metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[bis­­[μ-1,4-bis­­(imidazol-1-ylmeth­yl)benzene]di­chloridocadmium(II)]

aDepartment of Chemistry, Xiaogan University, Xiaogan, Hubei 432000, People's Republic of China
*Correspondence e-mail: dy9802@126.com

(Received 9 May 2008; accepted 23 June 2008; online 28 June 2008)

The title compound, [CdCl2(C14H14N4)2]n, has a slightly distorted octa­hedral coordination geometry, formed by four N atoms from 1,4-bis­(imidazol-1-ylmeth­yl)benzene ligands and two Cl atoms, giving a two-dimensional network. The Cd atom lies on a centre of inversion.

Related literature

For related literature, see: Zhou & Du (2007[Zhou, H. & Du, S. W. (2007). Chin. J. Struct. Chem. 26, 711-716.]).

[Scheme 1]

Experimental

Crystal data
  • [CdCl2(C14H14N4)2]

  • Mr = 659.88

  • Monoclinic, P 21 /c

  • a = 7.7983 (3) Å

  • b = 12.8274 (6) Å

  • c = 14.4190 (6) Å

  • β = 105.642 (1)°

  • V = 1388.94 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.01 mm−1

  • T = 293 (2) K

  • 0.32 × 0.26 × 0.24 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SAINT; Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.74, Tmax = 0.78

  • 7453 measured reflections

  • 2728 independent reflections

  • 2331 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.058

  • S = 1.00

  • 2728 reflections

  • 178 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cd1—N1i 2.3546 (17)
Cd1—N1 2.3546 (17)
Cd1—N3 2.3561 (15)
Cd1—N3i 2.3561 (15)
Cd1—Cl1i 2.6248 (5)
Cd1—Cl1 2.6248 (5)
N1i—Cd1—N1 180
N1i—Cd1—N3 94.57 (6)
N1—Cd1—N3 85.43 (6)
N3—Cd1—N3i 180
N1—Cd1—Cl1i 89.96 (4)
N1—Cd1—Cl1 90.04 (4)
N3—Cd1—Cl1 89.60 (4)
N3i—Cd1—Cl1 90.40 (4)
Cl1i—Cd1—Cl1 180
Symmetry code: (i) -x, -y+1, -z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The self-assembly reactions of MIICl2 (M = Ni, Co) with the flexible bix ligand with 2D network [Ni(bix)2Cl2]n and a 1D chain [Co(bix)Cl2]n had been reported (Zhou et al., 2007). Here we report a new polymer. The Cd(II) center is coordinated by four nitrogen atoms from four bix ligands and two Cl atoms to furnish a slightly distorted octahedral. Four nitrogen atoms (N1, N1i, N3, and N3i) [symmetry code: (i) -x,-y + 1,-z] occupy the equatorial positions. The axial positions are occupied by two Cl donors. Each Cd(II) ion is linked by four µ2-birdging bix ligands to its four neighboring Cd(II) ions, thus affording two-dimensional grid layers (Fig. 2) in the direction of b axis. There are two different types of µ2-bridging bix ligands in the compound.

The ring centriods distances and displacement angles of of Cg1···Cg1i is 1.573 Å and 0.03° [Cg1 is N1—C1 ring centroid; symmetry code: (i) -x,-y + 1,-z], suggesting significant π-π interactions. which are the factors that stabilized the crystal structure.

Related literature top

For related literature, see: Zhou & Du (2007).

Experimental top

Compound (I) was was prepared as follows: to a solution of bix dihydrate 0.14 g(0.5 mmol) and water (8 mL) was added CdCl2 (0.092 g, 0.5 mmol). The mixture was sealed in a stainless steel reactor with a Teflon liner, and was heated to 393 K for two days. After slow cooling to room temperature, colourless block-shaped crystals of (I) were obtained.

Refinement top

The H atoms bonded to C atoms were introduced at calculated positions and refined using a riding model, with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(C), and C–H distances of 0.93–0.96 Å.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SMART (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing ellipsoids at the 30% probability level. H atoms have been omitted for clarity. [Symmetry codes: (i)-x,-y + 1,-z]
[Figure 2] Fig. 2. The molecular packing diagram of (I), with hydrogen bonds shown as dashed lines.
Poly[bis[µ-1,4-bis(imidazol-1-ylmethyl)benzene]dichloridocadmium(II)] top
Crystal data top
[CdCl2(C14H14N4)2]F(000) = 668
Mr = 659.88Dx = 1.578 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4013 reflections
a = 7.7983 (3) Åθ = 2.7–28.3°
b = 12.8274 (6) ŵ = 1.01 mm1
c = 14.4190 (6) ÅT = 293 K
β = 105.642 (1)°Block, colourless
V = 1388.94 (10) Å30.32 × 0.26 × 0.24 mm
Z = 2
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2728 independent reflections
Radiation source: sealed tube2331 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan
(SAINT; Bruker, 2001)
h = 96
Tmin = 0.74, Tmax = 0.78k = 1514
7453 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.058H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0298P)2]
where P = (Fo2 + 2Fc2)/3
2728 reflections(Δ/σ)max = 0.001
178 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
[CdCl2(C14H14N4)2]V = 1388.94 (10) Å3
Mr = 659.88Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.7983 (3) ŵ = 1.01 mm1
b = 12.8274 (6) ÅT = 293 K
c = 14.4190 (6) Å0.32 × 0.26 × 0.24 mm
β = 105.642 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2728 independent reflections
Absorption correction: multi-scan
(SAINT; Bruker, 2001)
2331 reflections with I > 2σ(I)
Tmin = 0.74, Tmax = 0.78Rint = 0.037
7453 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.058H-atom parameters constrained
S = 1.01Δρmax = 0.34 e Å3
2728 reflectionsΔρmin = 0.44 e Å3
178 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.00000.50000.00000.02725 (8)
C10.3962 (3)0.60574 (17)0.12383 (16)0.0408 (5)
H10.44700.59710.07290.049*
C20.2078 (3)0.60595 (15)0.20672 (14)0.0323 (5)
H20.10330.59750.22530.039*
C30.4819 (3)0.64371 (17)0.21155 (16)0.0418 (5)
H30.59990.66530.23210.050*
C40.3888 (3)0.67235 (16)0.36600 (15)0.0411 (5)
H4A0.27940.70030.37570.049*
H4B0.47840.72680.38180.049*
C50.4493 (3)0.58124 (15)0.43373 (14)0.0300 (4)
C60.3967 (3)0.47986 (15)0.40840 (16)0.0367 (5)
H60.32680.46560.34650.044*
C70.4469 (3)0.39939 (16)0.47405 (15)0.0353 (5)
H70.41030.33170.45590.042*
C80.0724 (3)0.33407 (15)0.18324 (15)0.0351 (5)
H80.17000.30610.16650.042*
C90.0320 (3)0.31662 (16)0.26739 (15)0.0361 (5)
H90.09570.27600.31860.043*
C100.1663 (3)0.41959 (15)0.17628 (14)0.0340 (5)
H100.26540.46240.15500.041*
C110.2121 (3)0.38072 (18)0.33871 (15)0.0434 (6)
H11A0.23460.31180.36060.052*
H11B0.32600.41490.31320.052*
C120.1024 (3)0.44253 (16)0.42282 (14)0.0338 (5)
C130.0831 (3)0.54885 (18)0.41550 (15)0.0413 (5)
H130.13940.58250.35820.050*
C140.0181 (3)0.39392 (18)0.50832 (14)0.0401 (5)
H140.02960.32230.51460.048*
Cl10.23305 (7)0.63726 (4)0.02514 (4)0.04181 (14)
N10.2237 (2)0.58192 (13)0.12087 (12)0.0331 (4)
N20.3585 (2)0.64392 (12)0.26426 (12)0.0330 (4)
N30.0517 (2)0.39902 (12)0.12627 (12)0.0338 (4)
N40.1214 (2)0.37075 (13)0.26207 (11)0.0327 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.03452 (13)0.02730 (12)0.02127 (12)0.00197 (8)0.00982 (9)0.00096 (8)
C10.0377 (13)0.0508 (13)0.0369 (12)0.0034 (11)0.0151 (10)0.0020 (10)
C20.0337 (12)0.0325 (11)0.0313 (11)0.0002 (9)0.0098 (9)0.0016 (9)
C30.0301 (12)0.0469 (13)0.0461 (14)0.0008 (10)0.0066 (11)0.0077 (11)
C40.0568 (15)0.0319 (11)0.0292 (11)0.0001 (10)0.0025 (11)0.0002 (9)
C50.0343 (11)0.0285 (10)0.0257 (10)0.0028 (8)0.0058 (9)0.0005 (8)
C60.0433 (13)0.0334 (12)0.0261 (11)0.0056 (9)0.0030 (10)0.0027 (9)
C70.0459 (13)0.0266 (11)0.0292 (10)0.0076 (9)0.0029 (9)0.0031 (9)
C80.0409 (13)0.0314 (11)0.0353 (11)0.0025 (9)0.0140 (10)0.0016 (9)
C90.0439 (13)0.0341 (11)0.0279 (11)0.0023 (10)0.0057 (10)0.0046 (9)
C100.0409 (12)0.0328 (11)0.0295 (11)0.0005 (9)0.0120 (10)0.0002 (9)
C110.0512 (14)0.0534 (14)0.0322 (12)0.0177 (11)0.0226 (11)0.0107 (10)
C120.0410 (13)0.0368 (12)0.0281 (11)0.0056 (10)0.0171 (10)0.0057 (9)
C130.0535 (15)0.0399 (13)0.0289 (11)0.0021 (11)0.0081 (11)0.0056 (10)
C140.0607 (16)0.0270 (11)0.0348 (12)0.0030 (10)0.0169 (11)0.0005 (9)
Cl10.0455 (3)0.0355 (3)0.0504 (3)0.0090 (2)0.0233 (3)0.0009 (2)
N10.0341 (10)0.0366 (10)0.0293 (9)0.0022 (8)0.0098 (8)0.0002 (7)
N20.0393 (10)0.0302 (9)0.0265 (9)0.0012 (8)0.0035 (8)0.0031 (7)
N30.0437 (11)0.0325 (9)0.0276 (9)0.0018 (8)0.0139 (8)0.0038 (7)
N40.0427 (11)0.0347 (9)0.0235 (9)0.0087 (8)0.0139 (8)0.0030 (7)
Geometric parameters (Å, º) top
Cd1—N1i2.3546 (17)C6—H60.9300
Cd1—N12.3546 (17)C7—C5ii1.380 (3)
Cd1—N32.3561 (15)C7—H70.9300
Cd1—N3i2.3561 (15)C8—C91.352 (3)
Cd1—Cl1i2.6248 (5)C8—N31.370 (3)
Cd1—Cl12.6248 (5)C8—H80.9300
C1—C31.352 (3)C9—N41.367 (3)
C1—N11.369 (3)C9—H90.9300
C1—H10.9300C10—N31.317 (2)
C2—N11.314 (2)C10—N41.346 (2)
C2—N21.335 (3)C10—H100.9300
C2—H20.9300C11—N41.469 (2)
C3—N21.378 (3)C11—C121.507 (3)
C3—H30.9300C11—H11A0.9700
C4—N21.468 (3)C11—H11B0.9700
C4—C51.514 (3)C12—C131.379 (3)
C4—H4A0.9700C12—C141.380 (3)
C4—H4B0.9700C13—C14iii1.379 (3)
C5—C7ii1.380 (3)C13—H130.9300
C5—C61.383 (3)C14—C13iii1.379 (3)
C6—C71.384 (3)C14—H140.9300
N1i—Cd1—N1180.00 (7)C6—C7—H7119.7
N1i—Cd1—N394.57 (6)C9—C8—N3109.92 (19)
N1—Cd1—N385.43 (6)C9—C8—H8125.0
N1i—Cd1—N3i85.43 (6)N3—C8—H8125.0
N1—Cd1—N3i94.57 (6)C8—C9—N4106.13 (18)
N3—Cd1—N3i180.00 (6)C8—C9—H9126.9
N1i—Cd1—Cl1i90.04 (4)N4—C9—H9126.9
N1—Cd1—Cl1i89.96 (4)N3—C10—N4111.30 (19)
N3—Cd1—Cl1i90.40 (4)N3—C10—H10124.3
N3i—Cd1—Cl1i89.60 (4)N4—C10—H10124.3
N1i—Cd1—Cl189.96 (4)N4—C11—C12111.53 (17)
N1—Cd1—Cl190.04 (4)N4—C11—H11A109.3
N3—Cd1—Cl189.60 (4)C12—C11—H11A109.3
N3i—Cd1—Cl190.40 (4)N4—C11—H11B109.3
Cl1i—Cd1—Cl1180.00 (2)C12—C11—H11B109.3
C3—C1—N1110.09 (19)H11A—C11—H11B108.0
C3—C1—H1125.0C13—C12—C14118.68 (18)
N1—C1—H1125.0C13—C12—C11120.56 (19)
N1—C2—N2112.35 (18)C14—C12—C11120.8 (2)
N1—C2—H2123.8C14iii—C13—C12121.08 (19)
N2—C2—H2123.8C14iii—C13—H13119.5
C1—C3—N2105.90 (19)C12—C13—H13119.5
C1—C3—H3127.0C13iii—C14—C12120.2 (2)
N2—C3—H3127.0C13iii—C14—H14119.9
N2—C4—C5113.02 (17)C12—C14—H14119.9
N2—C4—H4A109.0C2—N1—C1105.06 (18)
C5—C4—H4A109.0C2—N1—Cd1124.26 (14)
N2—C4—H4B109.0C1—N1—Cd1130.41 (14)
C5—C4—H4B109.0C2—N2—C3106.59 (17)
H4A—C4—H4B107.8C2—N2—C4126.14 (18)
C7ii—C5—C6118.61 (17)C3—N2—C4127.12 (19)
C7ii—C5—C4118.82 (18)C10—N3—C8105.51 (16)
C6—C5—C4122.48 (19)C10—N3—Cd1126.54 (13)
C5—C6—C7120.8 (2)C8—N3—Cd1123.87 (13)
C5—C6—H6119.6C10—N4—C9107.12 (16)
C7—C6—H6119.6C10—N4—C11126.32 (19)
C5ii—C7—C6120.60 (19)C9—N4—C11126.38 (18)
C5ii—C7—H7119.7
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+1; (iii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[CdCl2(C14H14N4)2]
Mr659.88
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.7983 (3), 12.8274 (6), 14.4190 (6)
β (°) 105.642 (1)
V3)1388.94 (10)
Z2
Radiation typeMo Kα
µ (mm1)1.01
Crystal size (mm)0.32 × 0.26 × 0.24
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SAINT; Bruker, 2001)
Tmin, Tmax0.74, 0.78
No. of measured, independent and
observed [I > 2σ(I)] reflections
7453, 2728, 2331
Rint0.037
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.058, 1.01
No. of reflections2728
No. of parameters178
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.44

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cd1—N1i2.3546 (17)Cd1—N3i2.3561 (15)
Cd1—N12.3546 (17)Cd1—Cl1i2.6248 (5)
Cd1—N32.3561 (15)Cd1—Cl12.6248 (5)
N1i—Cd1—N1180.00 (7)N3—Cd1—Cl1i90.40 (4)
N1i—Cd1—N394.57 (6)N3i—Cd1—Cl1i89.60 (4)
N1—Cd1—N385.43 (6)N1i—Cd1—Cl189.96 (4)
N1i—Cd1—N3i85.43 (6)N1—Cd1—Cl190.04 (4)
N1—Cd1—N3i94.57 (6)N3—Cd1—Cl189.60 (4)
N3—Cd1—N3i180.00 (6)N3i—Cd1—Cl190.40 (4)
N1i—Cd1—Cl1i90.04 (4)Cl1i—Cd1—Cl1180.00 (2)
N1—Cd1—Cl1i89.96 (4)
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

This work was supported by the Natural Science Foundation of Hubei Province (No. Q20082601).

References

First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhou, H. & Du, S. W. (2007). Chin. J. Struct. Chem. 26, 711–716.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds