supplementary materials


bt2744 scheme

Acta Cryst. (2008). E64, o1492    [ doi:10.1107/S160053680802134X ]

2,2-Dichloro-N-(4-methylphenylsulfonyl)acetamide

B. T. Gowda, S. Foro, P. G. Nirmala, B. P. Sowmya and H. Fuess

Abstract top

The N-H and C=O bonds in the title compound, C9H9Cl2NO3S, are trans to each other, similar to what is observed in 2,2,2-trimethyl-N-(phenylsulfonyl)acetamide and 2,2,2-trimethyl-N-(4-methylphenylsulfonyl)acetamide. The bond parameters in the title compound are also similar to those in the aforementioned two structures. N-H...O hydrogen bonds connect the molecules into chains running along the a axis.

Comment top

As part of a study of the substituent effects on the solid state geometries of N-(aryl)-sulfonamides and substituted amides, the structure of N-(4-methylphenylsulfonyl)-2,2-dichloroacetamide (N4MPSDCAA) has been determined (Gowda et al., 2006, 2007, 2008a, 2008b). The conformation of the N—H and C=O bonds in N4MPSDCAA are anti to each other (Fig. 1), similar to that observed in N-(phenylsulfonyl)-2,2,2-trimethylacetamide (NPSTMAA) (Gowda et al., 2008b), N-(4-chlorophenylsulfonyl)-2,2,2-trimethylacetamide (N4CPSTMAA) and (4-methylphenylsulfonyl)-2,2,2-trimethylacetamide (N4MPSTMAA) (Gowda et al., 2008a, b). The bond parameters in N4MPSDCAA are similar to those in NPSTMAA, N4MPSTMAA, N4CPSTMAA (Gowda et al., 2008a, b), N-(aryl)-2,2-dichloroacetamides (Gowda et al., 2006) and 4-methylbenzenesulfonamide and other arylsulfonamides (Gowda et al., 2007). The N—H···O hydrogen bonds (Table 1) connect the molecules to chains running along the a axis (Fig. 2).

Related literature top

For related literature, see: Gowda et al. (2006, 2007, 2008a,b).

Experimental top

The title compound was prepared by refluxing 4-methylbenzenesulfonamide (0.10 mole) with an excess dichloroacetyl chloride (0.20 mole) for about an hour on a water bath. The reaction mixture was cooled and poured into ice cold water. The resulting solid was separated, washed thoroughly with water and dissolved in warm dilute sodium hydrogen carbonate solution. The title compound was precipitated by acidifying the filtered solution with glacial acetic acid. It was filtered, dried and recrystallized from ethanol. The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Single crystals of the title compound used for X-ray diffraction studies were obtained from a slow evaporation of an ethanolic solution.

Refinement top

The NH atom was located in difference map, and its positional parameters were refined freely. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.98 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

The five reflections most deviating reflecions (1 0 2, 1 1 2, 0 2 0, 1 1 1, 0 0 4) were omitted from the refinement.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2004); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXS97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom labeling scheme. The displacement ellipsoids are drawn at the 50% probability level. The H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Molecular packing of (I) with hydrogen bonding shown as dashed lines.
2,2-Dichloro-N-(4-methylphenylsulfonyl)acetamide top
Crystal data top
C9H9Cl2NO3SF000 = 1152
Mr = 282.13Dx = 1.631 Mg m3
Orthorhombic, PbcaMo Kα radiation
λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3825 reflections
a = 9.6580 (8) Åθ = 2.3–28.0º
b = 10.3177 (8) ŵ = 0.74 mm1
c = 23.067 (2) ÅT = 299 (2) K
V = 2298.6 (3) Å3Prism, colourless
Z = 80.48 × 0.46 × 0.32 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2313 independent reflections
Radiation source: fine-focus sealed tube1886 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.022
T = 299(2) Kθmax = 26.4º
Rotation method data acquisition using ω and φ scansθmin = 3.9º
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
h = 12→11
Tmin = 0.719, Tmax = 0.799k = 12→11
8079 measured reflectionsl = 28→28
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of
independent and constrained refinement
R[F2 > 2σ(F2)] = 0.034  w = 1/[σ2(Fo2) + (0.0465P)2 + 1.5357P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.099(Δ/σ)max = 0.001
S = 1.14Δρmax = 0.34 e Å3
2313 reflectionsΔρmin = 0.33 e Å3
150 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0216 (12)
Secondary atom site location: difference Fourier map
Crystal data top
C9H9Cl2NO3SV = 2298.6 (3) Å3
Mr = 282.13Z = 8
Orthorhombic, PbcaMo Kα
a = 9.6580 (8) ŵ = 0.74 mm1
b = 10.3177 (8) ÅT = 299 (2) K
c = 23.067 (2) Å0.48 × 0.46 × 0.32 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2313 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
1886 reflections with I > 2σ(I)
Tmin = 0.719, Tmax = 0.799Rint = 0.022
8079 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.034150 parameters
wR(F2) = 0.099H atoms treated by a mixture of
independent and constrained refinement
S = 1.14Δρmax = 0.34 e Å3
2313 reflectionsΔρmin = 0.33 e Å3
Special details top

Experimental. CrysAlis RED (Oxford Diffraction, 2007) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1940 (2)0.2089 (2)0.10903 (9)0.0321 (5)
C20.3304 (3)0.2325 (3)0.09411 (11)0.0419 (6)
H20.40220.19160.11380.050*
C30.3581 (3)0.3181 (3)0.04945 (11)0.0487 (6)
H30.44970.33480.03950.058*
C40.2532 (3)0.3796 (2)0.01912 (10)0.0440 (6)
C50.1181 (3)0.3514 (3)0.03428 (12)0.0480 (6)
H50.04630.38970.01360.058*
C60.0866 (3)0.2678 (2)0.07928 (11)0.0403 (6)
H60.00500.25150.08930.048*
C70.2763 (2)0.27000 (19)0.24611 (9)0.0279 (4)
C80.2502 (2)0.3642 (2)0.29677 (9)0.0331 (5)
H80.17730.42550.28590.040*
C90.2837 (4)0.4760 (3)0.02853 (13)0.0626 (8)
H9A0.37030.45450.04660.075*
H9B0.28920.56160.01240.075*
H9C0.21110.47310.05690.075*
N10.15881 (18)0.21543 (18)0.22498 (8)0.0292 (4)
H1N0.084 (3)0.238 (2)0.2380 (11)0.035*
O10.01360 (18)0.07170 (18)0.16642 (7)0.0438 (4)
O20.26226 (19)0.01713 (16)0.17765 (7)0.0433 (4)
O30.39079 (15)0.24827 (17)0.22726 (7)0.0385 (4)
Cl10.40283 (7)0.45024 (6)0.31278 (3)0.0454 (2)
Cl20.19595 (7)0.27418 (7)0.35847 (3)0.0508 (2)
S10.15508 (6)0.11055 (5)0.16929 (2)0.03130 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0352 (11)0.0326 (11)0.0285 (10)0.0022 (9)0.0002 (8)0.0039 (9)
C20.0335 (12)0.0556 (16)0.0366 (12)0.0025 (11)0.0009 (10)0.0018 (11)
C30.0431 (14)0.0605 (17)0.0424 (13)0.0122 (12)0.0083 (11)0.0013 (13)
C40.0633 (16)0.0372 (13)0.0315 (11)0.0068 (11)0.0046 (11)0.0024 (10)
C50.0556 (16)0.0421 (14)0.0463 (14)0.0060 (12)0.0039 (12)0.0077 (12)
C60.0353 (12)0.0431 (14)0.0424 (13)0.0005 (10)0.0013 (10)0.0029 (11)
C70.0282 (11)0.0269 (10)0.0285 (10)0.0026 (8)0.0035 (8)0.0052 (8)
C80.0323 (11)0.0314 (11)0.0355 (11)0.0042 (9)0.0043 (9)0.0018 (9)
C90.087 (2)0.0531 (18)0.0476 (15)0.0120 (16)0.0097 (15)0.0089 (13)
N10.0233 (9)0.0331 (10)0.0312 (9)0.0009 (7)0.0022 (7)0.0022 (8)
O10.0407 (10)0.0470 (10)0.0436 (9)0.0165 (8)0.0027 (7)0.0009 (8)
O20.0524 (10)0.0314 (9)0.0462 (9)0.0083 (8)0.0008 (8)0.0002 (7)
O30.0230 (8)0.0514 (10)0.0412 (9)0.0030 (7)0.0015 (6)0.0083 (7)
Cl10.0513 (4)0.0353 (3)0.0496 (4)0.0104 (3)0.0075 (3)0.0046 (3)
Cl20.0564 (4)0.0610 (4)0.0348 (3)0.0153 (3)0.0085 (3)0.0048 (3)
S10.0327 (3)0.0290 (3)0.0322 (3)0.0035 (2)0.0011 (2)0.0005 (2)
Geometric parameters (Å, °) top
C1—C21.384 (3)C7—N11.357 (3)
C1—C61.384 (3)C7—C81.540 (3)
C1—S11.761 (2)C8—Cl11.760 (2)
C2—C31.383 (4)C8—Cl21.778 (2)
C2—H20.9300C8—H80.9800
C3—C41.385 (4)C9—H9A0.9600
C3—H30.9300C9—H9B0.9600
C4—C51.381 (4)C9—H9C0.9600
C4—C91.512 (4)N1—S11.6800 (19)
C5—C61.384 (4)N1—H1N0.82 (3)
C5—H50.9300O1—S11.4256 (17)
C6—H60.9300O2—S11.4276 (17)
C7—O31.210 (3)
C2—C1—C6120.8 (2)C7—C8—Cl1109.94 (15)
C2—C1—S1120.07 (18)C7—C8—Cl2109.02 (14)
C6—C1—S1118.98 (18)Cl1—C8—Cl2110.02 (12)
C3—C2—C1118.8 (2)C7—C8—H8109.3
C3—C2—H2120.6Cl1—C8—H8109.3
C1—C2—H2120.6Cl2—C8—H8109.3
C2—C3—C4121.8 (2)C4—C9—H9A109.5
C2—C3—H3119.1C4—C9—H9B109.5
C4—C3—H3119.1H9A—C9—H9B109.5
C5—C4—C3117.8 (2)C4—C9—H9C109.5
C5—C4—C9120.5 (3)H9A—C9—H9C109.5
C3—C4—C9121.7 (3)H9B—C9—H9C109.5
C4—C5—C6121.9 (2)C7—N1—S1124.04 (15)
C4—C5—H5119.0C7—N1—H1N119.4 (18)
C6—C5—H5119.0S1—N1—H1N116.4 (18)
C5—C6—C1118.7 (2)O1—S1—O2120.76 (11)
C5—C6—H6120.6O1—S1—N1103.72 (10)
C1—C6—H6120.6O2—S1—N1108.43 (10)
O3—C7—N1124.0 (2)O1—S1—C1109.25 (11)
O3—C7—C8122.60 (19)O2—S1—C1109.93 (11)
N1—C7—C8113.45 (18)N1—S1—C1103.17 (10)
C6—C1—C2—C31.1 (4)N1—C7—C8—Cl269.4 (2)
S1—C1—C2—C3175.0 (2)O3—C7—N1—S10.4 (3)
C1—C2—C3—C40.5 (4)C8—C7—N1—S1179.19 (14)
C2—C3—C4—C50.9 (4)C7—N1—S1—O1174.97 (17)
C2—C3—C4—C9178.2 (3)C7—N1—S1—O245.5 (2)
C3—C4—C5—C61.9 (4)C7—N1—S1—C171.09 (19)
C9—C4—C5—C6177.2 (3)C2—C1—S1—O1164.08 (19)
C4—C5—C6—C11.4 (4)C6—C1—S1—O119.7 (2)
C2—C1—C6—C50.2 (4)C2—C1—S1—O229.4 (2)
S1—C1—C6—C5175.97 (19)C6—C1—S1—O2154.39 (18)
O3—C7—C8—Cl19.7 (3)C2—C1—S1—N186.1 (2)
N1—C7—C8—Cl1169.93 (15)C6—C1—S1—N190.13 (19)
O3—C7—C8—Cl2111.0 (2)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.82 (3)2.03 (3)2.833 (2)166 (2)
Symmetry codes: (i) x−1/2, y, −z+1/2.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.82 (3)2.03 (3)2.833 (2)166 (2)
Symmetry codes: (i) x−1/2, y, −z+1/2.
Acknowledgements top

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

references
References top

Gowda, B. T., Foro, S., Sowmya, B. P., Nirmala, P. G. & Fuess, H. (2008a). Acta Cryst. E64, o1274.

Gowda, B. T., Foro, S., Sowmya, B. P., Nirmala, P. G. & Fuess, H. (2008b). Acta Cryst. E64, o1410.

Gowda, B. T., Paulus, H., Kozisek, J., Tokarcik, M. & Fuess, H. (2006). Z. Naturforsch. Teil A, 61, 675–682.

Gowda, B. T., Srilatha, Foro, S., Kožíšek, J. & Fuess, H. (2007). Z. Naturforsch. Teil A, 62, 417–424.

Oxford Diffraction (2004). CrysAlis CCD. Oxford Diffraction Ltd. Köln, Germany.

Oxford Diffraction (2007). CrysAlis RED. Oxford Diffraction Ltd. Köln, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13.