organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Hydr­­oxy-1-(3-hydr­­oxy-2-naphtho­yl)-3,5-di­methyl-2-pyrazoline

aDepartment of Chemistry, Dezhou University, Dezhou 253023, People's Republic of China, bCollege of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China, and cSchool of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
*Correspondence e-mail: lidacheng@lcu.edu.cn

(Received 8 July 2008; accepted 22 July 2008; online 31 July 2008)

In the title mol­ecule, C16H16N2O3, intra­molecular O—H⋯O hydrogen bonds influence the mol­ecular conformation. Inter­molecular O—H⋯O hydrogen bonds [O⋯O = 2.922 (2) Å] link the mol­ecules into centrosymmetric dimers. Weak inter­molecular C—H⋯O inter­actions assemble these dimers into layers parallel to the bc plane.

Related literature

A highly puckered 60-membered metalladiaza­macrocycle was reported by Moon et al. (2006[Moon, D., Lee, K., John, R. P., Kim, G. H., Sun, B. J. & Lah, M. S. (2006). Inorg. Chem. 45, 7991-7993.]), and two manganese metallacrowns with the ligand N-acyl-3-hydr­oxy-2-naphthalene­carbohydrazide were reported by Dou et al. (2006[Dou, J. M., Liu, M. L., Li, D. C. & Wang, D. Q. (2006). Eur. J. Inorg. Chem. 23, 4866-4871.]). The ligand 1-benzoyl-3,5-dimethyl-5-(1-benzoyl­hydrazido)pyrazoline was first synthesized by Mukhopadhyay & Pal (2004[Mukhopadhyay, A. & Pal, S. (2004). Polyhedron, 23, 1997-2004.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16N2O3

  • Mr = 284.31

  • Monoclinic, P 21 /c

  • a = 12.368 (6) Å

  • b = 7.428 (4) Å

  • c = 17.041 (9) Å

  • β = 109.331 (7)°

  • V = 1477.3 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 (2) K

  • 0.64 × 0.57 × 0.39 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.945, Tmax = 0.966

  • 7363 measured reflections

  • 2588 independent reflections

  • 1627 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.130

  • S = 1.00

  • 2588 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1 0.82 1.79 2.518 (2) 147
O3—H3⋯O1 0.82 2.36 2.888 (2) 122
O3—H3⋯O2i 0.82 2.27 2.922 (2) 137
C9—H9⋯O3ii 0.93 2.57 3.388 (3) 147
Symmetry codes: (i) -x, -y, -z; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Aroylhydrazine ligands have gained an increasing attraction due to their interesting chemical activities (Moon et al., 2006). As an extension of our work on the structural characterization of aroylhydrazine derivatives, along with our work of successful assembly of two azametallacrowns using N-acyl-3-hydroxy-2-naphthalenecarbohydrazide (Dou et al., 2006), the title compound, (I), was synthesized and characterized.

Pyrazoline ring in (I) is nearly co-planar with the mean deviation of 0.0379 Å from its least-squares plane, and the distances of N1—N2, C13—N1 and C15—N2 are 1.403 (2), 1.498 (2) and 1.275 (2) Å, respectively, which are in agreement with those of the analogous compound (Mukhopadhyay & Pal, 2004). The dihedral angle between the pyrazoline ring and naphthalene ring is 28.2 (3)°.

There are intramolecular O2—H2···O1 and O3—H3···O1 hydrogen bonds (Table 1, Fig. 1), which influence the molecular conformation. The intermolecular O—H···O (Table 1) hydrogen bonds link molecules into centrosymmetric dimers, and the weak intermolecular C—H···O interactions (Table 1) assemble further these dimers into the layers parallel to bc-plane.

Related literature top

A highly puckered 60-membered metalladiazamacrocycle was reported by Moon et al. (2006), and two manganese metallacrowns with the ligand N-acyl-3-hydroxy-2-naphthalenecarbohydrazide were reported by Dou et al. (2006). The ligand 1-benzoyl-3,5-dimethyl-5-(1-benzoylhydrazido)pyrazoline was first synthesized by Mukhopadhyay & Pal (2004).

Experimental top

0.21 ml of acetylacetone (0.205 g, 2.05 mmol) were added into a methanol solution (15 ml) of 3-hydroxy-2-naphthoylhydrazine (0.404 g, 2 mmol). The mixture was refluxed for 3 h followed by evaporation to approximate 1/3 of the original volume on a rotary evaporator, then the solution was cooled to room temperature. After the solution was allowed to stand for 2 weeks, yellow block crystals suitable for X-ray structure determination was obtained. Yield: 0.400 g, 70.37%. m.p.: 565–567 K. Anal. for C16H16N2O3: Calc. C, 67.53; H, 5.63; N, 9.85; Found: C, 67.20; H, 5.49; N, 9.28%. The No. of CCDC: 693975.

Refinement top

All H atoms were placed in geometrically idealized positions (C—H 0.93–0.96 Å, O—H 0.82 Å) and treated as riding on their parent atoms, with Uiso(H)= 1.2–1.5Ueq of the parent atom.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atomic numbering and 30% probability displacement ellipsoids. Dashed lines denote hydrogen bonds.
5-Hydroxy-1-(3-hydroxy-2-naphthoyl)-3,5-dimethyl-2-pyrazoline top
Crystal data top
C16H16N2O3F(000) = 600
Mr = 284.31Dx = 1.278 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.368 (6) ÅCell parameters from 2043 reflections
b = 7.428 (4) Åθ = 2.5–23.0°
c = 17.041 (9) ŵ = 0.09 mm1
β = 109.331 (7)°T = 298 K
V = 1477.3 (13) Å3Block, yellow
Z = 40.64 × 0.57 × 0.39 mm
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2588 independent reflections
Radiation source: fine-focus sealed tube1627 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ϕ and ω scansθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1214
Tmin = 0.945, Tmax = 0.966k = 88
7363 measured reflectionsl = 2019
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0553P)2 + 0.3243P]
where P = (Fo2 + 2Fc2)/3
2588 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C16H16N2O3V = 1477.3 (13) Å3
Mr = 284.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.368 (6) ŵ = 0.09 mm1
b = 7.428 (4) ÅT = 298 K
c = 17.041 (9) Å0.64 × 0.57 × 0.39 mm
β = 109.331 (7)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2588 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1627 reflections with I > 2σ(I)
Tmin = 0.945, Tmax = 0.966Rint = 0.042
7363 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.00Δρmax = 0.15 e Å3
2588 reflectionsΔρmin = 0.18 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.04413 (13)0.2580 (2)0.17142 (9)0.0490 (5)
N20.01893 (14)0.2214 (2)0.25642 (10)0.0518 (5)
O10.00569 (12)0.2318 (2)0.05376 (8)0.0685 (5)
O20.18079 (13)0.1067 (2)0.04814 (9)0.0751 (5)
H20.11170.12650.03220.113*
O30.21475 (12)0.1233 (2)0.08086 (9)0.0660 (5)
H30.18680.11160.04370.099*
C10.03222 (17)0.2371 (3)0.13121 (12)0.0492 (5)
C20.15776 (16)0.2220 (3)0.17539 (12)0.0459 (5)
C30.22724 (19)0.1534 (3)0.12957 (13)0.0547 (6)
C40.34226 (19)0.1307 (3)0.16761 (15)0.0650 (6)
H40.38570.08370.13720.078*
C50.39654 (18)0.1758 (3)0.25100 (15)0.0585 (6)
C60.5152 (2)0.1459 (4)0.29304 (19)0.0809 (8)
H60.55990.09370.26480.097*
C70.5633 (2)0.1923 (4)0.3733 (2)0.0918 (9)
H70.64090.17070.39980.110*
C80.4998 (2)0.2720 (4)0.41801 (17)0.0803 (8)
H80.53510.30340.47350.096*
C90.38560 (18)0.3038 (3)0.38005 (14)0.0639 (6)
H90.34340.35790.40970.077*
C100.33104 (16)0.2550 (3)0.29614 (13)0.0510 (5)
C110.21191 (16)0.2757 (3)0.25610 (12)0.0478 (5)
H110.16850.32770.28540.057*
C120.19627 (19)0.4480 (3)0.07493 (14)0.0704 (7)
H12A0.16430.55030.10920.106*
H12B0.27780.46240.05100.106*
H12C0.16340.43850.03140.106*
C130.17009 (16)0.2794 (3)0.12726 (12)0.0512 (5)
C140.21392 (17)0.2823 (3)0.20069 (12)0.0561 (6)
H14A0.24220.40080.20780.067*
H14B0.27500.19520.19320.067*
C150.11177 (18)0.2339 (3)0.27323 (12)0.0503 (5)
C160.1148 (2)0.2027 (4)0.35844 (13)0.0700 (7)
H16A0.03920.17360.39480.105*
H16B0.16580.10480.35760.105*
H16C0.14130.30960.37800.105*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0456 (9)0.0637 (12)0.0350 (9)0.0036 (8)0.0099 (7)0.0026 (8)
N20.0550 (10)0.0632 (12)0.0363 (9)0.0032 (9)0.0139 (8)0.0016 (8)
O10.0661 (10)0.1004 (14)0.0375 (9)0.0037 (9)0.0149 (7)0.0036 (8)
O20.0795 (11)0.0951 (13)0.0596 (10)0.0029 (10)0.0349 (8)0.0186 (9)
O30.0613 (9)0.0802 (12)0.0583 (9)0.0128 (8)0.0220 (7)0.0254 (8)
C10.0543 (12)0.0527 (13)0.0402 (12)0.0009 (10)0.0149 (10)0.0026 (10)
C20.0477 (11)0.0455 (12)0.0458 (12)0.0003 (9)0.0172 (9)0.0000 (9)
C30.0618 (14)0.0525 (14)0.0552 (14)0.0047 (11)0.0264 (11)0.0050 (11)
C40.0583 (14)0.0659 (16)0.0843 (18)0.0027 (12)0.0418 (13)0.0087 (13)
C50.0487 (12)0.0512 (14)0.0780 (16)0.0018 (10)0.0241 (11)0.0009 (12)
C60.0516 (15)0.083 (2)0.111 (2)0.0078 (13)0.0310 (15)0.0011 (17)
C70.0461 (14)0.110 (2)0.109 (2)0.0047 (15)0.0115 (16)0.006 (2)
C80.0534 (15)0.092 (2)0.0789 (18)0.0047 (14)0.0001 (13)0.0033 (15)
C90.0519 (13)0.0683 (16)0.0643 (15)0.0033 (11)0.0095 (11)0.0032 (12)
C100.0463 (12)0.0437 (13)0.0617 (14)0.0021 (9)0.0159 (10)0.0017 (10)
C110.0467 (11)0.0460 (12)0.0518 (12)0.0014 (9)0.0177 (9)0.0011 (10)
C120.0645 (14)0.0791 (18)0.0578 (14)0.0139 (13)0.0072 (11)0.0067 (13)
C130.0442 (11)0.0611 (14)0.0422 (12)0.0014 (10)0.0059 (9)0.0105 (10)
C140.0513 (12)0.0642 (15)0.0525 (13)0.0044 (10)0.0169 (10)0.0115 (11)
C150.0556 (13)0.0515 (13)0.0450 (12)0.0024 (10)0.0184 (10)0.0088 (10)
C160.0845 (17)0.0810 (18)0.0526 (14)0.0132 (14)0.0337 (12)0.0003 (12)
Geometric parameters (Å, º) top
N1—C11.347 (3)C7—C81.393 (4)
N1—N21.404 (2)C7—H70.9300
N1—C131.497 (3)C8—C91.366 (3)
N2—C151.276 (3)C8—H80.9300
O1—C11.246 (2)C9—C101.412 (3)
O2—C31.360 (2)C9—H90.9300
O2—H20.8200C10—C111.412 (3)
O3—C131.409 (2)C11—H110.9300
O3—H30.8200C12—C131.509 (3)
C1—O11.246 (2)C12—H12A0.9600
C1—C21.489 (3)C12—H12B0.9600
C2—C111.375 (3)C12—H12C0.9600
C2—C31.432 (3)C13—C141.520 (3)
C3—C41.365 (3)C14—C151.490 (3)
C4—C51.397 (3)C14—H14A0.9700
C4—H40.9300C14—H14B0.9700
C5—C101.416 (3)C15—C161.483 (3)
C5—C61.421 (3)C16—H16A0.9600
C6—C71.344 (4)C16—H16B0.9600
C6—H60.9300C16—H16C0.9600
C1—N1—N2123.32 (16)C9—C10—C11122.3 (2)
C1—N1—C13122.99 (16)C9—C10—C5119.29 (19)
N2—N1—C13112.21 (15)C11—C10—C5118.4 (2)
C15—N2—N1107.99 (16)C2—C11—C10122.45 (19)
C3—O2—H2109.5C2—C11—H11118.8
C13—O3—H3109.5C10—C11—H11118.8
O1—C1—N1117.46 (18)C13—C12—H12A109.5
O1—C1—C2119.79 (18)C13—C12—H12B109.5
N1—C1—C2122.75 (17)H12A—C12—H12B109.5
C11—C2—C3117.85 (18)C13—C12—H12C109.5
C11—C2—C1124.41 (18)H12A—C12—H12C109.5
C3—C2—C1117.69 (18)H12B—C12—H12C109.5
O2—C3—C4118.35 (19)O3—C13—N1110.11 (16)
O2—C3—C2121.35 (19)O3—C13—C12112.56 (17)
C4—C3—C2120.3 (2)N1—C13—C12111.68 (18)
C3—C4—C5121.9 (2)O3—C13—C14107.04 (18)
C3—C4—H4119.1N1—C13—C14100.54 (15)
C5—C4—H4119.1C12—C13—C14114.20 (19)
C4—C5—C10118.92 (19)C15—C14—C13104.14 (17)
C4—C5—C6122.9 (2)C15—C14—H14A110.9
C10—C5—C6118.1 (2)C13—C14—H14A110.9
C7—C6—C5120.6 (2)C15—C14—H14B110.9
C7—C6—H6119.7C13—C14—H14B110.9
C5—C6—H6119.7H14A—C14—H14B108.9
C6—C7—C8121.7 (2)N2—C15—C16121.66 (19)
C6—C7—H7119.1N2—C15—C14114.22 (18)
C8—C7—H7119.1C16—C15—C14124.1 (2)
C9—C8—C7119.7 (3)C15—C16—H16A109.5
C9—C8—H8120.1C15—C16—H16B109.5
C7—C8—H8120.1H16A—C16—H16B109.5
C8—C9—C10120.5 (2)C15—C16—H16C109.5
C8—C9—H9119.7H16A—C16—H16C109.5
C10—C9—H9119.7H16B—C16—H16C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.821.792.518 (2)147
O3—H3···O10.822.362.888 (2)122
O3—H3···O2i0.822.272.922 (2)137
C9—H9···O3ii0.932.573.388 (3)147
Symmetry codes: (i) x, y, z; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H16N2O3
Mr284.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)12.368 (6), 7.428 (4), 17.041 (9)
β (°) 109.331 (7)
V3)1477.3 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.64 × 0.57 × 0.39
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.945, 0.966
No. of measured, independent and
observed [I > 2σ(I)] reflections
7363, 2588, 1627
Rint0.042
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.130, 1.00
No. of reflections2588
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.18

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.821.792.518 (2)146.9
O3—H3···O10.822.362.888 (2)122.4
O3—H3···O2i0.822.272.922 (2)136.5
C9—H9···O3ii0.932.573.388 (3)146.7
Symmetry codes: (i) x, y, z; (ii) x, y+1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the support of the National Natural Science Foundation of China (grant No. 20671048).

References

First citationDou, J. M., Liu, M. L., Li, D. C. & Wang, D. Q. (2006). Eur. J. Inorg. Chem. 23, 4866–4871.  Web of Science CSD CrossRef Google Scholar
First citationMoon, D., Lee, K., John, R. P., Kim, G. H., Sun, B. J. & Lah, M. S. (2006). Inorg. Chem. 45, 7991–7993.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMukhopadhyay, A. & Pal, S. (2004). Polyhedron, 23, 1997–2004.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds