organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages o1590-o1591

4-Amino-3-{1-[4-(2-methyl­prop­yl)phen­yl]eth­yl}-1H-1,2,4-triazole-5(4H)-thione

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India, cDepartment of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore 574 199, India, and dCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
*Correspondence e-mail: hkfun@usm.my

(Received 13 July 2008; accepted 20 July 2008; online 26 July 2008)

In the title triazole compound, C14H20N4S, the dihedral angle between the triazole and benzene rings is 83.29 (11)°. The methine H atom and two methyl groups of the isobutyl group are disordered over two sites with occupancies of 0.684 (9) and 0.316 (9). In the crystal structure, N—H⋯S hydrogen bonds link the mol­ecules into chains running along the b axis. These chains are cross-linked into a two-dimensional network parallel to the ab plane by C—H⋯S hydrogen bonds.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related structures, see: Fun et al. (2008a[Fun, H.-K., Jebas, S. R., Razak, I. A., Sujith, K. V., Patil, P. S., Kalluraya, B. & Dharmaprakash, S. M. (2008a). Acta Cryst. E64, o1076-o1077.],b[Fun, H.-K., Jebas, S. R., Sujith, K. V., Patil, P. S., Kalluraya, B. & Dharmaprakash, S. M. (2008b). Acta Cryst. E64, o1001-o1002.],c[Fun, H.-K., Chantrapromma, S., Sujith, K. V., Patil, P. S., Kalluraya, B., Muralidharan, A. & Dharmaprakash, S. M. (2008c). Acta Cryst. E64, o1503-o1504.]). For the activities and applications of 1,2,4-triazole derivatives, see: Bhat et al. (2004[Bhat, K. S., Prasad, D. J., Poojary, B. & Holla, B. S. (2004). Phosphorus Sulfur Silicon, 179, 1595-1603.]); Holla et al. (2002[Holla, B. S., Poorjary, K. N., Rao, B. S. & Shivananda, M. K. (2002). Eur. J. Med. Chem. 37, 511-517.]); Karthikeyan et al. (2007[Karthikeyan, M. S., Holla, B. S., Kalluraya, B. & Kumari, N. S. (2007). Monatsh. Chem. 138, 1309-1316.]); Raafat et al. (2006[Raafat, M. S. & Ashraf, A. A. (2006). Phosphorus Sulfur Silicon, 181, 2577-2613.]); Wei et al. (2007[Wei, T.-B., Tang, J., Liu, H. & Zhang, Y.-M. (2007). Phosphorus Sulfur Silicon, 182, 1581-1587.]).

[Scheme 1]

Experimental

Crystal data
  • C14H20N4S

  • Mr = 276.41

  • Monoclinic, P 21

  • a = 5.9720 (3) Å

  • b = 8.5153 (5) Å

  • c = 14.8271 (6) Å

  • β = 97.223 (3)°

  • V = 748.03 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 100.0 (1) K

  • 0.58 × 0.39 × 0.13 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.888, Tmax = 0.974

  • 10373 measured reflections

  • 3612 independent reflections

  • 3295 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.119

  • S = 1.07

  • 3612 reflections

  • 199 parameters

  • 29 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.74 e Å−3

  • Δρmin = −0.54 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1293 Friedel pairs

  • Flack parameter: 0.05 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯S1i 0.88 2.45 3.272 (3) 155
N4—H4A⋯S1ii 0.85 (3) 2.54 (3) 3.392 (3) 176 (3)
C5—H5⋯S1iii 0.95 2.78 3.704 (2) 165
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+1]; (ii) [-x+1, y-{\script{1\over 2}}, -z+1]; (iii) [-x, y-{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

In recent decades, a large number of reports concerning 4-amino-1,2,4-triazol-3-thiones have appeared owing to a wide variety of their biological activity. The 1,2,4-triazole nucleus has been incorporated into a wide variety of therapeutically interesting drug candidates, including H1/H2 histamine receptor blockers, cholinesterase-active agents, CNS stimulants, antianxiety agents, and sedatives (Bhat et al., 2004). The amino and thione groups are ready-made nucleophilic centers for the synthesis of condensed nitrogen and sulfur heterocyclic rings, e.g., triazolothiadiazoles, triazolothiadiazines and triazolothiadiazepines (Raafat et al., 2006). Substituted derivatives of triazole possess comprehensive bioactivities such as antimicrobial, anti-inflammatory, analgesic, antitumorial, antihypertensive, anticonvulsant and antiviral activities (Wei et al., 2007). The broad biological activities that the 1,2,4-triazoles shown may be due to the presence of the >N—C—S moiety (Holla et al., 2002). Due to the progress that occurs in dealing with the chemistry of substituted 4-amino-1,2,4-triazole-3-thiones as well as their biological activity, we report here the crystal structure of the title triazole compound.

The bond distances and angles in the title molecule (Fig .1) have normal values (Allen et al., 1987) and are comparable with those observed in related structures (Fun et al., 2008a,b,c). The triazole ring (C1/C2/N1-N3) is planar to within ±0.004 Å. The chiral carbon atom C3 is in a distorted tetrahedral configuration. The dihedral angle between the triazole and benzene (C4-C9) rings is 83.29 (11)°. The 2-methylpropyl group is disordered over two sites. The orientation of this group with respect to the benzene ring can be indicated by the torsion angles C7–C10–C11–C12 = 167.1 (4)° and C7–C10–C11–C13 = -53.8 (5)° [C7–C10–C11–C12A = -162.4 (5)° and C7–C10–C11–C13A = 58.6 (10)° for the minor component].

In the crystal packing, the molecules are linked into chains along the b axis by N—H···S hydrogen bonds (Fig. 2). These chains are cross-linked into a two dimensional network parallel to the ab plane by C—H···S hydrogen bonds (Table 1).

Related literature top

For bond-length data, see: Allen et al. (1987). For related structures, see: Fun et al. (2008a,b,c). For the activities and applications of 1,2,4-triazole derivatives, see: Bhat et al. (2004); Holla et al. (2002); Karthikeyan et al. (2007); Raafat et al. (2006); Wei et al. (2007).

Experimental top

The title compound was prepared by following the literature procedure (Karthikeyan et al., 2007). The solid product obtained was collected by filtration, washed with ethanol and dried. Colourless single crystals suitable for X-ray analysis were obtained from an ethanol solution by slow evaporation (yield 61%; m.p. 423–424 K).

Refinement top

The methylpropyl group is disordered over two orientations with refined occupancies of 0.685 (8) and 0.315 (8). During refinement, bond distances involving C12, C13, C12A and C13A atoms were restrained to 1.530 (7) Å, and their displacement parameters were restrained to an approximate isotropic behaviour. H atoms attached to N4 were located in a difference map and refined freely. The remaining H atoms were placed in calculated positions [N-H = 0.88 Å, C-H = 0.95-1.00 Å] and refined using a riding-model with Uiso(H) = 1.5Ueq(Cmethyl) and 1.2Ueq(C,N).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. Both disorder components are shown.
[Figure 2] Fig. 2. The packing diagram of the title compound, viewed along the c axis. Only the major disorder component is shown. Hydrogen bonds are shown as dashed lines.
4-Amino-3-{1-[4-(2-methylpropyl)phenyl]ethyl}-1H-1,2,4-triazole- 5(4H)-thione top
Crystal data top
C14H20N4SF(000) = 296
Mr = 276.41Dx = 1.227 Mg m3
Monoclinic, P21Melting point = 423–424 K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 5.9720 (3) ÅCell parameters from 3612 reflections
b = 8.5153 (5) Åθ = 2.8–30.0°
c = 14.8271 (6) ŵ = 0.21 mm1
β = 97.223 (3)°T = 100 K
V = 748.03 (7) Å3Block, colourless
Z = 20.58 × 0.39 × 0.13 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3612 independent reflections
Radiation source: fine-focus sealed tube3295 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 8.33 pixels mm-1θmax = 30.0°, θmin = 2.8°
ω scansh = 88
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1111
Tmin = 0.888, Tmax = 0.974l = 2020
10373 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0623P)2 + 0.2342P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
3612 reflectionsΔρmax = 0.74 e Å3
199 parametersΔρmin = 0.54 e Å3
29 restraintsAbsolute structure: Flack (1983), 1293 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (9)
Crystal data top
C14H20N4SV = 748.03 (7) Å3
Mr = 276.41Z = 2
Monoclinic, P21Mo Kα radiation
a = 5.9720 (3) ŵ = 0.21 mm1
b = 8.5153 (5) ÅT = 100 K
c = 14.8271 (6) Å0.58 × 0.39 × 0.13 mm
β = 97.223 (3)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3612 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3295 reflections with I > 2σ(I)
Tmin = 0.888, Tmax = 0.974Rint = 0.029
10373 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.119Δρmax = 0.74 e Å3
S = 1.07Δρmin = 0.54 e Å3
3612 reflectionsAbsolute structure: Flack (1983), 1293 Friedel pairs
199 parametersAbsolute structure parameter: 0.05 (9)
29 restraints
Special details top

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.52913 (8)0.63928 (8)0.56907 (3)0.02823 (14)
N10.3013 (3)0.7737 (3)0.41731 (11)0.0254 (4)
H10.38800.85760.41940.030*
N20.1200 (3)0.7497 (3)0.35093 (12)0.0268 (4)
N30.1622 (3)0.5540 (3)0.44853 (12)0.0255 (4)
N40.1075 (4)0.4156 (3)0.49036 (14)0.0304 (5)
H4A0.205 (5)0.349 (4)0.477 (2)0.036 (8)*
H4B0.120 (6)0.435 (5)0.551 (2)0.050 (9)*
C10.3316 (3)0.6572 (3)0.47770 (12)0.0236 (4)
C20.0397 (3)0.6138 (3)0.37174 (13)0.0242 (5)
C30.1391 (4)0.5226 (3)0.31435 (13)0.0262 (5)
H30.24640.47900.35460.031*
C40.0251 (3)0.3868 (3)0.27194 (13)0.0245 (4)
C50.1039 (4)0.2344 (3)0.27769 (15)0.0304 (5)
H50.23420.21540.30680.037*
C60.0035 (4)0.1101 (3)0.24192 (15)0.0299 (5)
H60.05380.00680.24680.036*
C70.1950 (3)0.1335 (4)0.19865 (12)0.0275 (4)
C80.2718 (4)0.2844 (4)0.19190 (16)0.0324 (6)
H80.40090.30310.16200.039*
C90.1650 (4)0.4104 (3)0.22788 (15)0.0291 (5)
H90.22200.51370.22240.035*
C100.3109 (4)0.0036 (4)0.15975 (16)0.0368 (6)
H10A0.29100.09800.19690.044*
H10B0.47470.01860.16430.044*
C110.2221 (5)0.0394 (6)0.0603 (2)0.0730 (14)
H11A0.24580.06240.02930.088*0.685 (8)
H11B0.06450.05620.06390.088*0.315 (8)
C120.3694 (11)0.1501 (9)0.0159 (4)0.0661 (18)0.685 (8)
H12A0.30530.16680.04750.099*0.685 (8)
H12B0.37820.25070.04830.099*0.685 (8)
H12C0.52100.10530.01790.099*0.685 (8)
C130.0227 (7)0.0626 (7)0.0405 (3)0.0514 (15)0.685 (8)
H13A0.06260.08220.02470.077*0.685 (8)
H13B0.10100.03180.05780.077*0.685 (8)
H13C0.06790.15280.07500.077*0.685 (8)
C12A0.309 (2)0.2128 (11)0.0475 (8)0.057 (3)0.315 (8)
H12D0.26120.24750.01490.085*0.315 (8)
H12E0.24560.28310.09010.085*0.315 (8)
H12F0.47420.21490.05950.085*0.315 (8)
C13A0.220 (3)0.0688 (16)0.0169 (8)0.096 (6)0.315 (8)
H13D0.16480.17170.00020.144*0.315 (8)
H13E0.12140.02710.06910.144*0.315 (8)
H13F0.37400.07970.03290.144*0.315 (8)
C140.2708 (4)0.6302 (4)0.24338 (15)0.0321 (5)
H14A0.34040.71560.27430.048*
H14B0.38860.56930.20690.048*
H14C0.16740.67420.20370.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0253 (2)0.0327 (3)0.0260 (2)0.0030 (3)0.00040 (16)0.0015 (2)
N10.0251 (8)0.0242 (11)0.0263 (8)0.0010 (8)0.0010 (6)0.0027 (7)
N20.0252 (9)0.0283 (11)0.0260 (8)0.0019 (9)0.0003 (6)0.0031 (7)
N30.0222 (8)0.0301 (11)0.0246 (8)0.0005 (8)0.0050 (6)0.0010 (7)
N40.0269 (9)0.0345 (12)0.0308 (9)0.0024 (10)0.0079 (7)0.0085 (9)
C10.0222 (8)0.0256 (13)0.0239 (8)0.0026 (10)0.0068 (6)0.0016 (8)
C20.0227 (8)0.0280 (14)0.0224 (8)0.0040 (10)0.0045 (6)0.0018 (8)
C30.0204 (9)0.0301 (13)0.0286 (9)0.0016 (10)0.0044 (7)0.0001 (9)
C40.0204 (9)0.0295 (12)0.0227 (8)0.0003 (10)0.0001 (7)0.0000 (8)
C50.0283 (11)0.0333 (14)0.0312 (10)0.0001 (11)0.0095 (8)0.0065 (9)
C60.0326 (10)0.0269 (14)0.0302 (9)0.0007 (11)0.0040 (8)0.0039 (9)
C70.0235 (8)0.0358 (12)0.0220 (7)0.0045 (13)0.0018 (6)0.0020 (11)
C80.0244 (10)0.0444 (16)0.0288 (10)0.0076 (11)0.0054 (8)0.0084 (10)
C90.0263 (10)0.0313 (13)0.0304 (10)0.0074 (11)0.0062 (8)0.0041 (9)
C100.0319 (12)0.0444 (17)0.0325 (11)0.0092 (13)0.0017 (9)0.0107 (11)
C110.0469 (17)0.120 (4)0.0501 (17)0.028 (2)0.0016 (13)0.044 (2)
C120.072 (4)0.077 (4)0.053 (3)0.008 (3)0.028 (3)0.029 (3)
C130.047 (2)0.071 (4)0.0333 (18)0.003 (2)0.0046 (16)0.018 (2)
C12A0.040 (5)0.092 (8)0.040 (5)0.005 (5)0.006 (4)0.021 (5)
C13A0.086 (8)0.107 (10)0.090 (8)0.008 (7)0.008 (6)0.040 (7)
C140.0249 (9)0.0328 (13)0.0368 (10)0.0003 (13)0.0027 (7)0.0012 (11)
Geometric parameters (Å, º) top
S1—C11.688 (2)C10—C111.533 (4)
N1—C11.334 (3)C10—H10A0.99
N1—N21.384 (2)C10—H10B0.99
N1—H10.8800C11—C131.468 (4)
N2—C21.304 (3)C11—C13A1.468 (7)
N3—C11.368 (3)C11—C121.497 (5)
N3—C21.372 (3)C11—C12A1.584 (7)
N3—N41.390 (3)C11—H11A1.00
N4—H4A0.85 (4)C11—H11B0.96
N4—H4B0.91 (3)C12—H12A0.98
C2—C31.496 (3)C12—H12B0.98
C3—C41.518 (3)C12—H12C0.98
C3—C141.535 (3)C13—H13A0.98
C3—H31.00C13—H13B0.98
C4—C51.386 (4)C13—H13C0.98
C4—C91.394 (3)C12A—H12D0.98
C5—C61.378 (4)C12A—H12E0.98
C5—H50.95C12A—H12F0.98
C6—C71.394 (3)C13A—H13D0.98
C6—H60.95C13A—H13E0.98
C7—C81.372 (4)C13A—H13F0.98
C7—C101.508 (4)C14—H14A0.98
C8—C91.389 (4)C14—H14B0.98
C8—H80.95C14—H14C0.98
C9—H90.95
C1—N1—N2113.3 (2)C13—C11—C10115.8 (3)
C1—N1—H1123.4C13A—C11—C10126.3 (7)
N2—N1—H1123.4C12—C11—C10113.4 (3)
C2—N2—N1103.96 (18)C13—C11—C12A100.6 (5)
C1—N3—C2108.67 (19)C13A—C11—C12A117.5 (8)
C1—N3—N4127.56 (18)C10—C11—C12A102.8 (5)
C2—N3—N4123.66 (19)C13—C11—H11A102.6
N3—N4—H4A105 (2)C12—C11—H11A102.6
N3—N4—H4B107 (3)C10—C11—H11A102.6
H4A—N4—H4B112 (3)C12A—C11—H11A133.3
N1—C1—N3103.48 (17)C13A—C11—H11B103.0
N1—C1—S1128.94 (19)C12—C11—H11B124.4
N3—C1—S1127.58 (18)C10—C11—H11B101.5
N2—C2—N3110.60 (19)C12A—C11—H11B101.9
N2—C2—C3125.67 (19)H11A—C11—H11B110.5
N3—C2—C3123.2 (2)C11—C12—H12A109.5
C2—C3—C4107.83 (17)C11—C12—H12B109.5
C2—C3—C14110.3 (2)H12A—C12—H12B109.5
C4—C3—C14112.86 (18)C11—C12—H12C109.5
C2—C3—H3108.6H12A—C12—H12C109.5
C4—C3—H3108.6H12B—C12—H12C109.5
C14—C3—H3108.6C11—C13—H13A109.5
C5—C4—C9117.8 (2)H11B—C13—H13A133.0
C5—C4—C3120.96 (19)C11—C13—H13B109.5
C9—C4—C3121.2 (2)H11B—C13—H13B100.7
C6—C5—C4121.2 (2)H13A—C13—H13B109.5
C6—C5—H5119.4C11—C13—H13C109.5
C4—C5—H5119.4H11B—C13—H13C92.6
C5—C6—C7121.0 (3)H13A—C13—H13C109.5
C5—C6—H6119.5H13B—C13—H13C109.5
C7—C6—H6119.5C11—C12A—H12D109.5
C8—C7—C6117.9 (3)C11—C12A—H12E109.5
C8—C7—C10121.6 (2)H12D—C12A—H12E109.5
C6—C7—C10120.5 (3)C11—C12A—H12F109.5
C7—C8—C9121.4 (2)H12D—C12A—H12F109.5
C7—C8—H8119.3H12E—C12A—H12F109.5
C9—C8—H8119.3C11—C13A—H13D109.5
C8—C9—C4120.6 (2)C11—C13A—H13E109.5
C8—C9—H9119.7H13D—C13A—H13E109.5
C4—C9—H9119.7C11—C13A—H13F109.5
C7—C10—C11113.7 (2)H13D—C13A—H13F109.5
C7—C10—H10A108.8H13E—C13A—H13F109.5
C11—C10—H10A108.8C3—C14—H14A109.5
C7—C10—H10B108.8C3—C14—H14B109.5
C11—C10—H10B108.8H14A—C14—H14B109.5
H10A—C10—H10B107.7C3—C14—H14C109.5
C13—C11—C13A91.1 (8)H14A—C14—H14C109.5
C13—C11—C12116.9 (4)H14B—C14—H14C109.5
C13A—C11—C1290.0 (8)
C1—N1—N2—C20.4 (2)C2—C3—C4—C949.2 (3)
N2—N1—C1—N30.1 (2)C14—C3—C4—C972.9 (3)
N2—N1—C1—S1179.58 (16)C9—C4—C5—C60.7 (3)
C2—N3—C1—N10.3 (2)C3—C4—C5—C6177.8 (2)
N4—N3—C1—N1175.8 (2)C4—C5—C6—C70.1 (3)
C2—N3—C1—S1179.98 (16)C5—C6—C7—C80.7 (3)
N4—N3—C1—S13.8 (3)C5—C6—C7—C10180.0 (2)
N1—N2—C2—N30.6 (2)C6—C7—C8—C90.8 (3)
N1—N2—C2—C3171.3 (2)C10—C7—C8—C9179.9 (2)
C1—N3—C2—N20.6 (2)C7—C8—C9—C40.2 (4)
N4—N3—C2—N2175.7 (2)C5—C4—C9—C80.6 (3)
C1—N3—C2—C3171.53 (18)C3—C4—C9—C8177.9 (2)
N4—N3—C2—C312.1 (3)C8—C7—C10—C1188.8 (3)
N2—C2—C3—C4105.2 (3)C6—C7—C10—C1190.4 (3)
N3—C2—C3—C465.8 (2)C7—C10—C11—C1353.8 (5)
N2—C2—C3—C1418.5 (3)C7—C10—C11—C13A58.6 (10)
N3—C2—C3—C14170.53 (19)C7—C10—C11—C12167.1 (4)
C2—C3—C4—C5129.3 (2)C7—C10—C11—C12A162.4 (5)
C14—C3—C4—C5108.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S1i0.882.453.272 (3)155
N4—H4A···S1ii0.85 (3)2.54 (3)3.392 (3)176 (3)
C5—H5···S1iii0.952.783.704 (2)165
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x+1, y1/2, z+1; (iii) x, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC14H20N4S
Mr276.41
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)5.9720 (3), 8.5153 (5), 14.8271 (6)
β (°) 97.223 (3)
V3)748.03 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.58 × 0.39 × 0.13
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.888, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
10373, 3612, 3295
Rint0.029
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.119, 1.07
No. of reflections3612
No. of parameters199
No. of restraints29
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.74, 0.54
Absolute structureFlack (1983), 1293 Friedel pairs
Absolute structure parameter0.05 (9)

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S1i0.882.453.272 (3)155
N4—H4A···S1ii0.85 (3)2.54 (3)3.392 (3)176 (3)
C5—H5···S1iii0.952.783.704 (2)165
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x+1, y1/2, z+1; (iii) x, y1/2, z+1.
 

Footnotes

Additional correspondence author, e-mail: suchada.c@psu.ac.th.

Acknowledgements

KVS and BK are grateful to the Kerala State Council for Science Technology and the Environment, Thiruvanan­thapuram, for financial assistance. The authors also thank Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science
First citationBhat, K. S., Prasad, D. J., Poojary, B. & Holla, B. S. (2004). Phosphorus Sulfur Silicon, 179, 1595–1603.  Web of Science CrossRef CAS
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals
First citationFun, H.-K., Chantrapromma, S., Sujith, K. V., Patil, P. S., Kalluraya, B., Muralidharan, A. & Dharmaprakash, S. M. (2008c). Acta Cryst. E64, o1503–o1504.  Web of Science CSD CrossRef IUCr Journals
First citationFun, H.-K., Jebas, S. R., Razak, I. A., Sujith, K. V., Patil, P. S., Kalluraya, B. & Dharmaprakash, S. M. (2008a). Acta Cryst. E64, o1076–o1077.  Web of Science CSD CrossRef IUCr Journals
First citationFun, H.-K., Jebas, S. R., Sujith, K. V., Patil, P. S., Kalluraya, B. & Dharmaprakash, S. M. (2008b). Acta Cryst. E64, o1001–o1002.  Web of Science CSD CrossRef IUCr Journals
First citationHolla, B. S., Poorjary, K. N., Rao, B. S. & Shivananda, M. K. (2002). Eur. J. Med. Chem. 37, 511–517.  CrossRef PubMed
First citationKarthikeyan, M. S., Holla, B. S., Kalluraya, B. & Kumari, N. S. (2007). Monatsh. Chem. 138, 1309–1316.  Web of Science CrossRef CAS
First citationRaafat, M. S. & Ashraf, A. A. (2006). Phosphorus Sulfur Silicon, 181, 2577–2613.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals
First citationWei, T.-B., Tang, J., Liu, H. & Zhang, Y.-M. (2007). Phosphorus Sulfur Silicon, 182, 1581–1587.  Web of Science CSD CrossRef CAS

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages o1590-o1591
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds