a difference map and was allowed to refine with Uiso = 1.2 times Ueq of O1.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with displacement ellipsoids plotted at the 50% probability level. Only three H atoms on C9 and C18 are shown.
[Figure 2] Fig. 2. Unit cell packing as viewed down the b direction showing intermolecular O—H···π(arene) interactions with dashed lines.
hydroxydimesitylborane top
Crystal data top
C18H23BOF(000) = 576
Mr = 266.17Dx = 1.137 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6119 reflections
a = 8.942 (4) Åθ = 3.3–27.5°
b = 8.801 (2) ŵ = 0.07 mm1
c = 19.947 (8) ÅT = 173 K
β = 97.800 (16)°Block, yellow
V = 1555.3 (10) Å30.32 × 0.24 × 0.12 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
3542 independent reflections
Radiation source: fine-focus sealed tube2728 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω and ϕ scansθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 1111
Tmin = 0.979, Tmax = 0.992k = 1111
6119 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 0.91 w = 1/[σ2(Fo2) + (0.072P)2 + 0.71P]
where P = (Fo2 + 2Fc2)/3
3542 reflections(Δ/σ)max < 0.001
188 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C18H23BOV = 1555.3 (10) Å3
Mr = 266.17Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.942 (4) ŵ = 0.07 mm1
b = 8.801 (2) ÅT = 173 K
c = 19.947 (8) Å0.32 × 0.24 × 0.12 mm
β = 97.800 (16)°
Data collection top
Nonius KappaCCD
diffractometer
3542 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
2728 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.992Rint = 0.023
6119 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 0.91Δρmax = 0.26 e Å3
3542 reflectionsΔρmin = 0.19 e Å3
188 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.11790 (13)0.31566 (13)0.00945 (5)0.0401 (3)
H10.076 (2)0.251 (2)0.0366 (10)0.048*
B10.08930 (17)0.28800 (17)0.05445 (8)0.0269 (3)
C20.17055 (15)0.39649 (14)0.11108 (6)0.0255 (3)
C30.32785 (15)0.42311 (15)0.11607 (7)0.0278 (3)
C40.39909 (15)0.51699 (15)0.16679 (7)0.0309 (3)
H40.50490.53240.16980.037*
C50.32018 (16)0.58890 (15)0.21314 (7)0.0316 (3)
C60.16562 (16)0.56426 (15)0.20763 (7)0.0310 (3)
H60.10950.61380.23840.037*
C70.09009 (15)0.46888 (15)0.15823 (7)0.0276 (3)
C80.42383 (17)0.35135 (18)0.06779 (8)0.0374 (4)
H8A0.53080.36330.08570.045*
H8B0.39950.24300.06280.045*
H8C0.40340.40130.02360.045*
C90.3997 (2)0.68880 (19)0.26809 (8)0.0446 (4)
H9A0.50770.69260.26410.067*0.50
H9B0.35740.79160.26360.067*0.50
H9C0.38580.64720.31240.067*0.50
H9D0.32620.72830.29600.067*0.50
H9E0.47650.62940.29650.067*0.50
H9F0.44810.77370.24760.067*0.50
C100.07788 (16)0.44837 (18)0.15670 (8)0.0364 (3)
H10A0.11370.51440.19070.044*
H10B0.12950.47520.11170.044*
H10C0.09950.34220.16660.044*
C110.02005 (15)0.15448 (14)0.06966 (7)0.0265 (3)
C120.17091 (15)0.15062 (15)0.03816 (7)0.0286 (3)
C130.27017 (16)0.04211 (16)0.05784 (7)0.0320 (3)
H130.37210.04200.03690.038*
C140.22404 (17)0.06574 (16)0.10723 (7)0.0337 (3)
C150.07360 (17)0.06623 (15)0.13554 (7)0.0330 (3)
H150.03920.14240.16770.040*
C160.02899 (16)0.04183 (15)0.11824 (7)0.0292 (3)
C170.23031 (17)0.26522 (18)0.01535 (8)0.0367 (3)
H17A0.34080.26110.02280.044*
H17B0.19760.36740.00020.044*
H17C0.19100.24150.05770.044*
C180.3345 (2)0.17870 (19)0.12935 (10)0.0471 (4)
H18A0.43470.16100.10400.071*0.50
H18B0.30130.28210.12060.071*0.50
H18C0.33920.16640.17780.071*0.50
H18D0.28210.24530.16430.071*0.50
H18E0.41550.12420.14770.071*0.50
H18F0.37760.23990.09040.071*0.50
C190.18953 (18)0.03689 (18)0.15248 (8)0.0405 (4)
H19A0.20800.06000.17630.049*
H19B0.25840.04680.11850.049*
H19C0.20680.12070.18500.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0500 (7)0.0443 (6)0.0276 (5)0.0133 (5)0.0115 (5)0.0046 (4)
B10.0270 (7)0.0273 (7)0.0274 (8)0.0023 (6)0.0068 (6)0.0004 (6)
C20.0284 (7)0.0225 (6)0.0259 (6)0.0005 (5)0.0056 (5)0.0035 (5)
C30.0298 (7)0.0247 (6)0.0298 (7)0.0015 (5)0.0066 (5)0.0061 (5)
C40.0276 (7)0.0282 (7)0.0359 (8)0.0022 (5)0.0012 (6)0.0078 (5)
C50.0378 (8)0.0267 (7)0.0286 (7)0.0017 (6)0.0012 (6)0.0035 (5)
C60.0381 (8)0.0282 (7)0.0270 (7)0.0007 (6)0.0059 (6)0.0002 (5)
C70.0309 (7)0.0264 (6)0.0260 (6)0.0010 (5)0.0060 (5)0.0030 (5)
C80.0321 (7)0.0411 (8)0.0409 (8)0.0018 (6)0.0119 (6)0.0009 (6)
C90.0470 (9)0.0417 (9)0.0418 (9)0.0063 (7)0.0054 (7)0.0067 (7)
C100.0331 (8)0.0413 (8)0.0368 (8)0.0021 (6)0.0124 (6)0.0079 (6)
C110.0302 (7)0.0247 (6)0.0251 (6)0.0009 (5)0.0055 (5)0.0032 (5)
C120.0308 (7)0.0260 (6)0.0290 (7)0.0008 (5)0.0042 (5)0.0032 (5)
C130.0289 (7)0.0315 (7)0.0358 (8)0.0019 (5)0.0048 (6)0.0051 (6)
C140.0380 (8)0.0271 (7)0.0380 (8)0.0059 (6)0.0122 (6)0.0043 (6)
C150.0431 (8)0.0249 (7)0.0313 (7)0.0009 (6)0.0057 (6)0.0032 (5)
C160.0341 (7)0.0255 (6)0.0278 (7)0.0004 (5)0.0032 (6)0.0029 (5)
C170.0350 (8)0.0383 (8)0.0360 (8)0.0045 (6)0.0012 (6)0.0047 (6)
C180.0457 (9)0.0391 (9)0.0590 (11)0.0129 (7)0.0168 (8)0.0020 (7)
C190.0391 (8)0.0373 (8)0.0424 (8)0.0021 (6)0.0044 (7)0.0085 (7)
Geometric parameters (Å, º) top
O1—B11.3556 (19)C10—H10B0.9800
O1—H10.84 (2)C10—H10C0.9800
B1—C21.579 (2)C11—C121.409 (2)
B1—C111.584 (2)C11—C161.4139 (19)
C2—C71.4113 (19)C12—C131.3958 (19)
C2—C31.4161 (19)C12—C171.512 (2)
C3—C41.3918 (19)C13—C141.390 (2)
C3—C81.512 (2)C13—H130.9500
C4—C51.389 (2)C14—C151.386 (2)
C4—H40.9500C14—C181.509 (2)
C5—C61.388 (2)C15—C161.397 (2)
C5—C91.506 (2)C15—H150.9500
C6—C71.3968 (19)C16—C191.504 (2)
C6—H60.9500C17—H17A0.9800
C7—C101.509 (2)C17—H17B0.9800
C8—H8A0.9800C17—H17C0.9800
C8—H8B0.9800C18—H18A0.9800
C8—H8C0.9800C18—H18B0.9800
C9—H9A0.9800C18—H18C0.9800
C9—H9B0.9800C18—H18D0.9800
C9—H9C0.9800C18—H18E0.9800
C9—H9D0.9800C18—H18F0.9800
C9—H9E0.9800C19—H19A0.9800
C9—H9F0.9800C19—H19B0.9800
C10—H10A0.9800C19—H19C0.9800
B1—O1—H1111.0 (13)H10A—C10—H10C109.5
O1—B1—C2115.90 (12)H10B—C10—H10C109.5
O1—B1—C11120.89 (12)C12—C11—C16118.54 (12)
C2—B1—C11123.21 (12)C12—C11—B1120.73 (12)
C7—C2—C3118.02 (12)C16—C11—B1120.62 (12)
C7—C2—B1121.54 (12)C13—C12—C11119.86 (13)
C3—C2—B1120.43 (12)C13—C12—C17118.63 (13)
C4—C3—C2120.10 (12)C11—C12—C17121.47 (12)
C4—C3—C8117.87 (13)C14—C13—C12121.86 (13)
C2—C3—C8122.03 (13)C14—C13—H13119.1
C5—C4—C3122.04 (13)C12—C13—H13119.1
C5—C4—H4119.0C15—C14—C13117.97 (13)
C3—C4—H4119.0C15—C14—C18121.08 (14)
C6—C5—C4117.78 (13)C13—C14—C18120.95 (14)
C6—C5—C9121.02 (13)C14—C15—C16122.05 (13)
C4—C5—C9121.20 (14)C14—C15—H15119.0
C5—C6—C7122.04 (13)C16—C15—H15119.0
C5—C6—H6119.0C15—C16—C11119.59 (13)
C7—C6—H6119.0C15—C16—C19119.10 (13)
C6—C7—C2120.00 (13)C11—C16—C19121.30 (12)
C6—C7—C10118.09 (12)C12—C17—H17A109.5
C2—C7—C10121.91 (12)C12—C17—H17B109.5
C3—C8—H8A109.5H17A—C17—H17B109.5
C3—C8—H8B109.5C12—C17—H17C109.5
H8A—C8—H8B109.5H17A—C17—H17C109.5
C3—C8—H8C109.5H17B—C17—H17C109.5
H8A—C8—H8C109.5C14—C18—H18A109.5
H8B—C8—H8C109.5C14—C18—H18B109.5
C5—C9—H9A109.5H18A—C18—H18B109.5
C5—C9—H9B109.5C14—C18—H18C109.5
H9A—C9—H9B109.5H18A—C18—H18C109.5
C5—C9—H9C109.5H18B—C18—H18C109.5
H9A—C9—H9C109.5C14—C18—H18D109.5
H9B—C9—H9C109.5H18A—C18—H18D141.1
C5—C9—H9D109.5H18B—C18—H18D56.3
H9A—C9—H9D141.1H18C—C18—H18D56.3
H9B—C9—H9D56.3C14—C18—H18E109.5
H9C—C9—H9D56.3H18A—C18—H18E56.3
C5—C9—H9E109.5H18B—C18—H18E141.1
H9A—C9—H9E56.3H18C—C18—H18E56.3
H9B—C9—H9E141.1H18D—C18—H18E109.5
H9C—C9—H9E56.3C14—C18—H18F109.5
H9D—C9—H9E109.5H18A—C18—H18F56.3
C5—C9—H9F109.5H18B—C18—H18F56.3
H9A—C9—H9F56.3H18C—C18—H18F141.1
H9B—C9—H9F56.3H18D—C18—H18F109.5
H9C—C9—H9F141.1H18E—C18—H18F109.5
H9D—C9—H9F109.5C16—C19—H19A109.5
H9E—C9—H9F109.5C16—C19—H19B109.5
C7—C10—H10A109.5H19A—C19—H19B109.5
C7—C10—H10B109.5C16—C19—H19C109.5
H10A—C10—H10B109.5H19A—C19—H19C109.5
C7—C10—H10C109.5H19B—C19—H19C109.5
O1—B1—C2—C7130.25 (14)O1—B1—C11—C1258.47 (18)
C11—B1—C2—C749.51 (18)C2—B1—C11—C12121.28 (14)
O1—B1—C2—C350.12 (18)O1—B1—C11—C16125.45 (15)
C11—B1—C2—C3130.12 (14)C2—B1—C11—C1654.80 (18)
C7—C2—C3—C40.66 (18)C16—C11—C12—C133.41 (19)
B1—C2—C3—C4178.98 (12)B1—C11—C12—C13172.75 (12)
C7—C2—C3—C8179.76 (12)C16—C11—C12—C17178.63 (13)
B1—C2—C3—C80.60 (19)B1—C11—C12—C175.21 (19)
C2—C3—C4—C50.9 (2)C11—C12—C13—C141.3 (2)
C8—C3—C4—C5179.46 (13)C17—C12—C13—C14179.29 (13)
C3—C4—C5—C60.1 (2)C12—C13—C14—C152.0 (2)
C3—C4—C5—C9179.37 (13)C12—C13—C14—C18177.96 (14)
C4—C5—C6—C71.0 (2)C13—C14—C15—C163.1 (2)
C9—C5—C6—C7178.25 (13)C18—C14—C15—C16176.82 (14)
C5—C6—C7—C21.3 (2)C14—C15—C16—C111.0 (2)
C5—C6—C7—C10179.50 (13)C14—C15—C16—C19178.29 (14)
C3—C2—C7—C60.42 (18)C12—C11—C16—C152.32 (19)
B1—C2—C7—C6179.94 (12)B1—C11—C16—C15173.84 (12)
C3—C2—C7—C10179.59 (12)C12—C11—C16—C19178.42 (13)
B1—C2—C7—C100.77 (19)B1—C11—C16—C195.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···Cgi0.84 (2)2.83 (2)3.523 (2)141 (2)
Symmetry code: (i) x, y, z.

Experimental details

Crystal data
Chemical formulaC18H23BO
Mr266.17
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)8.942 (4), 8.801 (2), 19.947 (8)
β (°) 97.800 (16)
V3)1555.3 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.32 × 0.24 × 0.12
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Tmin, Tmax0.979, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
6119, 3542, 2728
Rint0.023
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.134, 0.91
No. of reflections3542
No. of parameters188
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.19

Computer programs: COLLECT (Hooft, 1998), DENZO (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···Cgi0.84 (2)2.83 (2)3.523 (2)141 (2)
Symmetry code: (i) x, y, z.
 

References

First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCornet, S. M., Dillon, K. B., Entwistle, C. D., Fox, M. A., Goeta, A. E., Goodwin, H. P., Marder, T. B. & Thompson, A. L. (2003). Dalton Trans. pp. 4395–4405.  Web of Science CSD CrossRef Google Scholar
First citationEntwistle, C. D., Batsanov, A. S. & Marder, T. B. (2007). Acta Cryst. E63, o2639–o2641.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFraenk, W., Klapotke, T. M., Krumm, B., Mayer, P., Noth, H., Piotrowski, H. & Suter, M. (2001). J. Fluorine Chem. 112, 73–81.  Web of Science CSD CrossRef CAS Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationKuhlmann, M., Boone, M. P. & Baumgartner, T. (2008). Unpublished.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWeese, K. J., Bartlett, R. A., Murray, B. D., Olmstead, M. M. & Power, P. P. (1987). Inorg. Chem. 26, 2409–2413.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds