metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{2-[3-(di­methyl­amino)propyl­imino­meth­yl]-6-meth­oxy­phenolato-κ3N,N′,O1}nickel(II)

aJinhua Professional Technical College, Jinhua, Zhejiang Province 321017, People's Republic of China
*Correspondence e-mail: jh_ll@126.com

(Received 19 May 2008; accepted 3 July 2008; online 9 July 2008)

The centrosymmetric title complex, [Ni(C13H19N2O2)2], is a mononuclear nickel(II) complex. The NiII atom is coordinated by four N atoms and two O atoms of two deprotonated Schiff base ligands, forming a slightly distorted octa­hedral coordination configuration, in which the tertiary N atoms occupy the axial positions.

Related literature

For related literature, see: Choudhury et al. (2001[Choudhury, C. R., Dey, S. K., Mondal, N., Mitra, S., Mahalli, S. O. G. & Malik, K. M. A. (2001). J. Chem. Crystallogr. 31, 57-62.]); Das et al. (1997[Das, G., Shukla, R., Andal, S., Singh, R. & Bharadwaj, P. K. (1997). Inorg. Chem. 36, 323-329.]); Davies et al. (1973[Davies, J. E., Gatehouse, B. M. & Murray, K. S. (1973). J. Chem. Soc. Dalton Trans. pp. 2523-2527.]); Feng (2003[Feng, Y. L. (2003). Chin. J. Struct. Chem. 22, 544-546.]); Li & Wang (2007[Li, L.-Z. & Wang, L.-H. (2007). Acta Cryst. E63, m749-m750.]); Pariya et al. (1995[Pariya, C., Ghosh, S., Chosh, A., Mukherjee, M., Mukherjee, A. K. & Chaudhuri, N. R. (1995). J. Chem. Soc. Dalton Trans. pp. 337-342.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C13H19N2O2)2]

  • Mr = 529.31

  • Triclinic, [P \overline 1]

  • a = 7.4758 (15) Å

  • b = 8.5571 (17) Å

  • c = 10.995 (2) Å

  • α = 78.36 (3)°

  • β = 73.98 (3)°

  • γ = 73.73 (3)°

  • V = 643.0 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.79 mm−1

  • T = 296 (2) K

  • 0.35 × 0.28 × 0.26 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.766, Tmax = 0.814

  • 10449 measured reflections

  • 2937 independent reflections

  • 2727 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.077

  • S = 1.00

  • 2937 reflections

  • 160 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

There is considerable interest in the synthesis of multidentate Schiff base ligands for their versatile coordination behavior to metal ions and wide application in biological systems (Das et al., 1997). Metal complexes with tetradentate N2O2 and tridentate N2O Schiff base ligands derived from salicylaldehyde have been well studied in the past, such as [Ni(C12H18N2O2)2Cl2] (Feng, 2003), [Mn(C18H17N2O4)] (Davies et al., 1973) and [Ni(Me2NCH2CH2CH2N=CHC6H4O)2] (Choudhury et al., 2001). The title complex, [Ni(C13H19N2O2)2], has a crystallograpic center with the Ni atom situated at the center of (1/2, 0, 1/2). As illustrated in Fig. 1, the center NiII ion is octahedrally coordinated by two tridentate chelate ligands in a meridional arrangement resulting in a slightly distorted octahedral geometry. The equatorial plane is formed by two imine nitrogen atoms (N1 and N1i) and two deprotonated phenolate oxygen atoms (O1 and O1i) with the deviation of the metal ion of 0.003 (1) Å. The axial positions are occupied by the tertiary nitrogen atoms (N2 and N2i). Like other reported structures, (Li & Wang, 2007; Pariya et al., 1995), the axial Ni(1)—N(2) distance (2.308 (1) Å) is larger than the equatorial Ni(1)—N(1) distance (2.055 (1) Å). The bond angles around the NiII ion also deviate slightly from the ideal octahedron geometry. Angles involving the atoms in the trans positions are 180° but those invoving the cis-atoms vary from 81.07 (6)–98.96 (6)°.

Related literature top

For related literature, see: Choudhury et al. (2001); Das et al. (1997); Davies et al. (1973); Feng (2003); Li & Wang (2007); Pariya et al. (1995).

Experimental top

3-methoxysalicylaldehyde (2.0 mmol) and 3-dimenthylaminopropylamine (2.0 mmol) in 15 ml of methyl alcohol were stirred for 4 h. NiCl2.4H2O (1.0 mmol) was added and stirred for 10 h. The resulting solution was placed in a refrigerator at 263 K for 10 days, and the crystals were filtered off, giving orange crystals of the title complex for X-ray analysis.

Refinement top

All H atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H distances in the range 0.93 - 0.97 Å, and with Uiso(H) = 1.2 or 1.5Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I), showing the atom-labelling scheme, displacement ellipsoids are shown at the 30% probability level. [Symmetry codes: (i) -x + 1,-y,-z + 1]
Bis{2-[3-(dimethylamino)propyliminomethyl]-6-methoxyphenolato-κ3N,N',O1}nickel(II) top
Crystal data top
[Ni(C13H19N2O2)2]Z = 1
Mr = 529.31F(000) = 282
Triclinic, P1Dx = 1.367 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4758 (15) ÅCell parameters from 10453 reflections
b = 8.5571 (17) Åθ = 1.9–27.5°
c = 10.995 (2) ŵ = 0.79 mm1
α = 78.36 (3)°T = 296 K
β = 73.98 (3)°Block, orange
γ = 73.73 (3)°0.35 × 0.28 × 0.26 mm
V = 643.0 (2) Å3
Data collection top
Bruker APEXII area-detector
diffractometer
2937 independent reflections
Radiation source: fine-focus sealed tube2727 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.766, Tmax = 0.814k = 1011
10449 measured reflectionsl = 1413
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0466P)2 + 0.1331P]
where P = (Fo2 + 2Fc2)/3
2937 reflections(Δ/σ)max < 0.001
160 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
[Ni(C13H19N2O2)2]γ = 73.73 (3)°
Mr = 529.31V = 643.0 (2) Å3
Triclinic, P1Z = 1
a = 7.4758 (15) ÅMo Kα radiation
b = 8.5571 (17) ŵ = 0.79 mm1
c = 10.995 (2) ÅT = 296 K
α = 78.36 (3)°0.35 × 0.28 × 0.26 mm
β = 73.98 (3)°
Data collection top
Bruker APEXII area-detector
diffractometer
2937 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2727 reflections with I > 2σ(I)
Tmin = 0.766, Tmax = 0.814Rint = 0.020
10449 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.077H-atom parameters constrained
S = 1.00Δρmax = 0.32 e Å3
2937 reflectionsΔρmin = 0.17 e Å3
160 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.00000.50000.03138 (10)
O10.57408 (15)0.09660 (13)0.62529 (9)0.0365 (2)
O20.73982 (18)0.1105 (2)0.80263 (12)0.0627 (4)
N10.22745 (17)0.14317 (15)0.55226 (12)0.0371 (3)
N20.5262 (2)0.22458 (15)0.34548 (12)0.0399 (3)
C10.4656 (2)0.17196 (17)0.71970 (13)0.0346 (3)
C20.5492 (2)0.1879 (2)0.81787 (15)0.0439 (4)
C30.4433 (3)0.2733 (2)0.91789 (16)0.0561 (5)
H3A0.50180.28270.97970.067*
C40.2490 (3)0.3462 (3)0.92760 (17)0.0611 (5)
H4A0.17900.40610.99440.073*
C50.1622 (3)0.3292 (2)0.83891 (16)0.0502 (4)
H5A0.03220.37710.84630.060*
C60.2657 (2)0.24013 (18)0.73553 (14)0.0391 (3)
C70.1632 (2)0.22884 (19)0.64567 (15)0.0404 (3)
H7A0.03700.29000.65620.048*
C80.1073 (2)0.1771 (2)0.46023 (16)0.0471 (4)
H8A0.02650.21360.50260.057*
H8B0.12260.07800.42460.057*
C90.1672 (3)0.3098 (2)0.35454 (18)0.0560 (5)
H9A0.15080.40730.39260.067*
H9B0.08090.33760.29760.067*
C100.3716 (3)0.2666 (2)0.27522 (15)0.0496 (4)
H10A0.38500.17400.23220.059*
H10B0.39140.35880.20980.059*
C110.7109 (3)0.1849 (2)0.25224 (16)0.0520 (4)
H11A0.72300.27770.18760.078*
H11B0.71640.09220.21350.078*
H11C0.81370.15900.29500.078*
C120.5251 (3)0.3671 (2)0.40162 (16)0.0506 (4)
H12A0.53610.45880.33570.076*
H12B0.63110.34050.44140.076*
H12C0.40730.39500.46440.076*
C130.8151 (3)0.0722 (3)0.9111 (2)0.0726 (6)
H13A0.94870.01880.88850.109*
H13B0.74800.00030.97440.109*
H13C0.80010.17140.94490.109*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.03755 (15)0.03032 (15)0.02764 (14)0.00398 (10)0.01031 (10)0.00902 (9)
O10.0411 (5)0.0390 (5)0.0316 (5)0.0064 (4)0.0097 (4)0.0126 (4)
O20.0516 (7)0.1037 (11)0.0382 (6)0.0142 (7)0.0142 (5)0.0222 (7)
N10.0390 (6)0.0359 (6)0.0359 (6)0.0029 (5)0.0125 (5)0.0069 (5)
N20.0574 (8)0.0333 (6)0.0321 (6)0.0133 (6)0.0123 (5)0.0053 (5)
C10.0487 (8)0.0283 (7)0.0271 (6)0.0097 (6)0.0087 (6)0.0042 (5)
C20.0555 (9)0.0490 (9)0.0309 (7)0.0158 (7)0.0100 (6)0.0088 (6)
C30.0760 (12)0.0648 (12)0.0332 (8)0.0167 (10)0.0136 (8)0.0180 (8)
C40.0814 (13)0.0576 (11)0.0378 (9)0.0024 (10)0.0058 (8)0.0231 (8)
C50.0587 (10)0.0421 (9)0.0403 (8)0.0025 (7)0.0056 (7)0.0134 (7)
C60.0506 (8)0.0301 (7)0.0328 (7)0.0034 (6)0.0077 (6)0.0072 (6)
C70.0409 (7)0.0342 (7)0.0404 (8)0.0014 (6)0.0091 (6)0.0078 (6)
C80.0410 (8)0.0518 (10)0.0497 (9)0.0008 (7)0.0196 (7)0.0135 (8)
C90.0695 (11)0.0444 (9)0.0560 (10)0.0036 (8)0.0367 (9)0.0040 (8)
C100.0780 (12)0.0395 (8)0.0349 (8)0.0130 (8)0.0244 (8)0.0008 (6)
C110.0709 (11)0.0474 (9)0.0374 (8)0.0225 (8)0.0044 (8)0.0050 (7)
C120.0792 (12)0.0354 (8)0.0430 (9)0.0203 (8)0.0159 (8)0.0067 (7)
C130.0625 (12)0.1093 (19)0.0514 (11)0.0211 (12)0.0217 (9)0.0104 (11)
Geometric parameters (Å, º) top
Ni1—O12.0061 (11)C5—C61.416 (2)
Ni1—O1i2.0061 (11)C5—H5A0.9300
Ni1—N12.0547 (14)C6—C71.439 (2)
Ni1—N1i2.0547 (14)C7—H7A0.9300
Ni1—N2i2.3081 (15)C8—C91.518 (3)
Ni1—N22.3081 (15)C8—H8A0.9700
O1—C11.2899 (17)C8—H8B0.9700
O2—C21.372 (2)C9—C101.520 (3)
O2—C131.399 (2)C9—H9A0.9700
N1—C71.287 (2)C9—H9B0.9700
N1—C81.467 (2)C10—H10A0.9700
N2—C121.471 (2)C10—H10B0.9700
N2—C111.473 (2)C11—H11A0.9600
N2—C101.487 (2)C11—H11B0.9600
C1—C61.418 (2)C11—H11C0.9600
C1—C21.433 (2)C12—H12A0.9600
C2—C31.375 (2)C12—H12B0.9600
C3—C41.394 (3)C12—H12C0.9600
C3—H3A0.9300C13—H13A0.9600
C4—C51.361 (3)C13—H13B0.9600
C4—H4A0.9300C13—H13C0.9600
O1—Ni1—O1i180.0C5—C6—C7117.77 (15)
O1—Ni1—N188.00 (5)C1—C6—C7122.05 (13)
O1i—Ni1—N192.00 (5)N1—C7—C6126.96 (14)
O1—Ni1—N1i92.00 (5)N1—C7—H7A116.5
O1i—Ni1—N1i88.00 (5)C6—C7—H7A116.5
N1—Ni1—N1i180.00 (7)N1—C8—C9108.79 (14)
O1—Ni1—N2i87.10 (5)N1—C8—H8A109.9
O1i—Ni1—N2i92.90 (5)C9—C8—H8A109.9
N1—Ni1—N2i98.96 (6)N1—C8—H8B109.9
N1i—Ni1—N2i81.04 (6)C9—C8—H8B109.9
O1—Ni1—N292.90 (5)H8A—C8—H8B108.3
O1i—Ni1—N287.10 (5)C8—C9—C10115.86 (14)
N1—Ni1—N281.04 (6)C8—C9—H9A108.3
N1i—Ni1—N298.96 (6)C10—C9—H9A108.3
N2i—Ni1—N2180.00 (5)C8—C9—H9B108.3
C1—O1—Ni1129.01 (10)C10—C9—H9B108.3
C2—O2—C13117.24 (15)H9A—C9—H9B107.4
C7—N1—C8116.00 (13)N2—C10—C9116.40 (13)
C7—N1—Ni1126.39 (11)N2—C10—H10A108.2
C8—N1—Ni1116.42 (10)C9—C10—H10A108.2
C12—N2—C11107.24 (14)N2—C10—H10B108.2
C12—N2—C10110.49 (14)C9—C10—H10B108.2
C11—N2—C10107.71 (13)H10A—C10—H10B107.3
C12—N2—Ni1110.96 (10)N2—C11—H11A109.5
C11—N2—Ni1108.89 (10)N2—C11—H11B109.5
C10—N2—Ni1111.39 (10)H11A—C11—H11B109.5
O1—C1—C6124.80 (13)N2—C11—H11C109.5
O1—C1—C2118.76 (14)H11A—C11—H11C109.5
C6—C1—C2116.44 (14)H11B—C11—H11C109.5
O2—C2—C3124.23 (16)N2—C12—H12A109.5
O2—C2—C1114.18 (14)N2—C12—H12B109.5
C3—C2—C1121.60 (16)H12A—C12—H12B109.5
C2—C3—C4120.66 (17)N2—C12—H12C109.5
C2—C3—H3A119.7H12A—C12—H12C109.5
C4—C3—H3A119.7H12B—C12—H12C109.5
C5—C4—C3119.69 (16)O2—C13—H13A109.5
C5—C4—H4A120.2O2—C13—H13B109.5
C3—C4—H4A120.2H13A—C13—H13B109.5
C4—C5—C6121.33 (17)O2—C13—H13C109.5
C4—C5—H5A119.3H13A—C13—H13C109.5
C6—C5—H5A119.3H13B—C13—H13C109.5
C5—C6—C1120.12 (15)
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Ni(C13H19N2O2)2]
Mr529.31
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.4758 (15), 8.5571 (17), 10.995 (2)
α, β, γ (°)78.36 (3), 73.98 (3), 73.73 (3)
V3)643.0 (2)
Z1
Radiation typeMo Kα
µ (mm1)0.79
Crystal size (mm)0.35 × 0.28 × 0.26
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.766, 0.814
No. of measured, independent and
observed [I > 2σ(I)] reflections
10449, 2937, 2727
Rint0.020
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.077, 1.00
No. of reflections2937
No. of parameters160
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.17

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

References

First citationBruker (2004). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoudhury, C. R., Dey, S. K., Mondal, N., Mitra, S., Mahalli, S. O. G. & Malik, K. M. A. (2001). J. Chem. Crystallogr. 31, 57–62.  Web of Science CSD CrossRef CAS Google Scholar
First citationDas, G., Shukla, R., Andal, S., Singh, R. & Bharadwaj, P. K. (1997). Inorg. Chem. 36, 323–329.  CSD CrossRef CAS Web of Science Google Scholar
First citationDavies, J. E., Gatehouse, B. M. & Murray, K. S. (1973). J. Chem. Soc. Dalton Trans. pp. 2523–2527.  CSD CrossRef Web of Science Google Scholar
First citationFeng, Y. L. (2003). Chin. J. Struct. Chem. 22, 544–546.  CAS Google Scholar
First citationLi, L.-Z. & Wang, L.-H. (2007). Acta Cryst. E63, m749–m750.  CSD CrossRef IUCr Journals Google Scholar
First citationPariya, C., Ghosh, S., Chosh, A., Mukherjee, M., Mukherjee, A. K. & Chaudhuri, N. R. (1995). J. Chem. Soc. Dalton Trans. pp. 337–342.  CSD CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds