metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages m919-m920

μ-Aqua-κ2O:O-di-μ-4-methyl­benzoato-κ4O:O′-bis­­[(4-methyl­benzoato-κO)(1,10-phenanthroline-κ2N,N′)nickel(II)]

aCollege of Science, Guang Dong Ocean University, Zhan Jiang 524088, People's Republic of China
*Correspondence e-mail: songwd60@126.com

(Received 22 May 2008; accepted 9 June 2008; online 13 June 2008)

In the title dinuclear complex, [Ni2(C8H7O2)4(C12H8N2)2(H2O)], each NiII atom is six-coordinated by three carboxylate O atoms from three 4-methyl­benzoate ligands, two N atoms from two 1,10-phenanthroline ligands, and one μ2-bridging aqua ligand. The dimeric complex is located on a crystallographic twofold axis and each Ni atom displays a distorted octa­hedral coordination geometry. The crystal structure is stabilized via intra­molecular hydrogen bonding of the bridging water mol­ecule and the uncoordinated carboxyl­ate O atoms, and by C—H⋯O and ππ stacking inter­actions [centroid–centroid distances between neighbouring phenanthroline ring systems and between the benzene ring of a 4-methyl­benzoate unit and a phenanthroline ring system are 3.662 (2) and 3.611 (3) Å, respectively].

Related literature

For the coordination chemistry of 4-methylbenzoate complexes see: Song et al. (2007[Song, W.-D., Gu, C.-S., Hao, X.-M. & Liu, J.-W. (2007). Acta Cryst. E63, m1023-m1024.]); Li et al. (2003[Li, X. & Zou, Y. Q. (2003). Z. Kristallogr. New Cryst. Struct. 218, 448-450.], 2004[Li, X., Zou, Y. Q. & Song, H. B. (2004). Z. Kristallogr. New Cryst. Struct. 219, 278-280.]); Geetha et al. (1999[Geetha, K. & Chakravarty, A. R. (1999). J. Chem. Soc. Dalton Trans. pp. 1623-1627.]). For related complexes, see: Eremenko et al. (1999[Eremenko, I. L., Nefedov, V. N., Sidorov, A. A., Golubnichaya, M. A., Danilov, P. V., Ikorskii, V. N., Shvedenkov, Y., u, G., Novotortsev, V. M. & Moiseev, I. I. (1999). Inorg. Chem. 38, 3764-3773.]); Sung et al. (2000[Sung, N.-D., Yun, K.-S., Kim, J.-G. & Suh, I.-H. (2000). Acta Cryst. C56, e370-e371.]); Novak et al. (2005[Novak, M. A., Prado, P. F., de Rangel e Silva, M. V., Skakle, J. M. S., Vaz, M. G. F., Wardell, J. L. & Wardell, S. M. S. V. (2005). Inorg. Chim. Acta, 358, 941-946.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni2(C8H7O2)4(C12H8N2)2(H2O)]

  • Mr = 1036.39

  • Monoclinic, C 2/c

  • a = 23.4180 (6) Å

  • b = 15.4595 (4) Å

  • c = 15.6140 (3) Å

  • β = 122.351 (1)°

  • V = 4775.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.85 mm−1

  • T = 296 (2) K

  • 0.35 × 0.32 × 0.26 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.612, Tmax = 0.801

  • 23989 measured reflections

  • 5125 independent reflections

  • 3585 reflections with I > 2σ(I)

  • Rint = 0.077

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.117

  • S = 1.08

  • 5125 reflections

  • 326 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O4i 0.93 2.49 3.007 (3) 115
C6—H6⋯O2ii 0.93 2.52 3.296 (4) 142
C8—H8⋯O3iii 0.93 2.52 3.379 (4) 153
O1W—H1W⋯O2i 0.830 (10) 1.746 (12) 2.560 (2) 166 (3)
Symmetry codes: (i) [-x, y, -z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SMART. Bruker AXS Inc, Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SMART. Bruker AXS Inc, Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the structural investigation of 4-methylbenzoate complexes, it has been found that 4-methylbenzoic acid can function as a multidentate ligand [Song et al. (2007); Li et al. (2003); Li et al. (2004); Geetha et al. (1999)], with versatile binding and coordination modes. In this paper, we report the crystal structure of the title compound, (I), a new Ni complex obtained by the reaction of 4-methylbenzoic acid, 1,10-phenanthroline and nickel chloride in alkaline aqueous solution.

As illustrated in Figure 1, each NiII atom, lies on a crystallographic two fold axis, and has a distorted octahedral geometry with the six coordinating atoms being three carboxyl O atoms from two µ2-bridging 4-methylbenzoate ligands and one 4-methylbenzoate ligand, two N atoms from two 1,10-phenanthroline ligands, and one µ2-bridging aqua ligand. Therefore, the O1W water molecule bridges both Ni atoms [Ni1···O1W···Ni2i 110.40 (11)°, symmetry code i = -x, y, -z+1/2] and with a Ni···Nii distance of 3.449 (3) Å. This value is similar to that observed for a binuclear pivalate complexes with a bridging water molecule Ni2L4(µ-OH2)(µ-OOCCMe3)2(OOCCMe3)2, (L2=Py2, (3,4-lutidine)2, (N-nitroxyethylnicotinamide)2, Dipy) [Eremenko et al. (1999)], for which ferromagnetic spin exchange was observed. The Ni···O1W distance is 2.100 (14) Å which is a little shorter than that in other similar complexes [Sung et al., 2000; Novak et al., 2005], suggesting their non-negligible interactions.

The interactions of the structural components are governed by O—H···O hydrogen bonds, C—H···O interactions (Table 1) and by two types of π-π stacking interactions between two closeby phenantroline rings and between a phenyl ring of a 4-methylbenzoate unit and a phenantroline unit. The centroid to centroid distances for the further π-π stacking interaction is 3.662 (2) Å [symmetry code = x, -y, z-1/2], that of the latter 3.611 (3) Å [symmetry code = 1/2-x, 1/2-y, 1-z], respectively, thus indicating weak π-π stacking interactions (Fig. 2).

Related literature top

For the coordination chemistry of 4-methyl benzoate complexes see: Song et al. (2007); Li et al. (2003, 2004); Geetha et al. (1999). For related complexes, see: Eremenko et al. (1999), Sung et al. (2000); Novak et al. (2005).

Experimental top

A mixture of nickel chloride (1 mmol), 4-methylbenzate (1 mmol), 1,10-phenanthroline (1 mmol), NaOH (1.5 mmol) and H2O (12 ml) was placed in a 23 ml Teflon reactor, which was heated to 433 K for three days and then cooled to room temperature at a rate of 10 K h-1. The crystals obtained were washed with water and dryed in air.

Refinement top

Carbon-bound H atoms were placed at calculated positions and were treated as riding on the parent C atoms with C—H = 0.93–0.97 Å, and with Uiso(H) = 1.2 Ueq(C). Water H atoms were tentatively located in difference Fourier maps and were refined with distance restraints of O–H = 0.82 Å, each within a standard deviation of 0.01 Å with Uiso(H) = 1.5 Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the atomic numbering scheme. Non-H atoms are shown as 30% probability displacement ellipsoids. Symmetry code i = -x, y, -z+1/2.
[Figure 2] Fig. 2. A packing view of the title compound. The purple spheres represent ring centroids involved in π-π stacking interactions (blue dashed lines). The green dashed lines represent C—H···O and O—H···O hydrogen bonds.
µ-aqua-κ2O:O-di-µ-4-methylbenzoatoκ4O:O'-bis[(4-methylbenzoato- κO)(1,10-phenanthroline-κ2N,N')nickel(II)] top
Crystal data top
[Ni2(C8H7O2)4(C12H8N2)2(H2O)]Z = 4
Mr = 1036.39F(000) = 2152
Monoclinic, C2/cDx = 1.442 Mg m3
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 23.4180 (6) Åθ = 1.3–28.0°
b = 15.4595 (4) ŵ = 0.85 mm1
c = 15.6140 (3) ÅT = 296 K
β = 122.351 (1)°Block, blue
V = 4775.4 (2) Å30.35 × 0.32 × 0.26 mm
Data collection top
Bruker APEXII area-detector
diffractometer
5125 independent reflections
Radiation source: fine-focus sealed tube3585 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.077
ϕ and ω scansθmax = 27.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2929
Tmin = 0.612, Tmax = 0.801k = 1918
23989 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0505P)2 + 0.0814P]
where P = (Fo2 + 2Fc2)/3
5125 reflections(Δ/σ)max = 0.001
326 parametersΔρmax = 0.40 e Å3
1 restraintΔρmin = 0.49 e Å3
Crystal data top
[Ni2(C8H7O2)4(C12H8N2)2(H2O)]V = 4775.4 (2) Å3
Mr = 1036.39Z = 4
Monoclinic, C2/cMo Kα radiation
a = 23.4180 (6) ŵ = 0.85 mm1
b = 15.4595 (4) ÅT = 296 K
c = 15.6140 (3) Å0.35 × 0.32 × 0.26 mm
β = 122.351 (1)°
Data collection top
Bruker APEXII area-detector
diffractometer
5125 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3585 reflections with I > 2σ(I)
Tmin = 0.612, Tmax = 0.801Rint = 0.077
23989 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0431 restraint
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.40 e Å3
5125 reflectionsΔρmin = 0.49 e Å3
326 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.045434 (16)0.85690 (2)0.38073 (2)0.03319 (13)
C10.09421 (15)1.00994 (18)0.5312 (2)0.0456 (7)
H10.05201.03480.48820.055*
C20.14290 (18)1.0573 (2)0.6149 (2)0.0573 (8)
H20.13301.11220.62770.069*
C30.20514 (18)1.0217 (2)0.6776 (2)0.0588 (9)
H30.23831.05290.73300.071*
C40.21914 (15)0.9386 (2)0.6588 (2)0.0505 (8)
C50.28260 (17)0.8954 (3)0.7205 (3)0.0660 (10)
H50.31790.92440.77570.079*
C60.29252 (16)0.8141 (3)0.7008 (2)0.0653 (10)
H60.33430.78790.74300.078*
C70.23985 (14)0.7668 (2)0.6159 (2)0.0491 (8)
C80.24653 (16)0.6815 (2)0.5925 (3)0.0573 (9)
H80.28690.65180.63310.069*
C90.19382 (17)0.6424 (2)0.5102 (3)0.0569 (8)
H90.19730.58500.49550.068*
C100.13391 (15)0.68918 (19)0.4475 (2)0.0480 (7)
H100.09860.66230.39020.058*
C110.17777 (13)0.80871 (18)0.55122 (19)0.0408 (7)
C120.16736 (14)0.89602 (19)0.5737 (2)0.0413 (6)
C130.03124 (13)0.72317 (18)0.4141 (2)0.0382 (6)
C140.04880 (13)0.68008 (18)0.4834 (2)0.0400 (6)
C150.05758 (15)0.59133 (19)0.4793 (2)0.0492 (7)
H150.05380.55900.43240.059*
C160.07204 (18)0.5503 (2)0.5444 (3)0.0593 (9)
H160.07670.49040.54150.071*
C170.07961 (17)0.5960 (2)0.6133 (3)0.0608 (9)
C180.07257 (18)0.6851 (2)0.6154 (3)0.0650 (9)
H180.07860.71770.66010.078*
C190.05673 (16)0.7264 (2)0.5519 (2)0.0526 (8)
H190.05140.78620.55550.063*
C200.0955 (2)0.5511 (3)0.6843 (3)0.0894 (13)
H20A0.08330.58820.74090.134*
H20B0.07030.49820.70820.134*
H20C0.14300.53850.64890.134*
C210.07639 (13)0.96624 (16)0.2598 (2)0.0345 (6)
C220.11522 (13)1.04903 (17)0.2811 (2)0.0372 (6)
C230.17742 (15)1.0578 (2)0.3710 (2)0.0522 (8)
H230.19391.01370.41890.063*
C240.21486 (18)1.1324 (2)0.3892 (3)0.0652 (10)
H240.25711.13690.44880.078*
C250.19139 (19)1.1998 (2)0.3216 (3)0.0600 (9)
C260.12895 (18)1.19063 (19)0.2329 (3)0.0562 (8)
H260.11191.23560.18610.067*
C270.09145 (15)1.11616 (18)0.2125 (2)0.0446 (7)
H270.04981.11120.15200.054*
C280.2333 (2)1.2813 (2)0.3433 (3)0.0947 (15)
H28A0.22931.31710.39010.142*
H28B0.21721.31240.28120.142*
H28C0.27981.26580.37220.142*
N10.10564 (11)0.93089 (14)0.51042 (16)0.0379 (5)
N20.12593 (11)0.77022 (14)0.46695 (16)0.0385 (5)
O10.00788 (10)0.79909 (12)0.43632 (15)0.0443 (5)
O20.04096 (10)0.68100 (13)0.33837 (15)0.0501 (5)
O30.10179 (9)0.90933 (11)0.32838 (13)0.0407 (4)
O40.02143 (9)0.95844 (11)0.17574 (13)0.0382 (4)
O1W0.00000.77938 (16)0.25000.0367 (6)
H1W0.0180 (14)0.7449 (15)0.231 (2)0.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0289 (2)0.0333 (2)0.03124 (19)0.00013 (14)0.01199 (15)0.00146 (14)
C10.0499 (18)0.0420 (17)0.0396 (15)0.0063 (13)0.0203 (15)0.0012 (13)
C20.073 (2)0.0460 (19)0.0487 (18)0.0183 (16)0.0300 (19)0.0083 (15)
C30.061 (2)0.064 (2)0.0419 (17)0.0304 (17)0.0205 (17)0.0091 (15)
C40.0402 (17)0.064 (2)0.0356 (15)0.0185 (15)0.0125 (14)0.0014 (14)
C50.0388 (19)0.091 (3)0.0448 (19)0.0174 (18)0.0070 (16)0.0044 (18)
C60.0310 (17)0.101 (3)0.0457 (19)0.0010 (18)0.0081 (15)0.0197 (19)
C70.0334 (16)0.067 (2)0.0442 (17)0.0057 (14)0.0190 (14)0.0181 (15)
C80.0416 (19)0.073 (2)0.058 (2)0.0215 (16)0.0272 (17)0.0271 (18)
C90.054 (2)0.053 (2)0.064 (2)0.0190 (16)0.0329 (19)0.0184 (16)
C100.0445 (18)0.0455 (18)0.0514 (18)0.0048 (14)0.0239 (15)0.0067 (14)
C110.0308 (15)0.0531 (18)0.0350 (15)0.0006 (12)0.0152 (13)0.0114 (12)
C120.0330 (16)0.0520 (17)0.0339 (14)0.0060 (13)0.0146 (13)0.0058 (12)
C130.0265 (14)0.0417 (16)0.0413 (15)0.0033 (11)0.0148 (13)0.0053 (12)
C140.0306 (15)0.0458 (17)0.0402 (15)0.0008 (12)0.0166 (13)0.0048 (12)
C150.0525 (19)0.0475 (19)0.0493 (18)0.0021 (14)0.0282 (16)0.0022 (14)
C160.073 (2)0.0474 (19)0.064 (2)0.0109 (16)0.041 (2)0.0020 (16)
C170.066 (2)0.065 (2)0.055 (2)0.0126 (17)0.0349 (19)0.0052 (16)
C180.078 (3)0.073 (2)0.062 (2)0.0128 (19)0.049 (2)0.0112 (18)
C190.058 (2)0.0500 (18)0.0551 (19)0.0080 (15)0.0339 (17)0.0040 (15)
C200.113 (4)0.099 (3)0.085 (3)0.023 (3)0.072 (3)0.006 (2)
C210.0323 (15)0.0353 (15)0.0360 (14)0.0004 (11)0.0183 (13)0.0004 (11)
C220.0370 (15)0.0387 (15)0.0371 (14)0.0039 (12)0.0206 (13)0.0061 (12)
C230.0476 (19)0.0549 (19)0.0452 (17)0.0100 (15)0.0189 (15)0.0063 (14)
C240.057 (2)0.076 (3)0.054 (2)0.0284 (18)0.0244 (18)0.0272 (18)
C250.080 (3)0.051 (2)0.070 (2)0.0269 (17)0.053 (2)0.0229 (17)
C260.079 (2)0.0380 (17)0.064 (2)0.0070 (16)0.047 (2)0.0035 (15)
C270.0492 (18)0.0381 (15)0.0465 (16)0.0061 (13)0.0256 (15)0.0052 (13)
C280.128 (4)0.072 (3)0.118 (3)0.058 (3)0.088 (3)0.047 (2)
N10.0359 (13)0.0400 (13)0.0321 (11)0.0037 (10)0.0144 (10)0.0031 (10)
N20.0322 (13)0.0413 (13)0.0379 (12)0.0017 (10)0.0160 (11)0.0087 (10)
O10.0481 (12)0.0377 (11)0.0510 (11)0.0047 (9)0.0292 (10)0.0003 (9)
O20.0545 (13)0.0541 (13)0.0440 (11)0.0156 (10)0.0280 (11)0.0065 (10)
O30.0312 (10)0.0435 (11)0.0417 (11)0.0000 (8)0.0156 (9)0.0100 (9)
O40.0334 (10)0.0377 (10)0.0333 (10)0.0050 (8)0.0110 (9)0.0003 (8)
O1W0.0379 (16)0.0344 (15)0.0364 (14)0.0000.0190 (13)0.000
Geometric parameters (Å, º) top
Ni1—O4i2.0533 (17)C14—C151.384 (4)
Ni1—O32.0546 (17)C15—C161.386 (4)
Ni1—O12.0665 (18)C15—H150.9300
Ni1—N12.084 (2)C16—C171.375 (4)
Ni1—O1W2.1001 (14)C16—H160.9300
Ni1—N22.108 (2)C17—C181.386 (5)
C1—N11.328 (3)C17—C201.513 (4)
C1—C21.396 (4)C18—C191.387 (4)
C1—H10.9300C18—H180.9300
C2—C31.363 (5)C19—H190.9300
C2—H20.9300C20—H20A0.9600
C3—C41.395 (4)C20—H20B0.9600
C3—H30.9300C20—H20C0.9600
C4—C121.395 (4)C21—O41.259 (3)
C4—C51.433 (5)C21—O31.262 (3)
C5—C61.343 (5)C21—C221.501 (3)
C5—H50.9300C22—C271.377 (4)
C6—C71.437 (4)C22—C231.386 (4)
C6—H60.9300C23—C241.382 (4)
C7—C81.399 (4)C23—H230.9300
C7—C111.408 (4)C24—C251.371 (5)
C8—C91.357 (5)C24—H240.9300
C8—H80.9300C25—C261.382 (5)
C9—C101.408 (4)C25—C281.520 (4)
C9—H90.9300C26—C271.378 (4)
C10—N21.326 (3)C26—H260.9300
C10—H100.9300C27—H270.9300
C11—N21.360 (3)C28—H28A0.9600
C11—C121.448 (4)C28—H28B0.9600
C12—N11.352 (3)C28—H28C0.9600
C13—O21.260 (3)O4—Ni1i2.0533 (17)
C13—O11.263 (3)O1W—Ni1i2.1001 (14)
C13—C141.504 (4)O1W—H1W0.830 (10)
C14—C191.379 (4)
O4i—Ni1—O391.85 (7)C16—C15—H15119.7
O4i—Ni1—O191.01 (7)C17—C16—C15121.6 (3)
O3—Ni1—O1177.14 (7)C17—C16—H16119.2
O4i—Ni1—N187.80 (8)C15—C16—H16119.2
O3—Ni1—N185.72 (8)C16—C17—C18117.7 (3)
O1—Ni1—N194.35 (8)C16—C17—C20121.5 (3)
O4i—Ni1—O1W98.37 (7)C18—C17—C20120.8 (3)
O3—Ni1—O1W86.43 (6)C17—C18—C19121.0 (3)
O1—Ni1—O1W93.19 (6)C17—C18—H18119.5
N1—Ni1—O1W170.16 (6)C19—C18—H18119.5
O4i—Ni1—N2167.39 (8)C14—C19—C18120.9 (3)
O3—Ni1—N287.68 (8)C14—C19—H19119.6
O1—Ni1—N289.52 (8)C18—C19—H19119.6
N1—Ni1—N279.60 (9)C17—C20—H20A109.5
O1W—Ni1—N294.17 (8)C17—C20—H20B109.5
N1—C1—C2122.7 (3)H20A—C20—H20B109.5
N1—C1—H1118.6C17—C20—H20C109.5
C2—C1—H1118.6H20A—C20—H20C109.5
C3—C2—C1119.0 (3)H20B—C20—H20C109.5
C3—C2—H2120.5O4—C21—O3124.9 (2)
C1—C2—H2120.5O4—C21—C22118.2 (2)
C2—C3—C4120.1 (3)O3—C21—C22116.8 (2)
C2—C3—H3120.0C27—C22—C23118.8 (3)
C4—C3—H3120.0C27—C22—C21121.7 (2)
C3—C4—C12116.9 (3)C23—C22—C21119.5 (3)
C3—C4—C5124.4 (3)C24—C23—C22119.8 (3)
C12—C4—C5118.7 (3)C24—C23—H23120.1
C6—C5—C4121.8 (3)C22—C23—H23120.1
C6—C5—H5119.1C25—C24—C23121.8 (3)
C4—C5—H5119.1C25—C24—H24119.1
C5—C6—C7121.3 (3)C23—C24—H24119.1
C5—C6—H6119.4C24—C25—C26117.8 (3)
C7—C6—H6119.4C24—C25—C28120.9 (4)
C8—C7—C11117.6 (3)C26—C25—C28121.3 (4)
C8—C7—C6124.0 (3)C27—C26—C25121.3 (3)
C11—C7—C6118.4 (3)C27—C26—H26119.4
C9—C8—C7119.7 (3)C25—C26—H26119.4
C9—C8—H8120.2C22—C27—C26120.5 (3)
C7—C8—H8120.2C22—C27—H27119.7
C8—C9—C10119.5 (3)C26—C27—H27119.7
C8—C9—H9120.2C25—C28—H28A109.5
C10—C9—H9120.2C25—C28—H28B109.5
N2—C10—C9122.4 (3)H28A—C28—H28B109.5
N2—C10—H10118.8C25—C28—H28C109.5
C9—C10—H10118.8H28A—C28—H28C109.5
N2—C11—C7122.5 (3)H28B—C28—H28C109.5
N2—C11—C12117.6 (2)C1—N1—C12117.7 (2)
C7—C11—C12119.9 (3)C1—N1—Ni1128.51 (19)
N1—C12—C4123.5 (3)C12—N1—Ni1113.21 (18)
N1—C12—C11116.6 (2)C10—N2—C11118.2 (2)
C4—C12—C11119.9 (3)C10—N2—Ni1129.91 (19)
O2—C13—O1124.9 (2)C11—N2—Ni1111.72 (18)
O2—C13—C14117.7 (2)C13—O1—Ni1123.86 (17)
O1—C13—C14117.4 (2)C21—O3—Ni1120.08 (16)
C19—C14—C15118.2 (3)C21—O4—Ni1i129.80 (16)
C19—C14—C13122.0 (3)Ni1—O1W—Ni1i110.41 (11)
C15—C14—C13119.8 (3)Ni1—O1W—H1W129 (2)
C14—C15—C16120.5 (3)Ni1i—O1W—H1W96 (2)
C14—C15—H15119.7
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O4i0.932.493.007 (3)115
C6—H6···O2ii0.932.523.296 (4)142
C8—H8···O3iii0.932.523.379 (4)153
O1W—H1W···O2i0.83 (1)1.75 (1)2.560 (2)166 (3)
Symmetry codes: (i) x, y, z+1/2; (ii) x+1/2, y+3/2, z+1/2; (iii) x+1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formula[Ni2(C8H7O2)4(C12H8N2)2(H2O)]
Mr1036.39
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)23.4180 (6), 15.4595 (4), 15.6140 (3)
β (°) 122.351 (1)
V3)4775.4 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.85
Crystal size (mm)0.35 × 0.32 × 0.26
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.612, 0.801
No. of measured, independent and
observed [I > 2σ(I)] reflections
23989, 5125, 3585
Rint0.077
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.117, 1.08
No. of reflections5125
No. of parameters326
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.49

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O4i0.932.493.007 (3)115.4
C6—H6···O2ii0.932.523.296 (4)141.6
C8—H8···O3iii0.932.523.379 (4)152.9
O1W—H1W···O2i0.830 (10)1.746 (12)2.560 (2)166 (3)
Symmetry codes: (i) x, y, z+1/2; (ii) x+1/2, y+3/2, z+1/2; (iii) x+1/2, y+3/2, z+1.
 

Acknowledgements

The authors thank Guang Dong Ocean University for supporting this study.

References

First citationBruker (2004). APEX2 and SMART. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationEremenko, I. L., Nefedov, V. N., Sidorov, A. A., Golubnichaya, M. A., Danilov, P. V., Ikorskii, V. N., Shvedenkov, Y., u, G., Novotortsev, V. M. & Moiseev, I. I. (1999). Inorg. Chem. 38, 3764–3773.  Web of Science CSD CrossRef CAS Google Scholar
First citationGeetha, K. & Chakravarty, A. R. (1999). J. Chem. Soc. Dalton Trans. pp. 1623–1627.  Web of Science CSD CrossRef Google Scholar
First citationLi, X. & Zou, Y. Q. (2003). Z. Kristallogr. New Cryst. Struct. 218, 448–450.  CAS Google Scholar
First citationLi, X., Zou, Y. Q. & Song, H. B. (2004). Z. Kristallogr. New Cryst. Struct. 219, 278–280.  CAS Google Scholar
First citationNovak, M. A., Prado, P. F., de Rangel e Silva, M. V., Skakle, J. M. S., Vaz, M. G. F., Wardell, J. L. & Wardell, S. M. S. V. (2005). Inorg. Chim. Acta, 358, 941–946.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, W.-D., Gu, C.-S., Hao, X.-M. & Liu, J.-W. (2007). Acta Cryst. E63, m1023–m1024.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSung, N.-D., Yun, K.-S., Kim, J.-G. & Suh, I.-H. (2000). Acta Cryst. C56, e370–e371.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages m919-m920
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds