organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(2-Methyl­benzo­yl)-3-m-tolyl­thio­urea

aSchool of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, UKM 43500 Bangi Selangor, Malaysia, bHEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan, and cDepartment of Chemistry, Universiti Malaysia Terengganu, Manngabang Telipot, Terengganu, Malaysia
*Correspondence e-mail: sammer_yousuf@yahoo.com

(Received 10 April 2008; accepted 28 April 2008; online 7 June 2008)

The molecule of the title compound, C16H16N2OS, is not planar; the two aromatic rings are inclined to one another by 37.59 (9)°. There are intra­molecular hydrogen bonds between the benzoyl O atom and the H atom of the thio­amide N atom, and between the thio­urea S atom and the H atom of the tolyl group. These hydrogen bonds stabilize the mol­ecule in such a way that the thio­urea group adopts a transcis geometry. In the crystal structure, mol­ecules are linked by N—H⋯S inter­molecular hydrogen bonds, forming centrosymmetric dimers.

Related literature

For the crystal structure of 1-(2,3-dimethyl­phen­yl)-3-(2-methyl­benzo­yl)thio­urea, see: Khawar Rauf et al. (2007[Khawar Rauf, M., Badshah, A. & Bolte, M. (2007). Acta Cryst. E63, o1256-o1257.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16N2OS

  • Mr = 284.37

  • Triclinic, [P \overline 1]

  • a = 6.440 (3) Å

  • b = 10.201 (5) Å

  • c = 11.415 (5) Å

  • α = 77.310 (7)°

  • β = 89.896 (8)°

  • γ = 86.468 (8)°

  • V = 730.1 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 298 (2) K

  • 0.35 × 0.34 × 0.22 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.927, Tmax = 0.954

  • 7240 measured reflections

  • 2703 independent reflections

  • 2202 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.125

  • S = 1.02

  • 2703 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯S1i 0.86 2.74 3.407 (2) 136
N2—H2A⋯O1 0.86 1.97 2.658 (2) 136
C7—H7C⋯O1 0.96 2.52 2.933 (3) 106
C15—H15A⋯S1 0.93 2.54 3.168 (3) 125
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

The title compound, (I), is analogus to 1-(2,3-Dimethylphenyl)-3-(2-methylbenzoyl)thiourea (II) (Khawar Rauf et al., 2007), but with the 2,3-dimethyl phenyl group replaced by a 2-methyl phenyl (m-tolyl) group (Fig. 1). The molecule maintains the trans-cis configuration with respect to the position of the methyl benzoyl and 3-methyl benzene groups, respectively, relative to the thiono S1 atom. The bond lengths and angles are in normal ranges (Allen et al., 1987). The central thiourea moiety, S1/N1/N2/C9, the 2-methylbenzoyl ring, (C1—C8), and the m-tolyl group (C10—C15,C16) are all relatively planar, with a maximum deviation from any best mean plane of 0.015 (2) Å for atom C10. The central thiourea moiety makes dihedral angles with the 2-methylbenzoyl and m-tolyl fragments of 49.61 (7) and 17.87 (9)°, respectively. The trans-cis geometry of the thiourea moiety is stabilized by N2—H2A···O1, C7—H7C···O1 and C15—H15A···S1 intramolecular hydrogen bonds (Table 1).

In the crystal structure of (I), symmetry related molecules are linked by the N1—H1A···S1 intermolecular hydrogen bonds (Table 1) to form cenntrosymmetric dimers (Fig 2).

Related literature top

For the crystal structure of 1-(2,3-dimethylphenyl)-3-(2-methylbenzoyl)thiourea, see: Khawar Rauf et al. (2007). For bond-length data, see: Allen et al. (1987).

Experimental top

2-methylbenzoyl chloride (9.720 g, 0.025mole) was mixed with an equimolar amount of ammonium thiocyanate (1.903 g, 0.025 mol) and 3-methyl aniline (2.701 g, 0.025 mol) in 45 ml dry acetone. The mixture was refluxed with stirring for 4 h. The solution was then filtered and left to evaporate at room temperature. Colourless crystals, suitable for X-ray aanalysis, were obtained after a few days (Yield 85%).

Refinement top

NH and C-bound H atoms were positioned geometrically and constrained to ride on their parent atoms: N—H = 0.86 and C—H = 0.93 - 0.96 Å, with Uiso(H)= 1.2Ueq(CH and NH), and 1.5Ueq(CH3).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of compound (1), with displacement ellipsoids drawn at 50% probability level (The dashed lines indicate the intramolecular hydrogen bonds).
[Figure 2] Fig. 2. The crystal packing diagram of compound (1), showing the formation of the N-H···S hydrogen bonded dimers (Hydrogen bonds are shown by dashed lines).
1-(2-Methylbenzoyl)-3-m-tolylthiourea top
Crystal data top
C16H16N2OSZ = 2
Mr = 284.37F(000) = 300
Triclinic, P1Dx = 1.293 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.440 (3) ÅCell parameters from 2987 reflections
b = 10.201 (5) Åθ = 1.8–25.5°
c = 11.415 (5) ŵ = 0.22 mm1
α = 77.310 (7)°T = 298 K
β = 89.896 (8)°Block, colorless
γ = 86.468 (8)°0.35 × 0.34 × 0.22 mm
V = 730.1 (6) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2703 independent reflections
Radiation source: fine-focus sealed tube2202 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 83.66 pixels mm-1θmax = 25.5°, θmin = 1.8°
ω scansh = 77
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
k = 1212
Tmin = 0.927, Tmax = 0.954l = 1313
7240 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.077P)2 + 0.124P]
where P = (Fo2 + 2Fc2)/3
2703 reflections(Δ/σ)max < 0.000
181 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C16H16N2OSγ = 86.468 (8)°
Mr = 284.37V = 730.1 (6) Å3
Triclinic, P1Z = 2
a = 6.440 (3) ÅMo Kα radiation
b = 10.201 (5) ŵ = 0.22 mm1
c = 11.415 (5) ÅT = 298 K
α = 77.310 (7)°0.35 × 0.34 × 0.22 mm
β = 89.896 (8)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2703 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2202 reflections with I > 2σ(I)
Tmin = 0.927, Tmax = 0.954Rint = 0.023
7240 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.02Δρmax = 0.23 e Å3
2703 reflectionsΔρmin = 0.28 e Å3
181 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.32952 (9)0.66913 (5)0.02660 (4)0.0657 (2)
O10.5770 (2)0.43595 (14)0.39009 (11)0.0589 (4)
N10.5747 (2)0.51255 (14)0.18710 (13)0.0474 (5)
N20.3091 (2)0.62497 (14)0.26753 (12)0.0463 (4)
C10.9854 (3)0.3839 (2)0.19650 (18)0.0549 (6)
C21.1512 (3)0.2991 (2)0.1779 (2)0.0663 (8)
C31.1594 (3)0.1659 (2)0.2386 (2)0.0708 (8)
C41.0059 (3)0.1190 (2)0.3173 (2)0.0632 (7)
C50.8385 (3)0.20259 (18)0.33940 (17)0.0502 (6)
C60.8294 (2)0.33688 (17)0.27600 (15)0.0450 (5)
C70.6744 (3)0.1451 (2)0.4262 (2)0.0664 (7)
C80.6511 (3)0.43112 (17)0.29297 (15)0.0445 (5)
C90.4011 (3)0.60340 (16)0.16802 (15)0.0445 (5)
C100.1164 (2)0.69333 (16)0.28323 (15)0.0421 (5)
C110.0350 (3)0.65998 (18)0.39738 (16)0.0508 (6)
C120.1571 (3)0.7154 (2)0.42026 (19)0.0611 (7)
C130.2680 (3)0.80384 (19)0.33001 (19)0.0568 (7)
C140.1870 (3)0.84061 (19)0.21718 (18)0.0560 (6)
C150.0074 (3)0.78556 (19)0.19379 (16)0.0551 (6)
C160.3049 (4)0.9400 (3)0.1191 (2)0.0903 (10)
H1A0.644100.506300.123900.0570*
H1B0.978000.473500.155400.0660*
H2A0.378200.591900.332900.0560*
H2B1.256100.331200.125200.0800*
H3A1.269800.107700.226000.0850*
H4A1.014000.028800.357000.0760*
H7A0.711300.051800.459600.1000*
H7B0.542800.153700.385000.1000*
H7C0.664300.193300.489700.1000*
H11A0.109700.600400.458400.0610*
H12A0.212300.693100.496900.0730*
H13A0.399200.839000.345800.0680*
H15A0.064500.810700.117900.0660*
H16A0.435200.968200.149500.1350*
H16B0.330200.898200.053300.1350*
H16C0.224401.016800.091800.1350*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0808 (4)0.0649 (3)0.0427 (3)0.0316 (3)0.0035 (2)0.0031 (2)
O10.0592 (8)0.0699 (8)0.0445 (7)0.0245 (6)0.0033 (6)0.0134 (6)
N10.0440 (8)0.0508 (8)0.0439 (8)0.0123 (6)0.0053 (6)0.0071 (6)
N20.0435 (8)0.0519 (8)0.0413 (7)0.0144 (6)0.0033 (6)0.0100 (6)
C10.0418 (10)0.0589 (11)0.0643 (12)0.0012 (8)0.0004 (8)0.0155 (9)
C20.0393 (10)0.0854 (15)0.0775 (14)0.0030 (10)0.0073 (9)0.0269 (12)
C30.0463 (11)0.0783 (15)0.0936 (16)0.0214 (10)0.0050 (11)0.0382 (13)
C40.0573 (12)0.0524 (11)0.0802 (14)0.0146 (9)0.0122 (10)0.0202 (10)
C50.0450 (9)0.0498 (10)0.0570 (10)0.0062 (8)0.0082 (8)0.0165 (8)
C60.0366 (9)0.0512 (9)0.0484 (9)0.0063 (7)0.0059 (7)0.0159 (8)
C70.0646 (13)0.0550 (11)0.0743 (14)0.0019 (10)0.0050 (11)0.0044 (10)
C80.0399 (9)0.0463 (9)0.0469 (9)0.0048 (7)0.0028 (7)0.0116 (7)
C90.0420 (9)0.0400 (8)0.0494 (10)0.0053 (7)0.0013 (7)0.0078 (7)
C100.0406 (9)0.0409 (8)0.0456 (9)0.0055 (7)0.0024 (7)0.0134 (7)
C110.0534 (10)0.0515 (10)0.0448 (9)0.0085 (8)0.0006 (8)0.0082 (7)
C120.0589 (12)0.0628 (12)0.0598 (12)0.0062 (9)0.0156 (9)0.0122 (9)
C130.0421 (10)0.0567 (11)0.0730 (13)0.0097 (8)0.0028 (9)0.0211 (9)
C140.0534 (11)0.0524 (10)0.0614 (12)0.0180 (8)0.0097 (9)0.0163 (9)
C150.0590 (11)0.0556 (10)0.0462 (10)0.0176 (9)0.0015 (8)0.0071 (8)
C160.0882 (17)0.0929 (17)0.0776 (16)0.0491 (14)0.0173 (13)0.0073 (13)
Geometric parameters (Å, º) top
S1—C91.6605 (19)C12—C131.379 (3)
O1—C81.216 (2)C13—C141.372 (3)
N1—C81.380 (2)C14—C161.506 (3)
N1—C91.393 (2)C14—C151.390 (3)
N2—C91.335 (2)C1—H1B0.9300
N2—C101.416 (2)C2—H2B0.9300
N1—H1A0.8600C3—H3A0.9300
N2—H2A0.8600C4—H4A0.9300
C1—C61.388 (3)C7—H7A0.9600
C1—C21.378 (3)C7—H7B0.9600
C2—C31.381 (3)C7—H7C0.9600
C3—C41.371 (3)C11—H11A0.9300
C4—C51.390 (3)C12—H12A0.9300
C5—C61.400 (3)C13—H13A0.9300
C5—C71.503 (3)C15—H15A0.9300
C6—C81.492 (3)C16—H16A0.9600
C10—C151.386 (3)C16—H16B0.9600
C10—C111.383 (3)C16—H16C0.9600
C11—C121.377 (3)
C8—N1—C9129.20 (15)C13—C14—C15119.23 (18)
C9—N2—C10130.59 (14)C10—C15—C14120.21 (17)
C8—N1—H1A115.00C2—C1—H1B120.00
C9—N1—H1A115.00C6—C1—H1B120.00
C10—N2—H2A115.00C1—C2—H2B120.00
C9—N2—H2A115.00C3—C2—H2B120.00
C2—C1—C6120.68 (19)C2—C3—H3A120.00
C1—C2—C3119.10 (19)C4—C3—H3A120.00
C2—C3—C4120.45 (19)C3—C4—H4A119.00
C3—C4—C5121.78 (19)C5—C4—H4A119.00
C4—C5—C6117.43 (17)C5—C7—H7A110.00
C4—C5—C7119.31 (17)C5—C7—H7B110.00
C6—C5—C7123.23 (17)C5—C7—H7C109.00
C1—C6—C8119.24 (16)H7A—C7—H7B110.00
C5—C6—C8120.22 (15)H7A—C7—H7C109.00
C1—C6—C5120.54 (16)H7B—C7—H7C109.00
O1—C8—N1122.48 (17)C10—C11—H11A120.00
O1—C8—C6123.92 (16)C12—C11—H11A120.00
N1—C8—C6113.60 (14)C11—C12—H12A120.00
N1—C9—N2115.10 (15)C13—C12—H12A120.00
S1—C9—N1117.23 (13)C12—C13—H13A120.00
S1—C9—N2127.65 (14)C14—C13—H13A120.00
N2—C10—C15124.98 (15)C10—C15—H15A120.00
C11—C10—C15119.83 (15)C14—C15—H15A120.00
N2—C10—C11115.18 (15)C14—C16—H16A109.00
C10—C11—C12119.69 (17)C14—C16—H16B109.00
C11—C12—C13120.27 (19)C14—C16—H16C109.00
C12—C13—C14120.72 (18)H16A—C16—H16B109.00
C13—C14—C16120.97 (18)H16A—C16—H16C110.00
C15—C14—C16119.80 (18)H16B—C16—H16C109.00
C9—N1—C8—O15.0 (3)C7—C5—C6—C1179.65 (18)
C9—N1—C8—C6174.26 (16)C7—C5—C6—C80.2 (3)
C8—N1—C9—S1170.78 (15)C1—C6—C8—O1137.6 (2)
C8—N1—C9—N27.9 (3)C1—C6—C8—N143.1 (2)
C10—N2—C9—S18.9 (3)C5—C6—C8—O142.6 (3)
C10—N2—C9—N1169.59 (16)C5—C6—C8—N1136.71 (17)
C9—N2—C10—C11159.19 (18)N2—C10—C11—C12176.51 (17)
C9—N2—C10—C1519.4 (3)C15—C10—C11—C122.1 (3)
C6—C1—C2—C30.6 (3)N2—C10—C15—C14175.98 (17)
C2—C1—C6—C50.5 (3)C11—C10—C15—C142.5 (3)
C2—C1—C6—C8179.37 (18)C10—C11—C12—C130.1 (3)
C1—C2—C3—C40.7 (3)C11—C12—C13—C141.7 (3)
C2—C3—C4—C50.3 (3)C12—C13—C14—C151.3 (3)
C3—C4—C5—C61.4 (3)C12—C13—C14—C16178.4 (2)
C3—C4—C5—C7179.67 (19)C13—C14—C15—C100.8 (3)
C4—C5—C6—C11.5 (3)C16—C14—C15—C10179.6 (2)
C4—C5—C6—C8178.38 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···S1i0.862.743.407 (2)136
N2—H2A···O10.861.972.658 (2)136
C7—H7C···O10.962.522.933 (3)106
C15—H15A···S10.932.543.168 (3)125
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC16H16N2OS
Mr284.37
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)6.440 (3), 10.201 (5), 11.415 (5)
α, β, γ (°)77.310 (7), 89.896 (8), 86.468 (8)
V3)730.1 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.35 × 0.34 × 0.22
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.927, 0.954
No. of measured, independent and
observed [I > 2σ(I)] reflections
7240, 2703, 2202
Rint0.023
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.125, 1.02
No. of reflections2703
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.28

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···S1i0.862.743.407 (2)136
N2—H2A···O10.861.972.658 (2)136
C7—H7C···O10.962.522.933 (3)106
C15—H15A···S10.932.543.168 (3)125
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

The authors thank the Ministry of Higher Education of Malaysia for the Fundamental Research Grants UKM-OUP-BTT-28–2007 and UMT-FRGS-59001, and University Kebangsaan Malaysia, University Malaysia Terengganuand and the HEJ Research Institute of Chemistry, University of Karachi, for research facilities.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKhawar Rauf, M., Badshah, A. & Bolte, M. (2007). Acta Cryst. E63, o1256–o1257.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds