organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2-Di­chloro-N-(4-methyl­phenyl­sulfonyl)acetamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 9 July 2008; accepted 9 July 2008; online 16 July 2008)

The N—H and C=O bonds in the title compound, C9H9Cl2NO3S, are trans to each other, similar to what is observed in 2,2,2-trimethyl-N-(phenyl­sulfon­yl)acetamide and 2,2,2-trimethyl-N-(4-methyl­phenyl­sulfon­yl)acetamide. The bond parameters in the title compound are also similar to those in the aforementioned two structures. N—H⋯O hydrogen bonds connect the mol­ecules into chains running along the a axis.

Related literature

For related literature, see: Gowda et al. (2006[Gowda, B. T., Paulus, H., Kozisek, J., Tokarcik, M. & Fuess, H. (2006). Z. Naturforsch. Teil A, 61, 675-682.], 2007[Gowda, B. T., Srilatha, Foro, S., Kožíšek, J. & Fuess, H. (2007). Z. Naturforsch. Teil A, 62, 417-424.], 2008a[Gowda, B. T., Foro, S., Sowmya, B. P., Nirmala, P. G. & Fuess, H. (2008a). Acta Cryst. E64, o1274.],b[Gowda, B. T., Foro, S., Sowmya, B. P., Nirmala, P. G. & Fuess, H. (2008b). Acta Cryst. E64, o1410.]).

[Scheme 1]

Experimental

Crystal data
  • C9H9Cl2NO3S

  • Mr = 282.13

  • Orthorhombic, P b c a

  • a = 9.6580 (8) Å

  • b = 10.3177 (8) Å

  • c = 23.067 (2) Å

  • V = 2298.6 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.74 mm−1

  • T = 299 (2) K

  • 0.48 × 0.46 × 0.32 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis RED. Oxford Diffraction Ltd. Köln, Germany.]) Tmin = 0.719, Tmax = 0.799

  • 8079 measured reflections

  • 2313 independent reflections

  • 1886 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.099

  • S = 1.14

  • 2313 reflections

  • 150 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O3i 0.82 (3) 2.03 (3) 2.833 (2) 166 (2)
Symmetry code: (i) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2004[Oxford Diffraction (2004). CrysAlis CCD. Oxford Diffraction Ltd. Köln, Germany.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis RED. Oxford Diffraction Ltd. Köln, Germany.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of a study of the substituent effects on the solid state geometries of N-(aryl)-sulfonamides and substituted amides, the structure of N-(4-methylphenylsulfonyl)-2,2-dichloroacetamide (N4MPSDCAA) has been determined (Gowda et al., 2006, 2007, 2008a, 2008b). The conformation of the N—H and C=O bonds in N4MPSDCAA are anti to each other (Fig. 1), similar to that observed in N-(phenylsulfonyl)-2,2,2-trimethylacetamide (NPSTMAA) (Gowda et al., 2008b), N-(4-chlorophenylsulfonyl)-2,2,2-trimethylacetamide (N4CPSTMAA) and (4-methylphenylsulfonyl)-2,2,2-trimethylacetamide (N4MPSTMAA) (Gowda et al., 2008a, b). The bond parameters in N4MPSDCAA are similar to those in NPSTMAA, N4MPSTMAA, N4CPSTMAA (Gowda et al., 2008a, b), N-(aryl)-2,2-dichloroacetamides (Gowda et al., 2006) and 4-methylbenzenesulfonamide and other arylsulfonamides (Gowda et al., 2007). The N—H···O hydrogen bonds (Table 1) connect the molecules to chains running along the a axis (Fig. 2).

Related literature top

For related literature, see: Gowda et al. (2006, 2007, 2008a,b).

Experimental top

The title compound was prepared by refluxing 4-methylbenzenesulfonamide (0.10 mole) with an excess dichloroacetyl chloride (0.20 mole) for about an hour on a water bath. The reaction mixture was cooled and poured into ice cold water. The resulting solid was separated, washed thoroughly with water and dissolved in warm dilute sodium hydrogen carbonate solution. The title compound was precipitated by acidifying the filtered solution with glacial acetic acid. It was filtered, dried and recrystallized from ethanol. The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Single crystals of the title compound used for X-ray diffraction studies were obtained from a slow evaporation of an ethanolic solution.

Refinement top

The NH atom was located in difference map, and its positional parameters were refined freely. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.98 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

The five reflections most deviating reflecions (1 0 2, 1 1 2, 0 2 0, 1 1 1, 0 0 4) were omitted from the refinement.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2004); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXS97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom labeling scheme. The displacement ellipsoids are drawn at the 50% probability level. The H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Molecular packing of (I) with hydrogen bonding shown as dashed lines.
2,2-Dichloro-N-(4-methylphenylsulfonyl)acetamide top
Crystal data top
C9H9Cl2NO3SF(000) = 1152
Mr = 282.13Dx = 1.631 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3825 reflections
a = 9.6580 (8) Åθ = 2.3–28.0°
b = 10.3177 (8) ŵ = 0.74 mm1
c = 23.067 (2) ÅT = 299 K
V = 2298.6 (3) Å3Prism, colourless
Z = 80.48 × 0.46 × 0.32 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2313 independent reflections
Radiation source: fine-focus sealed tube1886 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Rotation method data acquisition using ω and ϕ scansθmax = 26.4°, θmin = 3.9°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
h = 1211
Tmin = 0.719, Tmax = 0.799k = 1211
8079 measured reflectionsl = 2828
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0465P)2 + 1.5357P]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max = 0.001
2313 reflectionsΔρmax = 0.34 e Å3
150 parametersΔρmin = 0.33 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0216 (12)
Crystal data top
C9H9Cl2NO3SV = 2298.6 (3) Å3
Mr = 282.13Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.6580 (8) ŵ = 0.74 mm1
b = 10.3177 (8) ÅT = 299 K
c = 23.067 (2) Å0.48 × 0.46 × 0.32 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2313 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
1886 reflections with I > 2σ(I)
Tmin = 0.719, Tmax = 0.799Rint = 0.022
8079 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.14Δρmax = 0.34 e Å3
2313 reflectionsΔρmin = 0.33 e Å3
150 parameters
Special details top

Experimental. CrysAlis RED (Oxford Diffraction, 2007) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1940 (2)0.2089 (2)0.10903 (9)0.0321 (5)
C20.3304 (3)0.2325 (3)0.09411 (11)0.0419 (6)
H20.40220.19160.11380.050*
C30.3581 (3)0.3181 (3)0.04945 (11)0.0487 (6)
H30.44970.33480.03950.058*
C40.2532 (3)0.3796 (2)0.01912 (10)0.0440 (6)
C50.1181 (3)0.3514 (3)0.03428 (12)0.0480 (6)
H50.04630.38970.01360.058*
C60.0866 (3)0.2678 (2)0.07928 (11)0.0403 (6)
H60.00500.25150.08930.048*
C70.2763 (2)0.27000 (19)0.24611 (9)0.0279 (4)
C80.2502 (2)0.3642 (2)0.29677 (9)0.0331 (5)
H80.17730.42550.28590.040*
C90.2837 (4)0.4760 (3)0.02853 (13)0.0626 (8)
H9A0.37030.45450.04660.075*
H9B0.28920.56160.01240.075*
H9C0.21110.47310.05690.075*
N10.15881 (18)0.21543 (18)0.22498 (8)0.0292 (4)
H1N0.084 (3)0.238 (2)0.2380 (11)0.035*
O10.01360 (18)0.07170 (18)0.16642 (7)0.0438 (4)
O20.26226 (19)0.01713 (16)0.17765 (7)0.0433 (4)
O30.39079 (15)0.24827 (17)0.22726 (7)0.0385 (4)
Cl10.40283 (7)0.45024 (6)0.31278 (3)0.0454 (2)
Cl20.19595 (7)0.27418 (7)0.35847 (3)0.0508 (2)
S10.15508 (6)0.11055 (5)0.16929 (2)0.03130 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0352 (11)0.0326 (11)0.0285 (10)0.0022 (9)0.0002 (8)0.0039 (9)
C20.0335 (12)0.0556 (16)0.0366 (12)0.0025 (11)0.0009 (10)0.0018 (11)
C30.0431 (14)0.0605 (17)0.0424 (13)0.0122 (12)0.0083 (11)0.0013 (13)
C40.0633 (16)0.0372 (13)0.0315 (11)0.0068 (11)0.0046 (11)0.0024 (10)
C50.0556 (16)0.0421 (14)0.0463 (14)0.0060 (12)0.0039 (12)0.0077 (12)
C60.0353 (12)0.0431 (14)0.0424 (13)0.0005 (10)0.0013 (10)0.0029 (11)
C70.0282 (11)0.0269 (10)0.0285 (10)0.0026 (8)0.0035 (8)0.0052 (8)
C80.0323 (11)0.0314 (11)0.0355 (11)0.0042 (9)0.0043 (9)0.0018 (9)
C90.087 (2)0.0531 (18)0.0476 (15)0.0120 (16)0.0097 (15)0.0089 (13)
N10.0233 (9)0.0331 (10)0.0312 (9)0.0009 (7)0.0022 (7)0.0022 (8)
O10.0407 (10)0.0470 (10)0.0436 (9)0.0165 (8)0.0027 (7)0.0009 (8)
O20.0524 (10)0.0314 (9)0.0462 (9)0.0083 (8)0.0008 (8)0.0002 (7)
O30.0230 (8)0.0514 (10)0.0412 (9)0.0030 (7)0.0015 (6)0.0083 (7)
Cl10.0513 (4)0.0353 (3)0.0496 (4)0.0104 (3)0.0075 (3)0.0046 (3)
Cl20.0564 (4)0.0610 (4)0.0348 (3)0.0153 (3)0.0085 (3)0.0048 (3)
S10.0327 (3)0.0290 (3)0.0322 (3)0.0035 (2)0.0011 (2)0.0005 (2)
Geometric parameters (Å, º) top
C1—C21.384 (3)C7—N11.357 (3)
C1—C61.384 (3)C7—C81.540 (3)
C1—S11.761 (2)C8—Cl11.760 (2)
C2—C31.383 (4)C8—Cl21.778 (2)
C2—H20.9300C8—H80.9800
C3—C41.385 (4)C9—H9A0.9600
C3—H30.9300C9—H9B0.9600
C4—C51.381 (4)C9—H9C0.9600
C4—C91.512 (4)N1—S11.6800 (19)
C5—C61.384 (4)N1—H1N0.82 (3)
C5—H50.9300O1—S11.4256 (17)
C6—H60.9300O2—S11.4276 (17)
C7—O31.210 (3)
C2—C1—C6120.8 (2)C7—C8—Cl1109.94 (15)
C2—C1—S1120.07 (18)C7—C8—Cl2109.02 (14)
C6—C1—S1118.98 (18)Cl1—C8—Cl2110.02 (12)
C3—C2—C1118.8 (2)C7—C8—H8109.3
C3—C2—H2120.6Cl1—C8—H8109.3
C1—C2—H2120.6Cl2—C8—H8109.3
C2—C3—C4121.8 (2)C4—C9—H9A109.5
C2—C3—H3119.1C4—C9—H9B109.5
C4—C3—H3119.1H9A—C9—H9B109.5
C5—C4—C3117.8 (2)C4—C9—H9C109.5
C5—C4—C9120.5 (3)H9A—C9—H9C109.5
C3—C4—C9121.7 (3)H9B—C9—H9C109.5
C4—C5—C6121.9 (2)C7—N1—S1124.04 (15)
C4—C5—H5119.0C7—N1—H1N119.4 (18)
C6—C5—H5119.0S1—N1—H1N116.4 (18)
C5—C6—C1118.7 (2)O1—S1—O2120.76 (11)
C5—C6—H6120.6O1—S1—N1103.72 (10)
C1—C6—H6120.6O2—S1—N1108.43 (10)
O3—C7—N1124.0 (2)O1—S1—C1109.25 (11)
O3—C7—C8122.60 (19)O2—S1—C1109.93 (11)
N1—C7—C8113.45 (18)N1—S1—C1103.17 (10)
C6—C1—C2—C31.1 (4)N1—C7—C8—Cl269.4 (2)
S1—C1—C2—C3175.0 (2)O3—C7—N1—S10.4 (3)
C1—C2—C3—C40.5 (4)C8—C7—N1—S1179.19 (14)
C2—C3—C4—C50.9 (4)C7—N1—S1—O1174.97 (17)
C2—C3—C4—C9178.2 (3)C7—N1—S1—O245.5 (2)
C3—C4—C5—C61.9 (4)C7—N1—S1—C171.09 (19)
C9—C4—C5—C6177.2 (3)C2—C1—S1—O1164.08 (19)
C4—C5—C6—C11.4 (4)C6—C1—S1—O119.7 (2)
C2—C1—C6—C50.2 (4)C2—C1—S1—O229.4 (2)
S1—C1—C6—C5175.97 (19)C6—C1—S1—O2154.39 (18)
O3—C7—C8—Cl19.7 (3)C2—C1—S1—N186.1 (2)
N1—C7—C8—Cl1169.93 (15)C6—C1—S1—N190.13 (19)
O3—C7—C8—Cl2111.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.82 (3)2.03 (3)2.833 (2)166 (2)
Symmetry code: (i) x1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC9H9Cl2NO3S
Mr282.13
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)299
a, b, c (Å)9.6580 (8), 10.3177 (8), 23.067 (2)
V3)2298.6 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.74
Crystal size (mm)0.48 × 0.46 × 0.32
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.719, 0.799
No. of measured, independent and
observed [I > 2σ(I)] reflections
8079, 2313, 1886
Rint0.022
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.099, 1.14
No. of reflections2313
No. of parameters150
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.33

Computer programs: CrysAlis CCD (Oxford Diffraction, 2004), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.82 (3)2.03 (3)2.833 (2)166 (2)
Symmetry code: (i) x1/2, y, z+1/2.
 

Acknowledgements

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

References

First citationGowda, B. T., Foro, S., Sowmya, B. P., Nirmala, P. G. & Fuess, H. (2008a). Acta Cryst. E64, o1274.  Web of Science CSD CrossRef IUCr Journals
First citationGowda, B. T., Foro, S., Sowmya, B. P., Nirmala, P. G. & Fuess, H. (2008b). Acta Cryst. E64, o1410.  Web of Science CSD CrossRef IUCr Journals
First citationGowda, B. T., Paulus, H., Kozisek, J., Tokarcik, M. & Fuess, H. (2006). Z. Naturforsch. Teil A, 61, 675–682.  CAS
First citationGowda, B. T., Srilatha, Foro, S., Kožíšek, J. & Fuess, H. (2007). Z. Naturforsch. Teil A, 62, 417–424.  CAS
First citationOxford Diffraction (2004). CrysAlis CCD. Oxford Diffraction Ltd. Köln, Germany.
First citationOxford Diffraction (2007). CrysAlis RED. Oxford Diffraction Ltd. Köln, Germany.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds