organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Chloro­phenyl 4-chloro­benzoate

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 18 July 2008; accepted 20 July 2008; online 23 July 2008)

The structure of the title compound (4CP4CBA), C13H8Cl2O2, resembles those of 4-methyl­phenyl 4-chloro­benzoate (4MP4CBA), 4-chloro­phenyl 4-methyl­benzoate (4CP4MBA) and 4-methyl­phenyl 4-methyl­benzoate (4MP4MBA), with similar bond parameters. The dihedral angle between the two benzene rings in 4CP4CBA is 47.98 (7)°, compared with 51.86 (4)° in 4MP4CBA, 63.89 (8)° in 4CP4MBA and 63.57 (5)° in 4MP4MBA. In the crystal structure, mol­ecules are linked into helical chains running along the b axis by C—H—O hydrogen bonds.

Related literature

For related literature, see: Gowda et al. (2007[Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2007). Acta Cryst. E63, o3867.]); Gowda, Foro et al. (2008[Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o1518.]); Gowda, Svoboda et al. (2008[Gowda, B. T., Svoboda, I., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o88.]); Nayak & Gowda (2008[Nayak, R. & Gowda, B. T. (2008). Z. Naturforsch. Teil A, 63. In the press.]).

[Scheme 1]

Experimental

Crystal data
  • C13H8Cl2O2

  • Mr = 267.09

  • Monoclinic, P 21 /n

  • a = 15.370 (2) Å

  • b = 3.9528 (4) Å

  • c = 19.465 (2) Å

  • β = 91.804 (9)°

  • V = 1182.0 (2) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 4.83 mm−1

  • T = 299 (2) K

  • 0.45 × 0.23 × 0.18 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.194, Tmax = 0.420

  • 4211 measured reflections

  • 2109 independent reflections

  • 1724 reflections with I > 2σ(I)

  • Rint = 0.080

  • 3 standard reflections frequency: 120 min intensity decay: 1.0%

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.139

  • S = 1.05

  • 2109 reflections

  • 178 parameters

  • Only H-atom coordinates refined

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O2i 0.92 (3) 2.58 (3) 3.168 (3) 123 (2)
Symmetry code: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CAD-4-PC (Enraf–Nonius, 1996[Enraf-Nonius (1996). CAD-4-PC. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987[Stoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of a study of the substituent effects on the solid state structures of aryl benzoates (Gowda et al., 2007; Gowda, Foro et al., 2008; Gowda, Svoboda et al., 2008), the crystal structure of 4-chlorophenyl 4-chlorobenzoate (4CP4CBA) has been determined. The structure (Fig. 1) is similar to those of 4-methylphenyl 4-chlorobenzoate (4MP4CBA) (Gowda, Svoboda et al., 2008), 4-chlorophenyl 4-methylbenzoate (4CP4MBA) (Gowda, Foro et al., 2008) and 4-methylphenyl 4-methylbenzoate (4MP4MBA) (Gowda et al., 2007). The bond parameters in 4CP4CBA are similar to those in afore mentioned 4MP4CBA, 4CP4MBA, 4MP4MBA and other aryl benzoates (Gowda et al., 2007; Gowda, Foro et al., 2008; Gowda, Svoboda et al., 2008). The dihedral angle between the benzene and benzoyl rings in 4CP4CBA is 47.98 (7)°, compared to the values of 51.86 (4)° in 4MP4CBA, 63.89 (8)° in 4CP4MBA and 63.57 (5)° in 4MP4MBA.

In the crystal structure, the molecules are linked into helical chains (Fig. 2) running along the b axis by C—H—O hydrogen bonds (Table 1).

Related literature top

For related literature, see: Gowda et al. (2007); Gowda, Foro et al. (2008); Gowda, Svoboda et al. (2008); Nayak & Gowda (2008).

Experimental top

The title compound was prepared according to a literature method (Nayak & Gowda, 2008). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra (Nayak & Gowda, 2008). Single crystals of the title compound used in X-ray diffraction studies were obtained by slow evaporation of its ethanol solution.

Refinement top

H atoms were located in a difference map and their positional parameters were refined [C-H = 0.90 (3)–0.97 (3) Å] with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell refinement: CAD-4-PC (Enraf–Nonius, 1996); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. Molecular packing of the title compound.
4-Chlorophenyl 4-chlorobenzoate top
Crystal data top
C13H8Cl2O2F(000) = 544
Mr = 267.09Dx = 1.501 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 15.370 (2) Åθ = 11.5–24.3°
b = 3.9528 (4) ŵ = 4.83 mm1
c = 19.465 (2) ÅT = 299 K
β = 91.804 (9)°Rod, colourless
V = 1182.0 (2) Å30.45 × 0.23 × 0.18 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1724 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.080
Graphite monochromatorθmax = 67.0°, θmin = 3.6°
ω/2θ scansh = 1818
Absorption correction: ψ scan
(North et al., 1968)
k = 40
Tmin = 0.194, Tmax = 0.420l = 2323
4211 measured reflections3 standard reflections every 120 min
2109 independent reflections intensity decay: 1.0%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: difference Fourier map
wR(F2) = 0.139Only H-atom coordinates refined
S = 1.05 w = 1/[σ2(Fo2) + (0.0736P)2 + 0.2805P]
where P = (Fo2 + 2Fc2)/3
2109 reflections(Δ/σ)max = 0.021
178 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C13H8Cl2O2V = 1182.0 (2) Å3
Mr = 267.09Z = 4
Monoclinic, P21/nCu Kα radiation
a = 15.370 (2) ŵ = 4.83 mm1
b = 3.9528 (4) ÅT = 299 K
c = 19.465 (2) Å0.45 × 0.23 × 0.18 mm
β = 91.804 (9)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1724 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.080
Tmin = 0.194, Tmax = 0.4203 standard reflections every 120 min
4211 measured reflections intensity decay: 1.0%
2109 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.139Only H-atom coordinates refined
S = 1.05Δρmax = 0.39 e Å3
2109 reflectionsΔρmin = 0.33 e Å3
178 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.49228 (5)0.7640 (2)0.08027 (4)0.0690 (3)
Cl20.72347 (5)0.0839 (2)0.67678 (3)0.0704 (3)
O10.59363 (10)0.3353 (5)0.36024 (9)0.0529 (5)
O20.72448 (12)0.5904 (7)0.36130 (10)0.0737 (7)
C10.57335 (13)0.4453 (6)0.29332 (12)0.0444 (5)
C20.49523 (15)0.6088 (7)0.28247 (14)0.0518 (6)
H20.4603 (19)0.657 (8)0.3193 (16)0.062*
C30.46945 (15)0.7062 (7)0.21667 (15)0.0546 (6)
H30.4132 (19)0.820 (9)0.2133 (15)0.066*
C40.52292 (14)0.6377 (6)0.16294 (13)0.0469 (5)
C50.60108 (15)0.4709 (7)0.17399 (13)0.0492 (6)
H50.6337 (18)0.438 (8)0.1358 (16)0.059*
C60.62658 (14)0.3724 (7)0.23892 (13)0.0488 (6)
H60.6762 (19)0.246 (8)0.2482 (15)0.059*
C70.67225 (14)0.4158 (7)0.38938 (12)0.0482 (6)
C80.68345 (13)0.2812 (6)0.45961 (12)0.0452 (5)
C90.61746 (15)0.1152 (8)0.49299 (14)0.0530 (6)
H90.5619 (19)0.089 (8)0.4691 (16)0.064*
C100.62957 (16)0.0048 (8)0.55961 (13)0.0538 (6)
H100.584 (2)0.108 (8)0.5807 (16)0.065*
C110.70901 (15)0.0570 (7)0.59276 (13)0.0494 (6)
C120.77573 (16)0.2151 (8)0.56050 (15)0.0579 (7)
H120.826 (2)0.225 (9)0.5856 (17)0.069*
C130.76306 (14)0.3276 (8)0.49402 (14)0.0534 (6)
H130.8067 (19)0.428 (9)0.4718 (16)0.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0694 (4)0.0793 (5)0.0574 (4)0.0037 (3)0.0138 (3)0.0097 (4)
Cl20.0777 (5)0.0819 (6)0.0507 (4)0.0114 (4)0.0142 (3)0.0012 (3)
O10.0419 (8)0.0685 (12)0.0480 (9)0.0142 (8)0.0015 (6)0.0071 (9)
O20.0623 (11)0.0998 (18)0.0589 (11)0.0387 (11)0.0032 (9)0.0064 (11)
C10.0394 (10)0.0469 (13)0.0469 (12)0.0087 (9)0.0002 (9)0.0007 (11)
C20.0404 (11)0.0604 (16)0.0553 (14)0.0009 (10)0.0094 (10)0.0063 (12)
C30.0395 (11)0.0581 (15)0.0659 (16)0.0061 (11)0.0023 (10)0.0024 (13)
C40.0447 (11)0.0462 (13)0.0492 (12)0.0044 (10)0.0046 (9)0.0006 (11)
C50.0451 (11)0.0537 (14)0.0491 (13)0.0034 (10)0.0054 (10)0.0044 (12)
C60.0393 (11)0.0553 (14)0.0518 (13)0.0056 (10)0.0007 (9)0.0009 (12)
C70.0378 (10)0.0605 (15)0.0463 (12)0.0070 (10)0.0038 (9)0.0042 (11)
C80.0367 (10)0.0513 (13)0.0477 (13)0.0032 (9)0.0027 (9)0.0065 (11)
C90.0368 (10)0.0715 (17)0.0504 (13)0.0101 (11)0.0043 (9)0.0033 (12)
C100.0428 (11)0.0678 (16)0.0507 (13)0.0070 (12)0.0003 (10)0.0049 (13)
C110.0514 (12)0.0502 (14)0.0460 (12)0.0065 (10)0.0064 (10)0.0059 (11)
C120.0413 (11)0.0657 (17)0.0659 (16)0.0002 (11)0.0123 (11)0.0106 (14)
C130.0356 (10)0.0625 (16)0.0622 (15)0.0079 (11)0.0026 (10)0.0057 (13)
Geometric parameters (Å, º) top
Cl1—C41.736 (3)C5—H50.92 (3)
Cl2—C111.735 (3)C6—H60.93 (3)
O1—C71.356 (3)C7—C81.472 (3)
O1—C11.399 (3)C8—C91.387 (3)
O2—C71.203 (3)C8—C131.389 (3)
C1—C21.374 (3)C9—C101.375 (4)
C1—C61.389 (3)C9—H90.96 (3)
C2—C31.383 (4)C10—C111.379 (3)
C2—H20.93 (3)C10—H100.93 (3)
C3—C41.377 (4)C11—C121.370 (4)
C3—H30.97 (3)C12—C131.376 (4)
C4—C51.381 (3)C12—H120.90 (3)
C5—C61.368 (4)C13—H130.90 (3)
C7—O1—C1119.07 (17)O2—C7—C8124.7 (2)
C2—C1—C6120.9 (2)O1—C7—C8112.34 (19)
C2—C1—O1117.2 (2)C9—C8—C13118.9 (2)
C6—C1—O1121.7 (2)C9—C8—C7122.7 (2)
C1—C2—C3119.8 (2)C13—C8—C7118.4 (2)
C1—C2—H2120.1 (19)C10—C9—C8120.8 (2)
C3—C2—H2120.1 (19)C10—C9—H9120.8 (18)
C4—C3—C2119.2 (2)C8—C9—H9118.3 (18)
C4—C3—H3126.1 (17)C11—C10—C9119.0 (2)
C2—C3—H3114.7 (17)C11—C10—H10122 (2)
C3—C4—C5120.8 (2)C9—C10—H10119 (2)
C3—C4—Cl1119.77 (19)C12—C11—C10121.2 (2)
C5—C4—Cl1119.41 (19)C12—C11—Cl2120.19 (19)
C6—C5—C4120.1 (2)C10—C11—Cl2118.6 (2)
C6—C5—H5124.0 (19)C11—C12—C13119.5 (2)
C4—C5—H5115.8 (19)C11—C12—H12114 (2)
C5—C6—C1119.1 (2)C13—C12—H12126 (2)
C5—C6—H6123.0 (18)C12—C13—C8120.5 (2)
C1—C6—H6117.8 (18)C12—C13—H13121 (2)
O2—C7—O1122.9 (2)C8—C13—H13119 (2)
C7—O1—C1—C2129.5 (3)O2—C7—C8—C9172.1 (3)
C7—O1—C1—C655.0 (3)O1—C7—C8—C94.8 (4)
C6—C1—C2—C30.8 (4)O2—C7—C8—C136.9 (4)
O1—C1—C2—C3176.3 (2)O1—C7—C8—C13176.2 (2)
C1—C2—C3—C40.1 (4)C13—C8—C9—C101.5 (4)
C2—C3—C4—C50.7 (4)C7—C8—C9—C10177.5 (3)
C2—C3—C4—Cl1179.0 (2)C8—C9—C10—C110.9 (4)
C3—C4—C5—C60.3 (4)C9—C10—C11—C120.2 (4)
Cl1—C4—C5—C6179.4 (2)C9—C10—C11—Cl2179.9 (2)
C4—C5—C6—C10.6 (4)C10—C11—C12—C130.7 (4)
C2—C1—C6—C51.1 (4)Cl2—C11—C12—C13179.5 (2)
O1—C1—C6—C5176.5 (2)C11—C12—C13—C80.1 (4)
C1—O1—C7—O23.2 (4)C9—C8—C13—C121.0 (4)
C1—O1—C7—C8179.9 (2)C7—C8—C13—C12178.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O2i0.92 (3)2.58 (3)3.168 (3)123 (2)
Symmetry code: (i) x+3/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H8Cl2O2
Mr267.09
Crystal system, space groupMonoclinic, P21/n
Temperature (K)299
a, b, c (Å)15.370 (2), 3.9528 (4), 19.465 (2)
β (°) 91.804 (9)
V3)1182.0 (2)
Z4
Radiation typeCu Kα
µ (mm1)4.83
Crystal size (mm)0.45 × 0.23 × 0.18
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.194, 0.420
No. of measured, independent and
observed [I > 2σ(I)] reflections
4211, 2109, 1724
Rint0.080
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.139, 1.05
No. of reflections2109
No. of parameters178
H-atom treatmentOnly H-atom coordinates refined
Δρmax, Δρmin (e Å3)0.39, 0.33

Computer programs: CAD-4-PC (Enraf–Nonius, 1996), REDU4 (Stoe & Cie, 1987), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O2i0.92 (3)2.58 (3)3.168 (3)123 (2)
Symmetry code: (i) x+3/2, y1/2, z+1/2.
 

Acknowledgements

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

References

First citationEnraf–Nonius (1996). CAD-4-PC. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2007). Acta Cryst. E63, o3867.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o1518.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Svoboda, I., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o88.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNayak, R. & Gowda, B. T. (2008). Z. Naturforsch. Teil A, 63. In the press.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds