organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages o1336-o1337

1-Iso­propyl-4-nitro-6-meth­­oxy-1H-benzimidazole

aMylan School of Pharmacy, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA 15282, USA
*Correspondence e-mail: wildfongp@duq.edu

(Received 10 June 2008; accepted 19 June 2008; online 25 June 2008)

There are two independent mol­ecules in the asymmetric unit of the title compound, C11H13N3O3. The inter­planar angles for the two rings of the benzimidazole ring system is 2.21 (12)° in one mol­ecule and 0.72 (12)° in the other. The nitro group is twisted in the same direction relative to the least-squares plane through its attached benzene ring in both mol­ecules, with inter­planar angles of 15.22 (9) and 18.02 (8)°. In the crystal structure, mol­ecules are stacked along the a axis through ππ inter­actions (centroid–centroid distance 4.1954 Å). C—H⋯O hydrogen bonds are also present.

Related literature

For background to the biological applications of benzimidazole cores, see: Townsend & Revankar (1970[Townsend, L. B. & Revankar, G. R. (1970). Chem. Rev. 70, 389-438.]); Kamal et al. (2006[Kamal, A., Reddy, K. L., Devaiah, V., Shankaraiah, N. & Rao, M. V. (2006). Mini Rev. Med. Chem. 6, 71-89.]); Bentancor et al. (2004[Bentancor, L., Trelles, J. A., Nobile, M., Lewkowicz, E. S. & Iribarren, A. M. (2004). J. Mol. Catal. B: Enzym. 29, 3-7.]); Somsak et al. (2003[Somsak, L., Nagy, V., Hadady, Z., Docsa, T. & Gergely, P. (2003). Curr. Pharm. Des., 9, 1177-1189.]); Scholz et al. (2003[Scholz, B., Rechter, S., Drach, J. C., Townsend, L. B. & Bogner, E. (2003). Nucleic Acids Res. 31, 1426-1433.]); Sachs et al. (1995[Sachs, G., Shin, J. M., Briving, C., Wallmark, B. & Hersey, S. (1995). Annu. Rev. Pharmacol. Toxicol. 35, 277-305.]); Shin et al. (1997[Shin, J. M., Besancon, M., Bamberg, K. & Sachs, G. (1997). Ann. N. Y. Acad. Sci. 834, 65-76.]); Chackalamannil et al. (2003[Chackalamannil, S., Ahn, H.-S., Xia, Y., Doller, D. & Foster, C. (2003). Curr. Med. Chem. Cardio. Hemato. Agent, 1, 37-45.]); Nicolaou et al. (1998[Nicolaou, K. C., Trujillo, J. I., Jandeleit, B., Chibale, K., Rosenfeld, M., Diefenbach, B., Cheresh, D. A. & Goodman, S. L. (1998). Bioorg. Med. Chem. 6, 1185-1208.]); Lanusse & Prichard (1993[Lanusse, C. E. & Prichard, R. K. (1993). Drug Metab. Rev. 25, 235-279.]); Wang (1984[Wang, C. C. (1984). J. Med. Chem. 27, 1-9.]); Banks (1984[Banks, B. J. (1984). Annu. Rep. Med. Chem. 19, 147-156.]); Sharma & Abuzar (1983[Sharma, S. & Abuzar, S. (1983). Prog. Drug Res. 27, 85-161.]); Lopez-Rodriguez et al. (2002[Lopez-Rodriguez, M. L., Benhamu, B., Morcillo, M. J., Murcia, M., Viso, A., Campillo, M. & Pardo, L. (2002). Current Topics in Medicinal Chemistry, Vol 2, pp. 625-641. The Netherlands: Hilversum.]). For other related literature on benzimidazole cores, see: Elderfield et al. (1946[Elderfield, R. C., Gensler, W. J. & Birstein, O. (1946). J. Org. Chem., 8, 812-822.]); Grimmett (2002[Grimmett, M. R. (2002). Sci. Synth. 12, 529-612.]); Kumar et al. (1982[Kumar, B. V., Rathore, H. G. S. & Reddy, V. M. (1982). Indian J. Chem. Sect. B, 21, 1126-1127.]); Mizzoni & Spoerri (1945[Mizzoni, R. H. & Spoerri, P. E. (1945). J. Chem. Soc. 67, 1652-1654.]); Reddy & Reddy (1979[Reddy, V. M. & Reddy, K. K. (1979). Indian J. Chem. Sect. B, 17, 353-356.]). For related literature, see: Flaherty et al. (2008[Flaherty, P. T., Jain, P., Lipay, J., Chopra, I. & Yi, S. (2008). In preparation. For submission to Org. Lett.]).

[Scheme 1]

Experimental

Crystal data
  • C11H13N3O3

  • Mr = 235.24

  • Orthorhombic, P 21 21 21

  • a = 7.63920 (10) Å

  • b = 16.0029 (3) Å

  • c = 17.9496 (3) Å

  • V = 2194.33 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 150 (2) K

  • 0.43 × 0.33 × 0.28 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.]) Tmin = 0.959, Tmax = 0.971

  • 39389 measured reflections

  • 3989 independent reflections

  • 3649 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.099

  • S = 1.09

  • 3989 reflections

  • 313 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H1⋯O6i 0.93 2.46 3.3670 (8) 164
C4—H15⋯O3ii 0.93 2.49 3.3723 (8) 159
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, -y+1, z-{\script{1\over 2}}].

Data collection: APEX2 and SMART (Bruker, 1998[Bruker (1998). APEX2, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. ]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). APEX2, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. ]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 837-838.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

The benzimidazole core has found application in multiple biologically active compounds including ATP mimics (Townsend & Revankar, 1970, Kamal et al., 2006, Bentancor et al., 2004, Somsak et al., 2003, Scholz et al., 2003), ATPase inhibitors (Sachs et al., 1995, Shin et al., 1997), peptide mimics (Chackalamannil et al., 2003, Nicolaou et al., 1998, antihelmentics (Lanusse & Prichard, 1993, Wang, 1984, Banks, 1984, Sharma & Abuzar, 1983), and serotonergic compounds (Lopez-Rodriguez et al., 2002). Although multiple strategies exist to synthesize the imidazole ring onto the parent phenyl ring, the most prevalent strategy utilizes an ortho-phenyldiamine precursor, for example, compound 2 (Grimmett, 2002). Subsequent N-alkylation on the benzimidazole core presents an ambident nucleophile (Kumar et al., 1982, Reddy & Reddy, 1979). Alkylation on the preformed benzimidazole has been shown to occur on the most nucleophilic nitrogen. However, this strategy often presents a mixture of products and fails completely with bulky, less-reactive electrophiles. A strategy of one-pot N-alkylation on the precursor phenyldiamine has been developed, followed by cyclization to afford 1-N-alkyl-4-nitro-6-methoxybenzimidazole (Flaherty et al., In preparation). Unequivocal characterization of the alkylation site was essential to determine the utility of this method.

There are two molecules in the asymmetric unit of the title compound (Fig. 1). The nitro groups are twisted away from the least squares plane of the attached benzene rings, with the O2—N1—C6—C5 torsion angles being 17.24 (2)° and 14.72 (2)° for each molecule in the asymmetric unit, respectively, and the O1—N1—C6—C7 torsion angles being 18.51 (2)° and 15.10 (2)° for each molecule, respectively. Molecules in the crystal structure (Fig. 2) are stacked in parallel pairs along the a axis through π-π interactions, where the distance between C1 to C6 (centroid Cg2) and C12 to C18 (centroid Cg5) is 4.1954 Å [symmetry operation: x, y, z]. The crystal structure is further stabilized by weak C—H···O hydrogen bonds (Table 1). Additional stabilization arises from C—H···π interactions involving C22—H10A with C3—C4—C5—N2—N3 (centroid Cg1) and C10—H14C with C14—C15—C16—N5—N6 (centroid Cg4) imidazole rings having X—Cg···H distances of 3.6317 (17) Å and 3.6818 (17) Å, respectively.

Related literature top

For background to the biological applications of benzimidazole cores, see: Townsend & Revankar (1970); Kamal et al. (2006); Bentancor et al. (2004); Somsak et al. (2003); Scholz et al. (2003); Sachs et al. (1995); Shin et al. (1997); Chackalamannil et al. (2003); Nicolaou et al. (1998); Lanusse & Prichard (1993); Wang (1984); Banks (1984); Sharma & Abuzar (1983); Lopez-Rodriguez et al. (2002). For other related literature on benzimidazole cores, see: Elderfield et al. (1946); Grimmett (2002); Kumar et al. (1982); Mizzoni & Spoerri (1945); Reddy & Reddy (1979). For related literature, see: Flaherty et al. (2008).

Experimental top

Known compound 1 (Fig. 3) could be prepared in one step from commercially available starting material according to the procedure of Elderfield (Elderfield et al., 1946). Desymmetrization by Zinin mono reduction (Mizzoni & Spoerri, 1945) to 5-methoxy-3-nitrobenzene-1,2-diamine, 2 (Fig. 3), proceeded well. Reductive alkylation between 2 (Fig.3) and acetone generated the 2-isopropyl intermediate which was directly cyclized to 3 (Fig. 3) in formic acid and concentrated hydrochloric acid.

All compounds were obtained from Aldrich or Acros and used as supplied unless otherwise indicated. All reactions were conducted under an atmosphere of N2 unless otherwise indicated. Melting points were determined on a MelTemp apparatus and are uncorrected. 1H NMR analyses were determined on a 400 MHz Brucker NMR, and elemental analyses were preformed by Atlantic Microlabs.

CAUTION: Although the nitration to generate 1 (Fig. 3) proceeded in a controlled manner consistent with the literature (Elderfield et al., 1946) and the differential scanning calorimetry of solid 1 (Fig. 3) did not indicate an exothermic event upon melting, these compounds should be handled with great care and proper precaution.

5-Methoxy-3-nitrobenzene-1,2-diamine (2, Fig. 3): A solution of 4-methoxy-2,6-dinitroaniline (Elderfield et al., 1946) (1, Fig.3) (1.07 g, 5.0 mmole) in 50 ml of 100% EtOH was added to a 10% aqueous solution of (NH4)2S. This mixture was warmed to 333 K (60 °C). and stirred at 333 K (60 °C) for 1.5 h. This mixture was cooled to 273 K (0 °C) and the solid was collected on a #1 Whatman filter paper. The collected solids were washed with 5 ml of ice-cold CS2 then 5.0 ml of ice cold water to afford 0.65 g red needles after drying (70%). MP: 456–457.9 K (183–184.9 °C). 1H NMR (CDCl3) δ 3.53 (br s, 2H), 3.78 (s, 3H), 5.70 (s, 3H), 6.63 (s, 1H), 7.17 (s, 1H). Anal. Calcd for C7H9N3O3: C, 45.90; H, 4.95; N, 22.94. Found: C, 45.97; H, 4.99; N, 22.82.

1-Isopropyl-6-methoxy-4-nitro-1H-benzo[d]imidazole (3, Fig. 3): A solution of NaHB(O2CH)3 was prepared by slowly adding 99% formic acid (10.0 ml, 290 mmole) to a suspension of NaBH4 (1.83 g, 48.4 mmole) in THF (50 ml) at 273 K (0 °C) followed by stirring for an additional 5 min at 273 K (0 °C). To this solution was added a solution of 5-methoxy-3-nitrobenzene-1,2-diamine (2, Fig. 3) (2.1609 g, 11.8 mmole) in ACS grade acetone (20 ml) and THF (50.0 ml). The ice bath was removed and the mixture was permitted to stir for an additional 2 h at 296 K (23 °C). The solvent was removed under reduced pressure and the residue was dissolved into ice-cold 200 ml formic acid and then 60.0 ml concentrated HCl was added at 273 K (0 °C). This was brought directly to reflux for 15 min. The reaction was cooled to ambient temperature and the solvent was removed under reduced pressure. The residue was taken up into 15 ml ice-cold water and with cooling with an ice bath was made basic with a slight excess of 6 N NaOH. The precipitated dark solid was collected on #1 Whatman filter paper to 2.8 g. This solid was separated on SiO2 with 1:1 hexanes/ethyl acetate to afford 1.7 g of a bright yellow solid (74%). This material was recrystallized from CHCl3 to produce the material for crystallographic analysis. MP: 399–400 K (126–127 °C). 1H (CDCl3): δ 1.67 (2 t, 30 Hz, 6H), 3.96 (s, 1H), 4.69 (m, 1H), 7.24 (s, 1H), 7.82 (s, 1H), 8.26 (s, 1H). Anal. Calcd for C11H13N3O3: C, 56.16; H, 5.57; N, 17.86. C, 56.45; H,5.62; N, 17.55.

Refinement top

H atoms were positioned geometrically (aromatic C—H = 0.93 Å, methyl C—H = 0.96 Å, and methylene C–H = 0.98 Å) and treated with a riding model in subsequent refinement cycles. The isotropic displacement parameters were set to 1.2 Ueq (C) or 1.5 Ueq (methyl C) of the carrier atom.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003); software used to prepare material for publication: ORTEP-3 for Windows (Farrugia, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, shown with 30% probability displacement ellipsoids (arbitrary spheres for H atoms).
[Figure 2] Fig. 2. A packing diagram of (I) showing the π-π stacking interactions along the a axis between the benzimidazole rings (dashed line).
[Figure 3] Fig. 3. The molecular synthesis scheme used to produce the title compound (3). The following were also used: a: (NH4)2S,EtOH; b: formic acid, acetone, THF; c: conc. HCl, formic acid.
1-Isopropyl-4-nitro-6-methoxy-1H-benzimidazole top
Crystal data top
C11H13N3O3F(000) = 992.0
Mr = 235.24Dx = 1.424 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 12882 reflections
a = 7.6392 (1) Åθ = 2.3–30.9°
b = 16.0029 (3) ŵ = 0.11 mm1
c = 17.9496 (3) ÅT = 150 K
V = 2194.33 (6) Å3Rhomboid, yellow
Z = 80.43 × 0.33 × 0.28 mm
Data collection top
Bruker SMART APEXII
diffractometer
3989 independent reflections
Radiation source: fine-focus sealed tube3649 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 31.2°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 1111
Tmin = 0.959, Tmax = 0.971k = 2323
39389 measured reflectionsl = 2526
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0626P)2 + 0.1952P]
where P = (Fo2 + 2Fc2)/3
3989 reflections(Δ/σ)max = 0.006
313 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C11H13N3O3V = 2194.33 (6) Å3
Mr = 235.24Z = 8
Orthorhombic, P212121Mo Kα radiation
a = 7.6392 (1) ŵ = 0.11 mm1
b = 16.0029 (3) ÅT = 150 K
c = 17.9496 (3) Å0.43 × 0.33 × 0.28 mm
Data collection top
Bruker SMART APEXII
diffractometer
3989 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
3649 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.971Rint = 0.026
39389 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.09Δρmax = 0.47 e Å3
3989 reflectionsΔρmin = 0.20 e Å3
313 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O60.21889 (17)0.44035 (7)0.15295 (6)0.0298 (2)
N40.04946 (18)0.68089 (7)0.29007 (7)0.0257 (2)
C140.24765 (18)0.47797 (8)0.35375 (7)0.0192 (2)
N60.28545 (16)0.45465 (7)0.42604 (6)0.0205 (2)
C160.17746 (18)0.55944 (8)0.35923 (7)0.0201 (2)
C180.13756 (19)0.55466 (9)0.22533 (8)0.0233 (3)
H50.09850.57990.18170.028*
C130.26894 (18)0.43410 (8)0.28697 (7)0.0209 (2)
H70.31910.38120.28560.025*
O50.0279 (2)0.70366 (8)0.23365 (7)0.0401 (3)
C170.12331 (19)0.59655 (8)0.29232 (8)0.0213 (2)
C120.2109 (2)0.47402 (9)0.22273 (7)0.0222 (3)
N50.17167 (17)0.58463 (7)0.43318 (7)0.0236 (2)
O40.0687 (2)0.72566 (7)0.34467 (7)0.0436 (3)
C210.2167 (2)0.30465 (8)0.43829 (8)0.0258 (3)
H9A0.11500.31760.46750.039*
H9B0.26320.25170.45370.039*
H9C0.18500.30200.38660.039*
C190.2891 (2)0.35769 (9)0.14715 (8)0.0290 (3)
H11A0.40600.35690.16680.043*
H11B0.29130.34100.09580.043*
H11C0.21720.31970.17500.043*
C200.35454 (19)0.37233 (8)0.44953 (8)0.0222 (2)
H80.45680.35880.41890.027*
C150.2357 (2)0.52027 (8)0.46970 (8)0.0235 (3)
H10.24630.51950.52130.028*
C220.4111 (2)0.37599 (10)0.53068 (8)0.0300 (3)
H10A0.49430.42040.53720.045*
H10B0.46400.32380.54450.045*
H10C0.31080.38610.56160.045*
C50.63745 (18)0.55518 (8)0.10934 (7)0.0200 (2)
N10.51798 (17)0.67741 (7)0.17962 (7)0.0257 (2)
O30.74288 (17)0.44725 (7)0.31636 (5)0.0290 (2)
C60.60053 (18)0.59506 (8)0.17718 (8)0.0209 (2)
N30.74022 (16)0.45062 (7)0.04131 (6)0.0197 (2)
C30.71541 (17)0.47535 (8)0.11420 (7)0.0185 (2)
C10.71502 (19)0.47734 (9)0.24614 (7)0.0215 (2)
C20.75604 (18)0.43486 (8)0.18085 (7)0.0205 (2)
H180.80780.38230.18160.025*
N20.61682 (17)0.57845 (7)0.03556 (6)0.0233 (2)
C70.63817 (19)0.55723 (9)0.24427 (8)0.0229 (3)
H200.61260.58470.28860.027*
O10.5265 (2)0.71814 (9)0.23746 (8)0.0493 (4)
O20.44371 (17)0.70267 (7)0.12361 (7)0.0342 (3)
C110.6778 (2)0.29985 (8)0.03307 (8)0.0252 (3)
H13A0.64540.30140.08470.038*
H13B0.72880.24650.02170.038*
H13C0.57570.30820.00280.038*
C40.67924 (19)0.51421 (8)0.00193 (8)0.0231 (3)
H150.68150.51250.05370.028*
C90.80998 (18)0.36854 (8)0.01721 (7)0.0207 (2)
H120.91660.35680.04570.025*
C100.8569 (2)0.37134 (10)0.06505 (8)0.0268 (3)
H14A0.75230.37810.09400.040*
H14B0.91380.32020.07890.040*
H14C0.93430.41750.07420.040*
C80.8120 (2)0.36434 (9)0.32175 (8)0.0270 (3)
H22A0.73360.32590.29780.041*
H22B0.82450.34940.37330.041*
H22C0.92420.36210.29780.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O60.0465 (6)0.0262 (5)0.0168 (4)0.0047 (5)0.0021 (4)0.0026 (4)
N40.0284 (6)0.0188 (5)0.0301 (6)0.0002 (5)0.0001 (5)0.0018 (4)
C140.0220 (6)0.0178 (5)0.0179 (5)0.0014 (5)0.0023 (4)0.0004 (4)
N60.0256 (5)0.0189 (5)0.0169 (5)0.0000 (4)0.0010 (4)0.0004 (4)
C160.0227 (5)0.0177 (5)0.0201 (5)0.0023 (5)0.0020 (5)0.0006 (4)
C180.0282 (6)0.0230 (6)0.0187 (6)0.0020 (5)0.0006 (5)0.0012 (5)
C130.0250 (6)0.0192 (5)0.0185 (5)0.0004 (5)0.0031 (5)0.0010 (4)
O50.0549 (8)0.0277 (6)0.0377 (7)0.0083 (6)0.0124 (6)0.0042 (5)
C170.0233 (6)0.0171 (5)0.0236 (6)0.0016 (5)0.0014 (5)0.0007 (5)
C120.0277 (6)0.0225 (6)0.0165 (5)0.0024 (5)0.0026 (5)0.0004 (5)
N50.0296 (6)0.0204 (5)0.0207 (5)0.0006 (4)0.0031 (4)0.0032 (4)
O40.0650 (9)0.0257 (5)0.0402 (7)0.0130 (6)0.0125 (7)0.0092 (5)
C210.0304 (7)0.0203 (6)0.0266 (6)0.0002 (5)0.0000 (5)0.0001 (5)
C190.0358 (8)0.0259 (7)0.0252 (6)0.0001 (6)0.0027 (6)0.0064 (5)
C200.0237 (6)0.0210 (6)0.0218 (6)0.0029 (5)0.0009 (5)0.0013 (5)
C150.0294 (7)0.0218 (6)0.0194 (6)0.0021 (5)0.0019 (5)0.0031 (5)
C220.0319 (7)0.0327 (7)0.0254 (7)0.0010 (6)0.0068 (6)0.0043 (6)
C50.0221 (5)0.0175 (5)0.0204 (6)0.0012 (5)0.0016 (5)0.0002 (4)
N10.0285 (6)0.0191 (5)0.0296 (6)0.0024 (4)0.0017 (5)0.0039 (5)
O30.0439 (6)0.0263 (5)0.0167 (4)0.0065 (5)0.0040 (4)0.0010 (4)
C60.0228 (6)0.0167 (5)0.0230 (6)0.0002 (5)0.0020 (5)0.0028 (5)
N30.0256 (5)0.0179 (5)0.0157 (4)0.0001 (4)0.0005 (4)0.0007 (4)
C30.0215 (5)0.0170 (5)0.0170 (5)0.0018 (5)0.0001 (4)0.0016 (4)
C10.0257 (6)0.0225 (6)0.0162 (5)0.0012 (5)0.0023 (5)0.0003 (5)
C20.0247 (6)0.0187 (5)0.0181 (5)0.0000 (5)0.0021 (5)0.0001 (4)
N20.0291 (6)0.0197 (5)0.0210 (5)0.0005 (4)0.0031 (4)0.0008 (4)
C70.0275 (6)0.0226 (6)0.0185 (5)0.0001 (5)0.0022 (5)0.0032 (5)
O10.0723 (10)0.0350 (7)0.0405 (8)0.0216 (7)0.0183 (7)0.0192 (6)
O20.0425 (7)0.0281 (5)0.0320 (6)0.0112 (5)0.0047 (5)0.0008 (4)
C110.0312 (7)0.0197 (6)0.0247 (6)0.0003 (5)0.0022 (5)0.0016 (5)
C40.0292 (6)0.0214 (6)0.0187 (6)0.0005 (5)0.0022 (5)0.0017 (5)
C90.0237 (6)0.0195 (5)0.0189 (5)0.0024 (5)0.0000 (5)0.0020 (4)
C100.0306 (7)0.0297 (7)0.0201 (6)0.0021 (6)0.0036 (5)0.0017 (5)
C80.0335 (7)0.0232 (6)0.0243 (6)0.0003 (6)0.0019 (6)0.0051 (5)
Geometric parameters (Å, º) top
O6—C121.3649 (16)C5—N21.3846 (17)
O6—C191.4312 (18)C5—C61.4035 (18)
N4—O41.2229 (17)C5—C31.4122 (18)
N4—O51.2279 (18)N1—O21.2231 (17)
N4—C171.4635 (17)N1—O11.2277 (17)
C14—N61.3807 (16)N1—C61.4615 (17)
C14—C131.3986 (17)O3—C11.3659 (16)
C14—C161.4131 (18)O3—C81.4314 (17)
N6—C151.3643 (17)C6—C71.3781 (19)
N6—C201.4805 (16)N3—C41.3620 (17)
C16—N51.3879 (17)N3—C31.3800 (16)
C16—C171.4022 (18)N3—C91.4820 (16)
C18—C171.3810 (19)C3—C21.3955 (17)
C18—C121.408 (2)C1—C21.3907 (18)
C18—H50.9300C1—C71.4073 (19)
C13—C121.3908 (18)C2—H180.9300
C13—H70.9300N2—C41.3179 (18)
N5—C151.3153 (18)C7—H200.9300
C21—C201.524 (2)C11—C91.5195 (19)
C21—H9A0.9600C11—H13A0.9600
C21—H9B0.9600C11—H13B0.9600
C21—H9C0.9600C11—H13C0.9600
C19—H11A0.9600C4—H150.9300
C19—H11B0.9600C9—C101.5202 (19)
C19—H11C0.9600C9—H120.9800
C20—C221.520 (2)C10—H14A0.9600
C20—H80.9800C10—H14B0.9600
C15—H10.9300C10—H14C0.9600
C22—H10A0.9600C8—H22A0.9600
C22—H10B0.9600C8—H22B0.9600
C22—H10C0.9600C8—H22C0.9600
C12—O6—C19116.63 (11)N2—C5—C6133.21 (12)
O4—N4—O5123.03 (13)N2—C5—C3110.51 (11)
O4—N4—C17118.16 (12)C6—C5—C3116.26 (11)
O5—N4—C17118.82 (13)O2—N1—O1122.99 (13)
N6—C14—C13130.20 (12)O2—N1—C6118.27 (12)
N6—C14—C16105.27 (11)O1—N1—C6118.75 (13)
C13—C14—C16124.53 (12)C1—O3—C8116.52 (11)
C15—N6—C14105.88 (11)C7—C6—C5121.09 (12)
C15—N6—C20128.35 (11)C7—C6—N1117.39 (12)
C14—N6—C20125.65 (11)C5—C6—N1121.51 (12)
N5—C16—C17133.37 (12)C4—N3—C3106.19 (11)
N5—C16—C14110.28 (11)C4—N3—C9128.25 (11)
C17—C16—C14116.30 (11)C3—N3—C9125.47 (11)
C17—C18—C12120.35 (12)N3—C3—C2130.47 (12)
C17—C18—H5119.8N3—C3—C5105.00 (11)
C12—C18—H5119.8C2—C3—C5124.53 (12)
C12—C13—C14116.29 (12)O3—C1—C2124.77 (12)
C12—C13—H7121.9O3—C1—C7114.03 (11)
C14—C13—H7121.9C2—C1—C7121.20 (12)
C18—C17—C16121.13 (12)C1—C2—C3116.45 (12)
C18—C17—N4117.00 (12)C1—C2—H18121.8
C16—C17—N4121.87 (12)C3—C2—H18121.8
O6—C12—C13124.43 (13)C4—N2—C5103.73 (11)
O6—C12—C18114.21 (12)C6—C7—C1120.47 (12)
C13—C12—C18121.36 (12)C6—C7—H20119.8
C15—N5—C16103.74 (11)C1—C7—H20119.8
C20—C21—H9A109.5C9—C11—H13A109.5
C20—C21—H9B109.5C9—C11—H13B109.5
H9A—C21—H9B109.5H13A—C11—H13B109.5
C20—C21—H9C109.5C9—C11—H13C109.5
H9A—C21—H9C109.5H13A—C11—H13C109.5
H9B—C21—H9C109.5H13B—C11—H13C109.5
O6—C19—H11A109.5N2—C4—N3114.57 (12)
O6—C19—H11B109.5N2—C4—H15122.7
H11A—C19—H11B109.5N3—C4—H15122.7
O6—C19—H11C109.5N3—C9—C10110.01 (11)
H11A—C19—H11C109.5N3—C9—C11110.34 (11)
H11B—C19—H11C109.5C10—C9—C11111.10 (12)
N6—C20—C22109.87 (11)N3—C9—H12108.4
N6—C20—C21110.38 (11)C10—C9—H12108.4
C22—C20—C21110.53 (12)C11—C9—H12108.4
N6—C20—H8108.7C9—C10—H14A109.5
C22—C20—H8108.7C9—C10—H14B109.5
C21—C20—H8108.7H14A—C10—H14B109.5
N5—C15—N6114.83 (12)C9—C10—H14C109.5
N5—C15—H1122.6H14A—C10—H14C109.5
N6—C15—H1122.6H14B—C10—H14C109.5
C20—C22—H10A109.5O3—C8—H22A109.5
C20—C22—H10B109.5O3—C8—H22B109.5
H10A—C22—H10B109.5H22A—C8—H22B109.5
C20—C22—H10C109.5O3—C8—H22C109.5
H10A—C22—H10C109.5H22A—C8—H22C109.5
H10B—C22—H10C109.5H22B—C8—H22C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H1···O6i0.932.463.3670 (8)164
C4—H15···O3ii0.932.493.3723 (8)159
Symmetry codes: (i) x+1/2, y+1, z+1/2; (ii) x+3/2, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC11H13N3O3
Mr235.24
Crystal system, space groupOrthorhombic, P212121
Temperature (K)150
a, b, c (Å)7.6392 (1), 16.0029 (3), 17.9496 (3)
V3)2194.33 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.43 × 0.33 × 0.28
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.959, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
39389, 3989, 3649
Rint0.026
(sin θ/λ)max1)0.728
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.099, 1.09
No. of reflections3989
No. of parameters313
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.20

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H1···O6i0.932.463.3670 (8)164
C4—H15···O3ii0.932.493.3723 (8)159
Symmetry codes: (i) x+1/2, y+1, z+1/2; (ii) x+3/2, y+1, z1/2.
 

Acknowledgements

Financial support from Duquesne University (Mylan School of Pharmacy), an equipment grant from the National Science Foundation (NMR: CHE 0614785), and an NSF X-ray facility grant (CRIF 0234872) are gratefully acknowledged.

References

First citationBanks, B. J. (1984). Annu. Rep. Med. Chem. 19, 147–156.  CrossRef CAS Google Scholar
First citationBentancor, L., Trelles, J. A., Nobile, M., Lewkowicz, E. S. & Iribarren, A. M. (2004). J. Mol. Catal. B: Enzym. 29, 3–7.  Google Scholar
First citationBruker (1998). APEX2, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChackalamannil, S., Ahn, H.-S., Xia, Y., Doller, D. & Foster, C. (2003). Curr. Med. Chem. Cardio. Hemato. Agent, 1, 37–45.  CrossRef CAS Google Scholar
First citationElderfield, R. C., Gensler, W. J. & Birstein, O. (1946). J. Org. Chem., 8, 812–822.  CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 837–838.  Google Scholar
First citationFlaherty, P. T., Jain, P., Lipay, J., Chopra, I. & Yi, S. (2008). In preparation. For submission to Org. LettGoogle Scholar
First citationGrimmett, M. R. (2002). Sci. Synth. 12, 529–612.  CAS Google Scholar
First citationKamal, A., Reddy, K. L., Devaiah, V., Shankaraiah, N. & Rao, M. V. (2006). Mini Rev. Med. Chem. 6, 71–89.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKumar, B. V., Rathore, H. G. S. & Reddy, V. M. (1982). Indian J. Chem. Sect. B, 21, 1126–1127.  Google Scholar
First citationLanusse, C. E. & Prichard, R. K. (1993). Drug Metab. Rev. 25, 235–279.  CrossRef CAS PubMed Web of Science Google Scholar
First citationLopez-Rodriguez, M. L., Benhamu, B., Morcillo, M. J., Murcia, M., Viso, A., Campillo, M. & Pardo, L. (2002). Current Topics in Medicinal Chemistry, Vol 2, pp. 625–641. The Netherlands: Hilversum.  Google Scholar
First citationMizzoni, R. H. & Spoerri, P. E. (1945). J. Chem. Soc. 67, 1652–1654.  CrossRef CAS Google Scholar
First citationNicolaou, K. C., Trujillo, J. I., Jandeleit, B., Chibale, K., Rosenfeld, M., Diefenbach, B., Cheresh, D. A. & Goodman, S. L. (1998). Bioorg. Med. Chem. 6, 1185–1208.  Web of Science CrossRef CAS PubMed Google Scholar
First citationReddy, V. M. & Reddy, K. K. (1979). Indian J. Chem. Sect. B, 17, 353–356.  Google Scholar
First citationSachs, G., Shin, J. M., Briving, C., Wallmark, B. & Hersey, S. (1995). Annu. Rev. Pharmacol. Toxicol. 35, 277–305.  CrossRef CAS PubMed Google Scholar
First citationScholz, B., Rechter, S., Drach, J. C., Townsend, L. B. & Bogner, E. (2003). Nucleic Acids Res. 31, 1426–1433.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSharma, S. & Abuzar, S. (1983). Prog. Drug Res. 27, 85–161.  CAS PubMed Google Scholar
First citationSheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShin, J. M., Besancon, M., Bamberg, K. & Sachs, G. (1997). Ann. N. Y. Acad. Sci. 834, 65–76.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSomsak, L., Nagy, V., Hadady, Z., Docsa, T. & Gergely, P. (2003). Curr. Pharm. Des., 9, 1177–1189.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTownsend, L. B. & Revankar, G. R. (1970). Chem. Rev. 70, 389–438.  CrossRef CAS PubMed Web of Science Google Scholar
First citationWang, C. C. (1984). J. Med. Chem. 27, 1–9.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages o1336-o1337
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds