metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­bromido[(S)-2-(pyrrolidin-2-yl)-1H-benzimidazole]zinc(II)

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: fudavid88@yahoo.com.cn

(Received 19 June 2008; accepted 24 June 2008; online 9 July 2008)

The title compound, [ZnBr2(C11H13N3)], was synthesized by hydro­thermal reaction of ZnBr2 and (S)-2-(pyrrolidin-2-yl)-1H-benzimidazole. The ZnII atom has a distorted tetra­hedral geometry and is coordinated by two N atoms from the chelating organic ligand and two terminal Br anions. In the crystal structure, mol­ecules are linked into a chain along the [101] direction by N—H⋯Br and C—H⋯Br hydrogen bonds.

Related literature

For physical properties such as fluorescence and dielectric behaviors of metal-organic coordination compounds, see: Aminabhavi et al. (1986[Aminabhavi, T. M., Biradar, N. S. & Patil, S. B. (1986). Inorg. Chim. Acta, 125, 125-128.]); Ye et al. (2008[Ye, Q., Zhao, H., Qu, Z.-R., Ye, H.-Y. & Xiong, R.-G. (2008). Chem. Soc. Rev. 37, 84-100.]); Fu et al. (2007[Fu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q. & Xiong, R.-G. (2007). J. Am. Chem. Soc. 129, 5346-5347.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnBr2(C11H13N3)]

  • Mr = 412.43

  • Monoclinic, P 21 /n

  • a = 8.953 (3) Å

  • b = 11.668 (2) Å

  • c = 13.318 (2) Å

  • β = 91.443 (3)°

  • V = 1390.9 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 7.49 mm−1

  • T = 298 (2) K

  • 0.30 × 0.25 × 0.15 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.459, Tmax = 0.982 (expected range = 0.152–0.325)

  • 13896 measured reflections

  • 3179 independent reflections

  • 2426 reflections with I > 2σ(I)

  • Rint = 0.065

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.114

  • S = 0.99

  • 3179 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −1.00 e Å−3

Table 1
Selected geometric parameters (Å, °)

Br1—Zn1 2.3642 (8)
Zn1—N2 2.011 (3)
Zn1—N1 2.075 (4)
Zn1—Br2 2.3319 (7)
N2—Zn1—N1 82.35 (14)
N2—Zn1—Br2 112.70 (10)
N1—Zn1—Br2 117.89 (10)
N2—Zn1—Br1 118.99 (11)
N1—Zn1—Br1 110.08 (11)
Br2—Zn1—Br1 112.03 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3C⋯Br1i 0.86 2.74 3.516 (4) 150
C4—H4A⋯Br1ii 0.98 2.86 3.637 (5) 137
C1—H1ACg1iii 0.97 2.78 3.673 (6) 153
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) -x, -y+2, -z+1; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]. Cg1 is the centroid of the C6–C11 ring.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Metal-organic coordination compounds provide a class of complexes displaying interesting chemical and physical properties such as fluorescence and dielectric behaviors (Aminabhavi et al., 1986; Ye et al., 2008; Fu et al., 2007). There has been very strong interest in employing crystal-engineering strategies to generate desirable materials by the hydrothermal reaction. Here we report the synthesis and crystal structure of the title compound.

The ZnII atom has a distorted tetrahedral geometry (Table 1) and is coordinated by two N atoms from the chelating S-2-(pyrrolidin-2-yl)-1H-benzimidazole ligand and two terminal Br- anions (Fig. 1).

In the crystal structure, N—H···Br and C—H···Br hydrogen bonds (Table 2) link the molecules into a chain along [1 0 1] (Fig.2).

Related literature top

For physical properties such as fluorescence and dielectric behaviors of metal-organic coordination compounds, see: Aminabhavi et al. (1986); Ye et al. (2008); Fu et al. (2007). Cg1 is the centroid of the C6–C11 ring.

Experimental top

The homochiral ligand S-2-(pyrrolidin-2-yl)-1H-benzimidazole was synthesized by reaction of S-pyrrolidine-2-carboxylic acid and benzene-1,2-diamine according to the procedure described in the literature (Aminabhavi et al., 1986). A mixture of S-2-(pyrrolidin-2-yl)-1H-benzimidazole (18.7 mg, 0.1 mmol), ZnBr2 (33.9 mg, 0.1 mmol) and water (1 ml) sealed in a glass tube was maintained at 343 K. Crystals suitable for X-ray ananlysis were obtained after 3 d.

Refinement top

All H atoms attached to C and N atoms were fixed geometrically and treated as riding with C-H = 0.93 Å (aromatic), 0.97 Å (methylene) or 0.98 Å (methine) and N-H = 0.91 Å with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the b axis. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.
Dibromido[(S)-2-(pyrrolidin-2-yl)-1H-benzimidazole]zinc(II) top
Crystal data top
[ZnBr2(C11H13N3)]F(000) = 800
Mr = 412.43Dx = 1.970 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3615 reflections
a = 8.953 (3) Åθ = 2.7–27.5°
b = 11.668 (2) ŵ = 7.49 mm1
c = 13.318 (2) ÅT = 298 K
β = 91.443 (3)°Block, colourless
V = 1390.9 (6) Å30.30 × 0.25 × 0.15 mm
Z = 4
Data collection top
Rigaku Mercury2
diffractometer
3179 independent reflections
Radiation source: fine-focus sealed tube2426 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 2.7°
ω scansh = 1111
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1515
Tmin = 0.459, Tmax = 0.982l = 1717
13896 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0563P)2]
where P = (Fo2 + 2Fc2)/3
3179 reflections(Δ/σ)max = 0.001
154 parametersΔρmax = 0.67 e Å3
0 restraintsΔρmin = 1.00 e Å3
Crystal data top
[ZnBr2(C11H13N3)]V = 1390.9 (6) Å3
Mr = 412.43Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.953 (3) ŵ = 7.49 mm1
b = 11.668 (2) ÅT = 298 K
c = 13.318 (2) Å0.30 × 0.25 × 0.15 mm
β = 91.443 (3)°
Data collection top
Rigaku Mercury2
diffractometer
3179 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2426 reflections with I > 2σ(I)
Tmin = 0.459, Tmax = 0.982Rint = 0.065
13896 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 0.99Δρmax = 0.67 e Å3
3179 reflectionsΔρmin = 1.00 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.25768 (6)0.93780 (4)0.57154 (4)0.04999 (18)
Zn10.13105 (6)0.76113 (4)0.55176 (4)0.03634 (16)
Br20.20151 (7)0.62945 (5)0.67586 (4)0.0600 (2)
C60.1068 (5)0.5895 (4)0.2708 (3)0.0378 (10)
N20.1146 (4)0.6901 (3)0.4143 (2)0.0344 (8)
N10.0955 (4)0.7895 (3)0.5261 (3)0.0378 (8)
H10B0.11400.86500.53770.045*
N30.0296 (4)0.6401 (3)0.2863 (3)0.0391 (9)
H3C0.10730.63570.24710.047*
C80.3041 (6)0.4841 (5)0.2047 (4)0.0554 (14)
H8A0.34270.43620.15590.066*
C50.0198 (5)0.6977 (4)0.3735 (3)0.0315 (9)
C110.1978 (5)0.6223 (4)0.3510 (3)0.0354 (9)
C70.1572 (6)0.5177 (4)0.1952 (3)0.0489 (12)
H7A0.09550.49410.14190.059*
C30.2915 (5)0.6980 (5)0.4237 (4)0.0550 (13)
H3A0.36320.72840.37480.066*
H3B0.27710.61700.41070.066*
C100.3458 (6)0.5868 (5)0.3582 (4)0.0508 (12)
H10A0.40740.60900.41200.061*
C90.3976 (6)0.5188 (5)0.2844 (4)0.0555 (14)
H9A0.49670.49490.28690.067*
C10.1969 (6)0.7209 (5)0.5893 (3)0.0512 (13)
H1A0.21040.75730.65390.061*
H1B0.15780.64420.60020.061*
C40.1416 (5)0.7637 (4)0.4201 (3)0.0361 (10)
H4A0.15680.83570.38340.043*
C20.3426 (6)0.7174 (6)0.5290 (4)0.0631 (15)
H2A0.40590.65530.55100.076*
H2B0.39650.78920.53440.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0629 (3)0.0386 (3)0.0474 (3)0.0098 (2)0.0209 (2)0.0027 (2)
Zn10.0395 (3)0.0392 (3)0.0299 (3)0.0022 (2)0.0093 (2)0.0028 (2)
Br20.0757 (4)0.0521 (3)0.0509 (3)0.0016 (3)0.0220 (3)0.0139 (2)
C60.040 (2)0.042 (2)0.032 (2)0.001 (2)0.0023 (19)0.0055 (18)
N20.0326 (18)0.041 (2)0.0290 (17)0.0002 (16)0.0077 (15)0.0026 (15)
N10.041 (2)0.0366 (19)0.0357 (19)0.0010 (17)0.0034 (16)0.0067 (16)
N30.035 (2)0.050 (2)0.0319 (18)0.0031 (17)0.0084 (16)0.0051 (16)
C80.057 (3)0.063 (3)0.046 (3)0.018 (3)0.014 (3)0.013 (3)
C50.034 (2)0.035 (2)0.0255 (19)0.0055 (18)0.0032 (17)0.0030 (17)
C110.031 (2)0.041 (2)0.033 (2)0.0023 (19)0.0051 (18)0.0002 (18)
C70.058 (3)0.054 (3)0.035 (2)0.001 (3)0.004 (2)0.012 (2)
C30.035 (3)0.077 (4)0.053 (3)0.008 (3)0.002 (2)0.015 (3)
C100.039 (3)0.067 (3)0.046 (3)0.002 (3)0.008 (2)0.010 (2)
C90.041 (3)0.076 (4)0.050 (3)0.014 (3)0.004 (2)0.006 (3)
C10.048 (3)0.068 (3)0.038 (3)0.009 (3)0.004 (2)0.004 (2)
C40.033 (2)0.044 (3)0.031 (2)0.0022 (19)0.0080 (18)0.0031 (18)
C20.046 (3)0.087 (4)0.057 (3)0.002 (3)0.002 (3)0.004 (3)
Geometric parameters (Å, º) top
Br1—Zn12.3642 (8)C5—C41.484 (6)
Zn1—N22.011 (3)C11—C101.390 (6)
Zn1—N12.075 (4)C7—H7A0.93
Zn1—Br22.3319 (7)C3—C21.504 (7)
C6—N31.377 (6)C3—C41.547 (6)
C6—C111.382 (6)C3—H3A0.97
C6—C71.393 (6)C3—H3B0.97
N2—C51.311 (5)C10—C91.354 (7)
N2—C111.387 (5)C10—H10A0.93
N1—C11.488 (6)C9—H9A0.93
N1—C41.492 (5)C1—C21.515 (7)
N1—H10B0.91C1—H1A0.97
N3—C51.343 (5)C1—H1B0.97
N3—H3C0.86C4—H4A0.98
C8—C71.376 (7)C2—H2A0.97
C8—C91.395 (7)C2—H2B0.97
C8—H8A0.93
N2—Zn1—N182.35 (14)C6—C7—H7A122.2
N2—Zn1—Br2112.70 (10)C2—C3—C4103.8 (4)
N1—Zn1—Br2117.89 (10)C2—C3—H3A111.0
N2—Zn1—Br1118.99 (11)C4—C3—H3A111.0
N1—Zn1—Br1110.08 (11)C2—C3—H3B111.0
Br2—Zn1—Br1112.03 (3)C4—C3—H3B111.0
N3—C6—C11105.8 (4)H3A—C3—H3B109.0
N3—C6—C7132.1 (4)C9—C10—C11118.0 (5)
C11—C6—C7122.0 (4)C9—C10—H10A121.0
C5—N2—C11106.7 (3)C11—C10—H10A121.0
C5—N2—Zn1113.3 (3)C10—C9—C8120.8 (5)
C11—N2—Zn1139.5 (3)C10—C9—H9A119.6
C1—N1—C4105.6 (3)C8—C9—H9A119.6
C1—N1—Zn1115.4 (3)N1—C1—C2104.1 (4)
C4—N1—Zn1111.7 (3)N1—C1—H1A110.9
C1—N1—H10B108.0C2—C1—H1A110.9
C4—N1—H10B108.0N1—C1—H1B110.9
Zn1—N1—H10B108.0C2—C1—H1B110.9
C5—N3—C6107.8 (3)H1A—C1—H1B109.0
C5—N3—H3C126.1C5—C4—N1108.1 (3)
C6—N3—H3C126.1C5—C4—C3113.8 (4)
C7—C8—C9122.8 (5)N1—C4—C3106.9 (3)
C7—C8—H8A118.6C5—C4—H4A109.3
C9—C8—H8A118.6N1—C4—H4A109.3
N2—C5—N3111.4 (4)C3—C4—H4A109.3
N2—C5—C4122.6 (4)C3—C2—C1102.7 (4)
N3—C5—C4126.0 (4)C3—C2—H2A111.2
C6—C11—N2108.2 (4)C1—C2—H2A111.2
C6—C11—C10120.8 (4)C3—C2—H2B111.2
N2—C11—C10130.9 (4)C1—C2—H2B111.2
C8—C7—C6115.6 (4)H2A—C2—H2B109.1
C8—C7—H7A122.2
N1—Zn1—N2—C52.2 (3)Zn1—N2—C11—C6170.4 (3)
Br2—Zn1—N2—C5119.3 (3)C5—N2—C11—C10179.8 (5)
Br1—Zn1—N2—C5106.5 (3)Zn1—N2—C11—C109.2 (8)
N1—Zn1—N2—C11168.0 (5)C9—C8—C7—C60.1 (8)
Br2—Zn1—N2—C1150.9 (5)N3—C6—C7—C8179.6 (5)
Br1—Zn1—N2—C1183.2 (5)C11—C6—C7—C81.4 (7)
N2—Zn1—N1—C1110.8 (3)C6—C11—C10—C90.2 (8)
Br2—Zn1—N1—C10.8 (3)N2—C11—C10—C9179.3 (5)
Br1—Zn1—N1—C1131.0 (3)C11—C10—C9—C81.1 (8)
N2—Zn1—N1—C49.8 (3)C7—C8—C9—C101.2 (9)
Br2—Zn1—N1—C4121.4 (3)C4—N1—C1—C232.6 (5)
Br1—Zn1—N1—C4108.4 (3)Zn1—N1—C1—C2156.5 (3)
C11—C6—N3—C51.6 (5)N2—C5—C4—N114.3 (6)
C7—C6—N3—C5177.5 (5)N3—C5—C4—N1166.5 (4)
C11—N2—C5—N30.8 (5)N2—C5—C4—C3132.8 (4)
Zn1—N2—C5—N3174.2 (3)N3—C5—C4—C347.9 (6)
C11—N2—C5—C4179.8 (4)C1—N1—C4—C5111.7 (4)
Zn1—N2—C5—C46.5 (5)Zn1—N1—C4—C514.4 (4)
C6—N3—C5—N21.5 (5)C1—N1—C4—C311.1 (5)
C6—N3—C5—C4179.2 (4)Zn1—N1—C4—C3137.3 (3)
N3—C6—C11—N21.1 (5)C2—C3—C4—C5133.9 (4)
C7—C6—C11—N2178.1 (4)C2—C3—C4—N114.6 (5)
N3—C6—C11—C10179.2 (4)C4—C3—C2—C134.0 (6)
C7—C6—C11—C101.6 (7)N1—C1—C2—C341.8 (6)
C5—N2—C11—C60.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3C···Br1i0.862.743.516 (4)150
C4—H4A···Br1ii0.982.863.637 (5)137
C1—H1A···Cg1iii0.972.783.673 (6)153
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x, y+2, z+1; (iii) x1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[ZnBr2(C11H13N3)]
Mr412.43
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)8.953 (3), 11.668 (2), 13.318 (2)
β (°) 91.443 (3)
V3)1390.9 (6)
Z4
Radiation typeMo Kα
µ (mm1)7.49
Crystal size (mm)0.30 × 0.25 × 0.15
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.459, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
13896, 3179, 2426
Rint0.065
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.114, 0.99
No. of reflections3179
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.67, 1.00

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Br1—Zn12.3642 (8)Zn1—N12.075 (4)
Zn1—N22.011 (3)Zn1—Br22.3319 (7)
N2—Zn1—N182.35 (14)N2—Zn1—Br1118.99 (11)
N2—Zn1—Br2112.70 (10)N1—Zn1—Br1110.08 (11)
N1—Zn1—Br2117.89 (10)Br2—Zn1—Br1112.03 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3C···Br1i0.862.743.516 (4)150
C4—H4A···Br1ii0.982.863.637 (5)137
C1—H1A···Cg1iii0.972.783.673 (6)153
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x, y+2, z+1; (iii) x1/2, y+3/2, z+1/2.
 

Acknowledgements

This work was supported by a Start-up Grant from Southeast University to Professor Ren-Gen Xiong, and a Excellent Doctoral Degree Foundation Grant from Southeast University to DWF.

References

First citationAminabhavi, T. M., Biradar, N. S. & Patil, S. B. (1986). Inorg. Chim. Acta, 125, 125–128.  CrossRef CAS Web of Science Google Scholar
First citationFu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q. & Xiong, R.-G. (2007). J. Am. Chem. Soc. 129, 5346–5347.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYe, Q., Zhao, H., Qu, Z.-R., Ye, H.-Y. & Xiong, R.-G. (2008). Chem. Soc. Rev. 37, 84–100.  Web of Science CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds