metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages m1020-m1021

Bis(μ-N-benzyl-N-methyl­di­thio­carbamato)-1:2κ3S,S′:S′;1:2κ3S:S,S′-bis­­[bis­­(N-benzyl-N-methyl­di­thio­carbamato-κ2S,S′)thallium(III)]

aDipartimento di Chimica Generale ed Inorganica, Chimica Analitica, Chimica Fisica, Viale G. P. Usberti 17/A, Universitá di Parma, I-43100 Parma, Italy, and bDepartment of Chemistry, Annamalai University, Annamalainagar 608 002, Tamilnadu, India
*Correspondence e-mail: corrado.rizzoli@unipr.it

(Received 2 July 2008; accepted 7 July 2008; online 12 July 2008)

The molecule of the dinuclear title compound, [Tl2(C9H10NS2)6], possesses a crystallographically imposed centre of symmetry. Each TlIII atom is seven-coordinated by S atoms of four different dithio­carbamate anions in a distorted penta­gonal-bipyramidal coordination geometry. The crystal structure is stabilized by a C—H⋯S hydrogen-bond inter­action linking complex mol­ecules into chains running parallel to the b axis. Intramolecular C—H⋯S hydrogen bonds are also present.

Related literature

For the crystal structures of Tl-dithio­carbamate complexes, see: Abrahamson et al. (1975[Abrahamson, H., Heiman, J. R. & Pignolet, L. H. (1975). Inorg. Chem. 14, 2070-2075.]); Burschka (1982[Burschka, C. H. (1982). Z. Anorg. Allg. Chem. 485, 217-224.]); Casas et al. (1994[Casas, J. S., Castaño, M. V., Freire, C., Sanchez, A., Sordo, J., Castellano, E. E. & Zukerman-Schpector, J. (1994). Inorg. Chim. Acta, 216, 15-20.]); Griffin et al. (1980[Griffin, R. T., Henrick, K., Matthews, R. W. & McPartlin, M. (1980). J. Chem. Soc. Dalton Trans. pp. 1550-1555.]); Ivanov et al. (2006[Ivanov, A. V., Bredyuk, O. A., Gerasimenko, A. V., Lutsenko, I. A., Antsutkin, O. N. & Forsling, W. (2006). Koord. Khim. 32, 354-364.]); Jennische et al. (1972[Jennische, P., Olin, A. & Hesse, R. (1972). Acta Chem. Scand. A26, 2799-2812.]); Kepert et al. (1978[Kepert, D. L., Raston, C. L., Roberts, N. K. & White, A. H. (1978). Aust. J. Chem. 31, 1927-1932.]); Nilson & Hesse (1969[Nilson, L. & Hesse, R. (1969). Acta Chem. Scand. A23, 1951-1965.]); Pritzkow & Jennische (1975[Pritzkow, H. & Jennische, P. (1975). Acta Chem. Scand. A29, 60-70.]).

[Scheme 1]

Experimental

Crystal data
  • [Tl2(C9H10NS2)6]

  • Mr = 1586.57

  • Monoclinic, P 21 /c

  • a = 13.3326 (9) Å

  • b = 9.9280 (6) Å

  • c = 24.1379 (16) Å

  • β = 98.539 (2)°

  • V = 3159.6 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 5.53 mm−1

  • T = 296 (2) K

  • 0.27 × 0.24 × 0.23 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.248, Tmax = 0.282

  • 39462 measured reflections

  • 8268 independent reflections

  • 5534 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.044

  • S = 0.94

  • 8268 reflections

  • 334 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.74 e Å−3

Table 1
Selected geometric parameters (Å, °)

Tl1—S1 2.9241 (8)
Tl1—S2 2.6210 (8)
Tl1—S3 3.0242 (8)
Tl1—S4 2.8736 (8)
Tl1—S5 2.7325 (9)
Tl1—S6 2.8109 (8)
Tl1—S3i 3.1605 (8)
S1—Tl1—S3 78.22 (2)
S4—Tl1—S3 60.32 (2)
S5—Tl1—S4 76.80 (3)
S5—Tl1—S6 64.52 (3)
S6—Tl1—S1 82.94 (2)
S2—Tl1—S3i 163.05 (2)
Symmetry code: (i) -x+1, -y, -z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2B⋯S1 0.97 2.51 3.030 (5) 113
C11—H11A⋯S3 0.97 2.51 3.009 (3) 112
C18—H18C⋯S4 0.96 2.51 3.008 (3) 112
C20—H20B⋯S5 0.97 2.46 3.012 (4) 116
C18—H18A⋯S1ii 0.96 2.87 3.654 (3) 140
Symmetry code: (ii) x, y+1, z.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and SCHAKAL (Keller, 1997[Keller, E. (1997). SCHAKAL97. University of Freiburg, Germany.]); software used to prepare material for publication: SHELXL97 and PARST95 (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

Thallium exhibits an interesting metallorganic chemistry with formal oxidation states of +1 and +3 and various coordination polyhedra. However, at the best of our knowledge, reports on the structural characterization of thallium dithiocarbamates are scarce. As part of our ongoing study on the chemistry of a series of new dithiocarbamato-containing metal derivatives, the dinuclear title complex was synthesized and its crystal structure is reported here.

The title compound (Fig. 1) possesses a crystallographically imposed centre of symmetry. Each thallium(III) metal centre exhibits seven-coordination provided by the sulfur atoms of four dithiocarbamate anions, two of which acting as bidentate chelating ligands and two as bidentate bridging ligands. The coordination geometry can be described as distorted pentagonal bipyramidal, with atoms S1, S3, S4, S5 and S6 defining the equatorial plane, and atoms S2 and S3i occupying the apical positions [symmetry code: (i) 1 - x, -y, -z]. The Tl···Tl separation in the dinuclear complex molecule is 3.9221 (2) Å. The values of the Tl—S bond lengths involving the bidentate chelating ligands (Table 1) range from 2.6210 (8) to 2.9240 (10) Å, in agreement with those observed in other Tl-dithiocarbamato complexes (Burschka, 1982; Kepert et al., 1978; Griffin et al., 1980; Abrahamson et al., 1975; Casas et al., 1994). The Tl—S bond lengths involving the bridging S3 atom [3.0242 (8) and 3.1605 (8) Å] are consistent with the values reported in the literature for similar thallium(I) derivatives (Ivanov et al., 2006; Jennische et al., 1972; Pritzkow & Jennische, 1975; Nilson & Hesse, 1969). The C—S bond lengths within the dithiocarbamate ligands [mean value 1.714 (3) Å] fall in a rather narrow range of values suggesting a substantial delocalization of the double bond. The short values of the thioureide C—N distances [mean value 1.339 (4) Å] indicate that the electron density is delocalized over the NCS2 groups and these bonds have a partial double bond character. In the IR spectrum of the title compound, the important stretching mode characteristic of thioureide C—N bond occurs at 1475 cm-1. Thallium(III) possesses completely filled d orbitals whereas charge transfer (CT) is fully allowed and hence intense CT absorption is observed. Intraligand transitions of the dithiocarbamate anions are also observed along with a ligand-metal charge transfer (LMCT). The conformation of the dithiocarbamate anions is stabilized by intramolecular C—H···S hydrogen bonding interactions (Table 2). In the crystal structure (Fig. 2), dinuclear complex molecules are linked by an intermolecular C—H···S hydrogen bond (Table 2) into chains running parallel to the b axis.

Related literature top

For the crystal structures of Tl-dithiocarbamate complexes, see: Abrahamson et al. (1975); Burschka (1982); Casas et al. (1994); Griffin et al. (1980); Ivanov et al. (2006); Jennische et al. (1972); Kepert et al. (1978); Nilson & Hesse (1969); Pritzkow & Jennische (1975).

Experimental top

Benzylmethylamine (6 mmol) and carbon disulfide (6 mmol) in ethanol (5 ml) were mixed under ice-cold conditions to obtain a yellow solution of N-benzyl-N-methyldithiocarbamic acid. An aqueous solution (2 ml) of TlF3 (2 mmol) was then added with constant stirring. The resulting precipitate was filtered off and dried in air. Single crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution at room temperature.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and SCHAKAL (Keller, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PARST95 (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. View of the title dinuclear complex molecule with displacement ellipsoids drawn at the 30% probability level. Hydrogen atoms are omitted for clarity [Symmetry code: (i) = 1 - x, -y, -z].
[Figure 2] Fig. 2. View of the crystal packing of the title compound. Intermolecular hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonds are omitted for clarity. Colour codes: Tl red, S yellow, N blue, C grey and H white.
(I) top
Crystal data top
[Tl2(C9H10NS2)6]F(000) = 1560
Mr = 1586.57Dx = 1.668 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6832 reflections
a = 13.3326 (9) Åθ = 3.0–27.2°
b = 9.9280 (6) ŵ = 5.53 mm1
c = 24.1379 (16) ÅT = 296 K
β = 98.539 (2)°Block, yellow
V = 3159.6 (4) Å30.27 × 0.24 × 0.23 mm
Z = 2
Data collection top
Bruker SMART 1000 CCD
diffractometer
8268 independent reflections
Radiation source: fine-focus sealed tube5534 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ω scansθmax = 29.8°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 1818
Tmin = 0.248, Tmax = 0.282k = 1313
39462 measured reflectionsl = 3233
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.044H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.0165P)2]
where P = (Fo2 + 2Fc2)/3
8268 reflections(Δ/σ)max = 0.002
334 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.74 e Å3
Crystal data top
[Tl2(C9H10NS2)6]V = 3159.6 (4) Å3
Mr = 1586.57Z = 2
Monoclinic, P21/cMo Kα radiation
a = 13.3326 (9) ŵ = 5.53 mm1
b = 9.9280 (6) ÅT = 296 K
c = 24.1379 (16) Å0.27 × 0.24 × 0.23 mm
β = 98.539 (2)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
8268 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
5534 reflections with I > 2σ(I)
Tmin = 0.248, Tmax = 0.282Rint = 0.040
39462 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.044H-atom parameters constrained
S = 0.94Δρmax = 0.45 e Å3
8268 reflectionsΔρmin = 0.74 e Å3
334 parameters
Special details top

Experimental. All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93–0.97 Å and Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Tl10.556603 (8)0.057237 (10)0.075989 (4)0.04911 (4)
S10.40839 (7)0.19940 (8)0.13240 (4)0.0762 (2)
S20.54015 (7)0.02867 (9)0.17692 (3)0.0734 (2)
S30.36641 (6)0.10572 (8)0.04008 (3)0.0615 (2)
S40.57292 (6)0.22115 (8)0.04598 (4)0.0722 (2)
S50.75951 (6)0.00641 (8)0.10233 (4)0.0694 (2)
S60.67818 (6)0.28177 (8)0.11090 (4)0.0738 (2)
N10.4118 (2)0.0919 (3)0.23396 (12)0.0877 (9)
N20.4099 (2)0.3649 (2)0.05811 (9)0.0601 (6)
N30.8704 (2)0.2290 (3)0.10423 (13)0.0879 (9)
C10.4483 (2)0.0902 (3)0.18492 (12)0.0648 (8)
C20.3332 (4)0.1872 (4)0.24476 (18)0.1292 (19)
H2A0.35250.22720.28150.155*
H2B0.32850.25890.21720.155*
C30.2298 (3)0.1208 (4)0.24245 (16)0.0900 (12)
C40.1609 (4)0.1736 (4)0.27471 (19)0.1262 (18)
H40.17880.24660.29830.151*
C50.0658 (4)0.1170 (5)0.2714 (2)0.1196 (18)
H50.01890.15330.29220.143*
C60.0401 (4)0.0078 (6)0.2379 (2)0.1240 (17)
H60.02360.03140.23630.149*
C70.1084 (3)0.0430 (4)0.20688 (19)0.1088 (14)
H70.09100.11740.18410.131*
C80.2029 (3)0.0138 (4)0.20872 (17)0.0876 (11)
H80.24840.02130.18680.105*
C90.4454 (3)0.0057 (6)0.27812 (15)0.150 (2)
H9A0.41070.01060.30960.225*
H9B0.43030.09520.26420.225*
H9C0.51710.00320.28960.225*
C100.4463 (2)0.2424 (3)0.04907 (10)0.0550 (7)
C110.3016 (3)0.3908 (3)0.05803 (12)0.0743 (10)
H11A0.26270.31750.03900.089*
H11B0.28280.47290.03720.089*
C120.2743 (2)0.4050 (3)0.11678 (13)0.0607 (8)
C130.3135 (3)0.3233 (3)0.15949 (14)0.0784 (10)
H130.35790.25480.15300.094*
C140.2885 (3)0.3406 (4)0.21247 (15)0.0838 (10)
H140.31670.28420.24140.101*
C150.2231 (3)0.4387 (4)0.22273 (16)0.0859 (11)
H150.20610.45010.25840.103*
C160.1829 (3)0.5200 (4)0.17998 (19)0.1046 (14)
H160.13760.58740.18640.126*
C170.2083 (3)0.5040 (4)0.12737 (16)0.0862 (11)
H170.18040.56100.09860.103*
C180.4749 (3)0.4831 (3)0.07046 (13)0.0810 (11)
H18A0.45470.53150.10140.122*
H18B0.46860.54060.03820.122*
H18C0.54420.45480.07990.122*
C190.7783 (2)0.1785 (3)0.10589 (12)0.0619 (8)
C200.9589 (3)0.1455 (4)0.0978 (2)0.1137 (15)
H20A1.00930.15540.13090.136*
H20B0.93830.05170.09520.136*
C211.0065 (3)0.1816 (4)0.0468 (2)0.0894 (11)
C221.1097 (3)0.1881 (4)0.0502 (2)0.0982 (12)
H221.15020.16910.08410.118*
C231.1541 (5)0.2218 (6)0.0053 (3)0.139 (2)
H231.22440.22510.00850.167*
C241.0969 (7)0.2506 (6)0.0441 (3)0.167 (3)
H241.12720.27740.07460.201*
C250.9920 (6)0.2399 (7)0.0489 (3)0.191 (3)
H250.95170.25720.08310.229*
C260.9477 (4)0.2037 (6)0.0031 (3)0.145 (2)
H260.87770.19450.00630.174*
C270.8893 (3)0.3733 (4)0.1102 (2)0.1227 (16)
H27A0.95930.39140.10780.184*
H27B0.84700.42060.08090.184*
H27C0.87430.40290.14600.184*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Tl10.05321 (7)0.04376 (6)0.05131 (6)0.00237 (6)0.01089 (4)0.00302 (6)
S10.0853 (6)0.0551 (5)0.0967 (6)0.0087 (4)0.0411 (5)0.0095 (5)
S20.0672 (6)0.0906 (7)0.0610 (5)0.0032 (5)0.0052 (4)0.0268 (4)
S30.0613 (5)0.0560 (4)0.0684 (5)0.0026 (4)0.0135 (4)0.0121 (4)
S40.0686 (6)0.0494 (4)0.1041 (7)0.0008 (4)0.0310 (5)0.0039 (4)
S50.0575 (5)0.0601 (5)0.0907 (6)0.0056 (4)0.0118 (4)0.0074 (4)
S60.0661 (6)0.0595 (5)0.0983 (6)0.0029 (4)0.0203 (5)0.0230 (5)
N10.086 (2)0.116 (3)0.0671 (19)0.0459 (19)0.0313 (16)0.0198 (18)
N20.084 (2)0.0478 (15)0.0493 (14)0.0118 (14)0.0120 (13)0.0068 (11)
N30.0580 (19)0.076 (2)0.127 (3)0.0062 (16)0.0076 (17)0.0008 (18)
C10.067 (2)0.072 (2)0.0577 (18)0.0242 (16)0.0172 (16)0.0057 (15)
C20.171 (5)0.106 (3)0.135 (4)0.058 (3)0.105 (4)0.064 (3)
C30.113 (3)0.065 (2)0.109 (3)0.006 (2)0.072 (3)0.000 (2)
C40.169 (5)0.081 (3)0.155 (4)0.001 (3)0.114 (4)0.009 (3)
C50.132 (4)0.097 (3)0.152 (4)0.032 (3)0.094 (4)0.027 (3)
C60.083 (3)0.144 (4)0.153 (5)0.022 (3)0.047 (3)0.034 (4)
C70.081 (3)0.115 (4)0.133 (4)0.005 (3)0.025 (3)0.002 (3)
C80.077 (3)0.079 (3)0.114 (3)0.002 (2)0.040 (2)0.002 (2)
C90.117 (4)0.282 (6)0.050 (2)0.074 (4)0.009 (2)0.038 (3)
C100.073 (2)0.0519 (17)0.0401 (15)0.0085 (15)0.0079 (14)0.0025 (13)
C110.087 (3)0.069 (2)0.063 (2)0.0315 (19)0.0023 (18)0.0057 (16)
C120.062 (2)0.0532 (18)0.066 (2)0.0076 (15)0.0068 (16)0.0115 (15)
C130.103 (3)0.063 (2)0.070 (2)0.025 (2)0.016 (2)0.0013 (18)
C140.102 (3)0.081 (3)0.069 (2)0.004 (2)0.017 (2)0.007 (2)
C150.069 (2)0.114 (3)0.080 (2)0.009 (2)0.027 (2)0.019 (3)
C160.089 (3)0.126 (4)0.105 (3)0.039 (3)0.036 (3)0.017 (3)
C170.092 (3)0.086 (2)0.083 (3)0.035 (2)0.020 (2)0.002 (2)
C180.133 (3)0.0469 (18)0.068 (2)0.003 (2)0.033 (2)0.0070 (16)
C190.0542 (19)0.071 (2)0.0594 (18)0.0083 (17)0.0047 (15)0.0032 (16)
C200.052 (2)0.113 (3)0.175 (4)0.002 (2)0.012 (3)0.035 (3)
C210.064 (3)0.073 (2)0.132 (4)0.005 (2)0.014 (3)0.002 (2)
C220.064 (3)0.095 (3)0.137 (4)0.006 (2)0.021 (3)0.022 (3)
C230.133 (5)0.124 (4)0.179 (6)0.011 (4)0.085 (5)0.043 (4)
C240.238 (9)0.129 (5)0.161 (6)0.053 (6)0.116 (7)0.003 (5)
C250.223 (9)0.207 (7)0.145 (6)0.120 (7)0.039 (6)0.001 (5)
C260.102 (4)0.170 (5)0.158 (5)0.049 (4)0.006 (4)0.008 (4)
C270.093 (3)0.086 (3)0.188 (5)0.038 (2)0.017 (3)0.032 (3)
Geometric parameters (Å, º) top
Tl1—S12.9241 (8)C9—H9A0.9600
Tl1—S22.6210 (8)C9—H9B0.9600
Tl1—S33.0242 (8)C9—H9C0.9600
Tl1—S42.8736 (8)C11—C121.522 (4)
Tl1—S52.7325 (9)C11—H11A0.9700
Tl1—S62.8109 (8)C11—H11B0.9700
Tl1—S3i3.1605 (8)C12—C131.354 (4)
S1—C11.692 (3)C12—C171.369 (4)
S2—C11.732 (3)C13—C141.379 (4)
S3—C101.719 (3)C13—H130.9300
S3—Tl1i3.1605 (8)C14—C151.354 (4)
S4—C101.714 (3)C14—H140.9300
S5—C191.727 (3)C15—C161.356 (5)
S6—C191.702 (3)C15—H150.9300
N1—C11.345 (4)C16—C171.371 (5)
N1—C91.461 (5)C16—H160.9300
N1—C21.463 (5)C17—H170.9300
N2—C101.339 (3)C18—H18A0.9600
N2—C181.463 (4)C18—H18B0.9600
N2—C111.466 (4)C18—H18C0.9600
N3—C191.332 (4)C20—C211.510 (5)
N3—C271.459 (4)C20—H20A0.9700
N3—C201.469 (4)C20—H20B0.9700
C2—C31.522 (5)C21—C261.352 (6)
C2—H2A0.9700C21—C221.368 (5)
C2—H2B0.9700C22—C231.351 (6)
C3—C81.354 (5)C22—H220.9300
C3—C41.392 (5)C23—C241.347 (7)
C4—C51.377 (6)C23—H230.9300
C4—H40.9300C24—C251.390 (8)
C5—C61.366 (6)C24—H240.9300
C5—H50.9300C25—C261.377 (7)
C6—C71.360 (5)C25—H250.9300
C6—H60.9300C26—H260.9300
C7—C81.374 (5)C27—H27A0.9600
C7—H70.9300C27—H27B0.9600
C8—H80.9300C27—H27C0.9600
S1—Tl1—S378.22 (2)H9A—C9—H9C109.5
S4—Tl1—S360.32 (2)H9B—C9—H9C109.5
S5—Tl1—S476.80 (3)N2—C10—S4120.1 (2)
S5—Tl1—S664.52 (3)N2—C10—S3120.3 (2)
S6—Tl1—S182.94 (2)S4—C10—S3119.54 (16)
S2—Tl1—S3i163.05 (2)N2—C11—C12112.7 (2)
S2—Tl1—S586.57 (3)N2—C11—H11A109.0
S2—Tl1—S695.94 (3)C12—C11—H11A109.0
S2—Tl1—S486.63 (3)N2—C11—H11B109.0
S6—Tl1—S4140.94 (2)C12—C11—H11B109.0
S2—Tl1—S164.44 (3)H11A—C11—H11B107.8
S5—Tl1—S1134.02 (3)C13—C12—C17118.3 (3)
S4—Tl1—S1131.55 (2)C13—C12—C11122.4 (3)
S2—Tl1—S384.84 (2)C17—C12—C11119.3 (3)
S5—Tl1—S3136.63 (2)C12—C13—C14120.8 (3)
S6—Tl1—S3158.72 (2)C12—C13—H13119.6
S5—Tl1—S3i78.10 (2)C14—C13—H13119.6
S6—Tl1—S3i84.05 (2)C15—C14—C13120.7 (3)
S4—Tl1—S3i82.89 (2)C15—C14—H14119.7
S1—Tl1—S3i132.08 (2)C13—C14—H14119.7
S3—Tl1—S3i101.319 (18)C14—C15—C16118.8 (3)
C1—S1—Tl183.15 (11)C14—C15—H15120.6
C1—S2—Tl192.29 (10)C16—C15—H15120.6
C10—S3—Tl184.77 (10)C15—C16—C17120.8 (4)
C10—S3—Tl1i87.45 (9)C15—C16—H16119.6
Tl1—S3—Tl1i78.681 (18)C17—C16—H16119.6
C10—S4—Tl189.75 (10)C12—C17—C16120.7 (4)
C19—S5—Tl187.73 (10)C12—C17—H17119.7
C19—S6—Tl185.68 (10)C16—C17—H17119.7
C1—N1—C9121.5 (4)N2—C18—H18A109.5
C1—N1—C2121.8 (3)N2—C18—H18B109.5
C9—N1—C2116.7 (3)H18A—C18—H18B109.5
C10—N2—C18122.9 (3)N2—C18—H18C109.5
C10—N2—C11122.6 (3)H18A—C18—H18C109.5
C18—N2—C11114.4 (2)H18B—C18—H18C109.5
C19—N3—C27120.9 (3)N3—C19—S6120.8 (2)
C19—N3—C20123.3 (3)N3—C19—S5119.9 (2)
C27—N3—C20115.8 (3)S6—C19—S5119.32 (17)
N1—C1—S1122.4 (3)N3—C20—C21113.2 (3)
N1—C1—S2117.4 (3)N3—C20—H20A108.9
S1—C1—S2120.11 (17)C21—C20—H20A108.9
N1—C2—C3112.5 (3)N3—C20—H20B108.9
N1—C2—H2A109.1C21—C20—H20B108.9
C3—C2—H2A109.1H20A—C20—H20B107.8
N1—C2—H2B109.1C26—C21—C22119.4 (5)
C3—C2—H2B109.1C26—C21—C20120.4 (4)
H2A—C2—H2B107.8C22—C21—C20120.2 (4)
C8—C3—C4119.6 (4)C23—C22—C21121.2 (5)
C8—C3—C2121.3 (3)C23—C22—H22119.4
C4—C3—C2119.1 (4)C21—C22—H22119.4
C5—C4—C3119.4 (4)C24—C23—C22120.3 (6)
C5—C4—H4120.3C24—C23—H23119.8
C3—C4—H4120.3C22—C23—H23119.8
C6—C5—C4120.4 (4)C23—C24—C25119.2 (7)
C6—C5—H5119.8C23—C24—H24120.4
C4—C5—H5119.8C25—C24—H24120.4
C7—C6—C5119.4 (5)C26—C25—C24119.9 (7)
C7—C6—H6120.3C26—C25—H25120.1
C5—C6—H6120.3C24—C25—H25120.1
C6—C7—C8121.1 (5)C21—C26—C25119.8 (6)
C6—C7—H7119.5C21—C26—H26120.1
C8—C7—H7119.5C25—C26—H26120.1
C3—C8—C7120.0 (4)N3—C27—H27A109.5
C3—C8—H8120.0N3—C27—H27B109.5
C7—C8—H8120.0H27A—C27—H27B109.5
N1—C9—H9A109.5N3—C27—H27C109.5
N1—C9—H9B109.5H27A—C27—H27C109.5
H9A—C9—H9B109.5H27B—C27—H27C109.5
N1—C9—H9C109.5
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···S10.972.513.030 (5)113
C11—H11A···S30.972.513.009 (3)112
C18—H18C···S40.962.513.008 (3)112
C20—H20B···S50.972.463.012 (4)116
C18—H18A···S1ii0.962.873.654 (3)140
Symmetry code: (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Tl2(C9H10NS2)6]
Mr1586.57
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)13.3326 (9), 9.9280 (6), 24.1379 (16)
β (°) 98.539 (2)
V3)3159.6 (4)
Z2
Radiation typeMo Kα
µ (mm1)5.53
Crystal size (mm)0.27 × 0.24 × 0.23
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.248, 0.282
No. of measured, independent and
observed [I > 2σ(I)] reflections
39462, 8268, 5534
Rint0.040
(sin θ/λ)max1)0.699
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.044, 0.94
No. of reflections8268
No. of parameters334
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.74

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SIR97 (Altomare et al., 1999), ORTEP-3 for Windows (Farrugia, 1997) and SCHAKAL (Keller, 1997), SHELXL97 (Sheldrick, 2008) and PARST95 (Nardelli, 1995).

Selected geometric parameters (Å, º) top
Tl1—S12.9241 (8)Tl1—S52.7325 (9)
Tl1—S22.6210 (8)Tl1—S62.8109 (8)
Tl1—S33.0242 (8)Tl1—S3i3.1605 (8)
Tl1—S42.8736 (8)
S1—Tl1—S378.22 (2)S5—Tl1—S664.52 (3)
S4—Tl1—S360.32 (2)S6—Tl1—S182.94 (2)
S5—Tl1—S476.80 (3)S2—Tl1—S3i163.05 (2)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···S10.972.513.030 (5)113.2
C11—H11A···S30.972.513.009 (3)111.6
C18—H18C···S40.962.513.008 (3)112.4
C20—H20B···S50.972.463.012 (4)116.1
C18—H18A···S1ii0.962.873.654 (3)140.0
Symmetry code: (ii) x, y+1, z.
 

References

First citationAbrahamson, H., Heiman, J. R. & Pignolet, L. H. (1975). Inorg. Chem. 14, 2070–2075.  CSD CrossRef CAS Web of Science Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurschka, C. H. (1982). Z. Anorg. Allg. Chem. 485, 217–224.  CSD CrossRef CAS Web of Science Google Scholar
First citationCasas, J. S., Castaño, M. V., Freire, C., Sanchez, A., Sordo, J., Castellano, E. E. & Zukerman-Schpector, J. (1994). Inorg. Chim. Acta, 216, 15–20.  CSD CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGriffin, R. T., Henrick, K., Matthews, R. W. & McPartlin, M. (1980). J. Chem. Soc. Dalton Trans. pp. 1550–1555.  CSD CrossRef Web of Science Google Scholar
First citationIvanov, A. V., Bredyuk, O. A., Gerasimenko, A. V., Lutsenko, I. A., Antsutkin, O. N. & Forsling, W. (2006). Koord. Khim. 32, 354–364.  CrossRef Google Scholar
First citationJennische, P., Olin, A. & Hesse, R. (1972). Acta Chem. Scand. A26, 2799–2812.  CrossRef Web of Science Google Scholar
First citationKeller, E. (1997). SCHAKAL97. University of Freiburg, Germany.  Google Scholar
First citationKepert, D. L., Raston, C. L., Roberts, N. K. & White, A. H. (1978). Aust. J. Chem. 31, 1927–1932.  CrossRef CAS Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationNilson, L. & Hesse, R. (1969). Acta Chem. Scand. A23, 1951–1965.  CrossRef Web of Science Google Scholar
First citationPritzkow, H. & Jennische, P. (1975). Acta Chem. Scand. A29, 60–70.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages m1020-m1021
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds