supplementary materials


cv2432 scheme

Acta Cryst. (2008). E64, o1612    [ doi:10.1107/S1600536808023209 ]

2-(4-Phenyl-1H-1,2,3-triazol-1-yl)-N-(p-tolyl)acetamide

Q.-Z. Chu, B.-P. Qi and X.-R. Zhang

Abstract top

In the title molecule, C17H16N4O, the triazole ring makes dihedral angles of 29.00 (1) and 77.74 (1)°, respectively, with the phenyl and benzene rings. In the crystal structure, intermolecular N-H...O hydrogen bonds link the molecules into chains extending along the c axis.

Comment top

The Huisgen 1,3-dipolar cycloaddition of alkynes with azides via Cu(I) catalysis is the most well known example of click chemistry (Kolb & Sharpless, 2003; Kolb et al., 2001), which leads to the synthesis of 1,4-disubstituted 1,2,3-triazoles. In this study, a new 1,2,3-triazole derivative was prepared by such "click" reaction and its structure was characterized by X-ray crystallographic analysis.

In the title compound, (I), all bond lengths and angles are within normal ranges (Allen et al., 1987). The N1–N3/C7/C8 triazole ring makes dihedral angles of 29.00 (1) and 77.74 (1)° with C1–C6 and C11–C16 rings, respectively, and the dihedral angle between the latter two aromatic rings is 88.00 (1)°.

In the crystal, intermolecular N—H···O hydrogen bond (Table 1) link the molecules into chains extended along c axis.

Related literature top

For related literature, see: Kolb et al. (2001); Kolb & Sharpless (2003); Allen et al. (1987).

Experimental top

To a solution of 4-methylaniline (2.61 g, 24.36 mmol), triethylamine (3.05 ml, 21.92 mmol) in dry CH2Cl2 (90 ml), chloroacetyl chloride (1.74 ml, 21.92 mmol) in dry CH2Cl2 (10 ml) was added dropwisely at 273 K under an inert atmosphere. The mixture was stirred at r.t. for 5 h, followed by dilution with CH2Cl2 (50 ml). Then washed by water for three times and the organic phase was dried over anhydrous sodium sulfate. After removal of the solvents in vacuo, 2-chloro-N-(4-methylphenyl)acetamide (3.82 g, 94.76%) was obtaind. To a solution of 2-chloro-N-(4-methylxyphenyl)acetamide (1.72 g, 9.37 mmol) in 50 ml DMF/H2O (1:1, v/v), NaN3 (0.79 g, 12.15 mmol), phenylacetylene (3.08 ml, 28.08 mmol), CuSO4.5H2O (0.24 g, 0.94 mmol), L-Ascorbic acid sodium salt (0.37 g, 1.87 mmol) were added successively. The mixture was stirred at 333 K for 36 h. Then NH3.H2O (25 ml) was added, and the solvent was extracted with ethyl acetate, washed with water for three times. The organic phase was dried over anhydrous Na2SO4. After evaporation, the resulting solid was recrystallized from ethyl acetate, yielding the title compound (I) (2.13 g, 77.9%). Colourless single crystals suitable for X-ray crystallographic analysis were grown by slow evaporation of ethyl acetate.

Refinement top

All H atoms were located in difference Fourier maps, placed in idealized positions (C—H 0.93–0.97 Å, N—H 0.86 Å) and constrained to ride on their parent atoms, with Uiso(H) = 1.2–1.5Ueq of the parent atom.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 50% probability displacement ellipsoids and the atom numbering scheme.
[Figure 2] Fig. 2. A packing diagram of (I), viewed down the a axis. Dashed lines denote N—H···O hydrogen bonds.
2-(4-Phenyl-1H-1,2,3-triazol-1-yl)-N-(p-tolyl)acetamide top
Crystal data top
C17H16N4OF000 = 616
Mr = 292.34Dx = 1.316 Mg m3
Monoclinic, P21/cMo Kα radiation
λ = 0.71073 Å
a = 5.5923 (7) ÅCell parameters from 1236 reflections
b = 30.438 (4) Åθ = 2.4–21.9º
c = 9.6112 (10) ŵ = 0.09 mm1
β = 115.595 (6)ºT = 293 (2) K
V = 1475.5 (3) Å3Plate, colourless
Z = 40.39 × 0.26 × 0.04 mm
Data collection top
Siemens SMART 1000 CCD area-detector
diffractometer
2896 independent reflections
Radiation source: fine-focus sealed tube1970 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.039
Detector resolution: 8.33 pixels mm-1θmax = 26.1º
T = 293(2) Kθmin = 2.4º
ω scansh = 6→6
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 37→33
Tmin = 0.967, Tmax = 0.997l = 9→11
8229 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.136  w = 1/[σ2(Fo2) + (0.0529P)2 + 0.5144P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
2896 reflectionsΔρmax = 0.30 e Å3
199 parametersΔρmin = 0.16 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none
Crystal data top
C17H16N4OV = 1475.5 (3) Å3
Mr = 292.34Z = 4
Monoclinic, P21/cMo Kα
a = 5.5923 (7) ŵ = 0.09 mm1
b = 30.438 (4) ÅT = 293 (2) K
c = 9.6112 (10) Å0.39 × 0.26 × 0.04 mm
β = 115.595 (6)º
Data collection top
Siemens SMART 1000 CCD area-detector
diffractometer
2896 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1970 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.997Rint = 0.039
8229 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.056199 parameters
wR(F2) = 0.136H-atom parameters constrained
S = 1.01Δρmax = 0.30 e Å3
2896 reflectionsΔρmin = 0.16 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N40.5557 (4)0.72043 (6)0.6455 (2)0.0390 (5)
H4A0.61410.72490.74310.047*
N30.9051 (4)0.81474 (6)0.5865 (2)0.0386 (5)
O10.5915 (4)0.74454 (5)0.43200 (19)0.0558 (5)
C70.9236 (4)0.87351 (7)0.4663 (3)0.0372 (5)
N11.1547 (4)0.85049 (7)0.5105 (2)0.0481 (5)
N21.1417 (4)0.81467 (7)0.5828 (2)0.0495 (6)
C110.3715 (4)0.68575 (7)0.5825 (2)0.0348 (5)
C80.7636 (5)0.85028 (7)0.5150 (3)0.0385 (6)
H8A0.59350.85760.50140.046*
C160.3509 (5)0.66145 (7)0.4563 (3)0.0383 (6)
H16A0.45960.66790.40810.046*
C120.2094 (5)0.67507 (8)0.6535 (3)0.0412 (6)
H12A0.22240.69090.73930.049*
C100.6489 (5)0.74713 (7)0.5694 (3)0.0373 (6)
C150.1688 (5)0.62767 (7)0.4016 (3)0.0422 (6)
H15A0.15680.61170.31640.051*
C60.8802 (5)0.91601 (8)0.3866 (3)0.0409 (6)
C140.0036 (5)0.61689 (8)0.4702 (3)0.0445 (6)
C130.0295 (5)0.64126 (8)0.5975 (3)0.0465 (6)
H13A0.07750.63460.64650.056*
C90.8423 (5)0.78126 (8)0.6729 (3)0.0474 (6)
H9A0.76660.79520.73550.057*
H9B1.00470.76670.74200.057*
C50.6276 (5)0.92969 (9)0.2884 (3)0.0533 (7)
H5A0.48340.91170.27150.064*
C11.0916 (6)0.94323 (9)0.4090 (3)0.0557 (7)
H1B1.26320.93450.47430.067*
C40.5868 (6)0.96997 (10)0.2147 (4)0.0668 (8)
H4B0.41580.97880.14870.080*
C30.7971 (7)0.99692 (10)0.2385 (4)0.0690 (9)
H3A0.76931.02410.19000.083*
C21.0483 (7)0.98348 (9)0.3341 (4)0.0694 (9)
H2B1.19181.00150.34920.083*
C170.1951 (6)0.58006 (9)0.4079 (4)0.0701 (9)
H17A0.18340.56720.31980.105*
H17B0.37060.59140.37800.105*
H17C0.15780.55810.48620.105*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N40.0487 (12)0.0423 (11)0.0276 (10)0.0047 (9)0.0180 (9)0.0002 (9)
N30.0409 (12)0.0390 (11)0.0379 (11)0.0043 (9)0.0190 (9)0.0001 (9)
O10.0874 (14)0.0507 (11)0.0314 (10)0.0180 (10)0.0277 (10)0.0014 (8)
C70.0375 (13)0.0394 (13)0.0394 (13)0.0022 (10)0.0210 (11)0.0007 (10)
N10.0435 (13)0.0523 (13)0.0560 (14)0.0042 (10)0.0285 (11)0.0084 (11)
N20.0462 (13)0.0533 (13)0.0556 (14)0.0078 (10)0.0283 (11)0.0093 (11)
C110.0370 (13)0.0343 (12)0.0314 (12)0.0033 (10)0.0131 (10)0.0036 (10)
C80.0334 (13)0.0410 (13)0.0440 (14)0.0011 (11)0.0194 (11)0.0024 (11)
C160.0424 (14)0.0383 (13)0.0363 (13)0.0012 (11)0.0191 (11)0.0034 (10)
C120.0489 (15)0.0392 (13)0.0403 (14)0.0035 (11)0.0238 (12)0.0031 (11)
C100.0469 (14)0.0344 (13)0.0319 (13)0.0023 (10)0.0184 (11)0.0016 (10)
C150.0456 (15)0.0372 (13)0.0407 (14)0.0042 (11)0.0157 (12)0.0029 (11)
C60.0460 (14)0.0402 (13)0.0451 (14)0.0018 (11)0.0279 (12)0.0018 (11)
C140.0394 (14)0.0376 (13)0.0536 (16)0.0006 (11)0.0175 (12)0.0011 (12)
C130.0439 (15)0.0489 (15)0.0532 (16)0.0009 (12)0.0270 (13)0.0072 (13)
C90.0616 (17)0.0450 (15)0.0367 (14)0.0083 (12)0.0221 (13)0.0006 (12)
C50.0494 (16)0.0478 (16)0.0624 (18)0.0007 (12)0.0239 (14)0.0063 (13)
C10.0520 (17)0.0538 (17)0.0674 (19)0.0052 (13)0.0315 (15)0.0039 (14)
C40.069 (2)0.0564 (18)0.073 (2)0.0146 (16)0.0296 (18)0.0155 (16)
C30.096 (3)0.0428 (16)0.085 (2)0.0112 (17)0.056 (2)0.0156 (16)
C20.078 (2)0.0487 (17)0.097 (2)0.0096 (16)0.052 (2)0.0070 (17)
C170.065 (2)0.0576 (18)0.095 (2)0.0155 (15)0.0414 (19)0.0156 (17)
Geometric parameters (Å, °) top
N4—C101.341 (3)C15—H15A0.9300
N4—C111.415 (3)C6—C51.381 (3)
N4—H4A0.8600C6—C11.382 (3)
N3—N21.339 (3)C14—C131.384 (3)
N3—C81.341 (3)C14—C171.508 (3)
N3—C91.450 (3)C13—H13A0.9300
O1—C101.219 (3)C9—H9A0.9700
C7—N11.367 (3)C9—H9B0.9700
C7—C81.372 (3)C5—C41.385 (4)
C7—C61.469 (3)C5—H5A0.9300
N1—N21.312 (3)C1—C21.388 (4)
C11—C161.383 (3)C1—H1B0.9300
C11—C121.388 (3)C4—C31.370 (4)
C8—H8A0.9300C4—H4B0.9300
C16—C151.381 (3)C3—C21.368 (4)
C16—H16A0.9300C3—H3A0.9300
C12—C131.376 (3)C2—H2B0.9300
C12—H12A0.9300C17—H17A0.9600
C10—C91.520 (3)C17—H17B0.9600
C15—C141.386 (3)C17—H17C0.9600
C10—N4—C11126.96 (19)C13—C14—C17121.8 (2)
C10—N4—H4A116.5C15—C14—C17121.0 (2)
C11—N4—H4A116.5C12—C13—C14121.8 (2)
N2—N3—C8111.02 (18)C12—C13—H13A119.1
N2—N3—C9120.0 (2)C14—C13—H13A119.1
C8—N3—C9128.7 (2)N3—C9—C10112.66 (19)
N1—C7—C8107.4 (2)N3—C9—H9A109.1
N1—C7—C6122.3 (2)C10—C9—H9A109.1
C8—C7—C6130.3 (2)N3—C9—H9B109.1
N2—N1—C7109.24 (18)C10—C9—H9B109.1
N1—N2—N3107.11 (19)H9A—C9—H9B107.8
C16—C11—C12118.8 (2)C6—C5—C4120.7 (3)
C16—C11—N4123.0 (2)C6—C5—H5A119.7
C12—C11—N4118.3 (2)C4—C5—H5A119.7
N3—C8—C7105.3 (2)C6—C1—C2120.2 (3)
N3—C8—H8A127.4C6—C1—H1B119.9
C7—C8—H8A127.4C2—C1—H1B119.9
C15—C16—C11120.0 (2)C3—C4—C5120.3 (3)
C15—C16—H16A120.0C3—C4—H4B119.8
C11—C16—H16A120.0C5—C4—H4B119.8
C13—C12—C11120.3 (2)C2—C3—C4119.5 (3)
C13—C12—H12A119.8C2—C3—H3A120.3
C11—C12—H12A119.8C4—C3—H3A120.3
O1—C10—N4124.7 (2)C3—C2—C1120.7 (3)
O1—C10—C9122.2 (2)C3—C2—H2B119.6
N4—C10—C9113.05 (19)C1—C2—H2B119.6
C16—C15—C14121.9 (2)C14—C17—H17A109.5
C16—C15—H15A119.0C14—C17—H17B109.5
C14—C15—H15A119.0H17A—C17—H17B109.5
C5—C6—C1118.6 (2)C14—C17—H17C109.5
C5—C6—C7120.8 (2)H17A—C17—H17C109.5
C1—C6—C7120.6 (2)H17B—C17—H17C109.5
C13—C14—C15117.2 (2)
C8—C7—N1—N20.1 (3)N1—C7—C6—C127.7 (3)
C6—C7—N1—N2178.1 (2)C8—C7—C6—C1149.7 (3)
C7—N1—N2—N30.5 (3)C16—C15—C14—C130.5 (4)
C8—N3—N2—N10.7 (3)C16—C15—C14—C17179.6 (2)
C9—N3—N2—N1173.9 (2)C11—C12—C13—C140.0 (4)
C10—N4—C11—C1630.6 (3)C15—C14—C13—C120.6 (4)
C10—N4—C11—C12151.1 (2)C17—C14—C13—C12179.5 (2)
N2—N3—C8—C70.7 (3)N2—N3—C9—C10106.1 (2)
C9—N3—C8—C7173.4 (2)C8—N3—C9—C1080.4 (3)
N1—C7—C8—N30.3 (3)O1—C10—C9—N311.7 (3)
C6—C7—C8—N3177.4 (2)N4—C10—C9—N3169.56 (19)
C12—C11—C16—C150.9 (3)C1—C6—C5—C40.5 (4)
N4—C11—C16—C15179.2 (2)C7—C6—C5—C4179.3 (2)
C16—C11—C12—C130.8 (3)C5—C6—C1—C20.3 (4)
N4—C11—C12—C13179.2 (2)C7—C6—C1—C2179.5 (2)
C11—N4—C10—O11.9 (4)C6—C5—C4—C30.1 (4)
C11—N4—C10—C9179.3 (2)C5—C4—C3—C20.9 (5)
C11—C16—C15—C140.2 (4)C4—C3—C2—C11.0 (5)
N1—C7—C6—C5152.5 (2)C6—C1—C2—C30.5 (4)
C8—C7—C6—C530.1 (4)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O1i0.862.092.878 (3)152
Symmetry codes: (i) x, −y+3/2, z+1/2.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O1i0.862.092.878 (3)152
Symmetry codes: (i) x, −y+3/2, z+1/2.
Acknowledgements top

This project was supported by the Natural Science Foundation of Shandong Province (grant No. Y2006B07).

references
References top

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Kolb, H. C., Finn, M. G. & Sharpless, K. B. (2001). Angew. Chem. Int. Ed. 40, 2004–2021.

Kolb, H. C. & Sharpless, K. B. (2003). Drug Discov. Today, 8, 1128–1137.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13.