organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(S)-1-Meth­oxy­carbonyl-2-(4-nitro­phen­yl)ethanaminium chloride

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: fudavid88@yahoo.com.cn

(Received 2 July 2008; accepted 6 July 2008; online 12 July 2008)

The title compound, C10H13N2O4+·Cl, comprises a Cl anion and a protonated aminium cation. The crystal packing is stabilized by cation–anion N—H⋯Cl hydrogen bonds and N—H⋯O hydrogen bonds, building an infinite two-dimensional network parallel to the (001) plane. The S absolute configuration at the chiral center was deduced from the synthetic pathway and confirmed by the X-ray analysis.

Related literature

For details of α-amino acid derivatives as precursors for the synthesis of novel biologically active compounds, see: Lucchese et al. (2007[Lucchese, G., Stufano, A. & Trost, B. (2007). Amino Acids, 33, 703-707.]); Arki et al. (2004[Arki, A., Tourwe, D., Solymar, M., Fueloep, F., Armstrong, D. W. & Peter, A. (2004). Chromatographia, 60, S43-S54.]); Hauck et al. (2006[Hauck, T., Sunkel, K. & Beck, W. (2006). Z. Anorg. Allg. Chem. 632, 2305-2309.]); Dai et al. (2008[Dai, W. & Fu, D.-W. (2008). Acta Cryst. E64, o974.]); Azim et al. (2006[Azim, A., Shah, V. & Doncel, G.-F. (2006). Bioconjugate Chem. 17, 1523-1529.]).

[Scheme 1]

Experimental

Crystal data
  • C10H13N2O4+·Cl

  • Mr = 260.67

  • Monoclinic, P 21

  • a = 4.825 (3) Å

  • b = 8.426 (3) Å

  • c = 15.111 (9) Å

  • β = 95.64 (4)°

  • V = 611.4 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 298 (2) K

  • 0.25 × 0.18 × 0.17 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.931, Tmax = 0.942

  • 6215 measured reflections

  • 2751 independent reflections

  • 2077 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.112

  • S = 1.03

  • 2751 reflections

  • 154 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.17 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1259 Friedel pairs

  • Flack parameter: −0.03 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H11B⋯O4i 0.89 2.31 2.929 (4) 127
N2—H11B⋯Cl1i 0.89 2.71 3.380 (3) 133
N2—H11C⋯Cl1ii 0.89 2.42 3.175 (3) 143
N2—H11A⋯Cl1 0.89 2.34 3.151 (3) 151
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+1]; (ii) x-1, y, z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

α-Amino acid derivatives are important molecules due to their pharmacological properties. Recently, there has been an increased interest in the enantiomeric preparation of α-amino acid derivatives as precursors for the synthesis of novel biologically active compounds (Lucchese et al., (2007); Arki et al., (2004); Hauck et al., (2006); Azim et al., (2006); Dai et al., (2008)). Here we report the crystal structure of the title compound.

The title compound is built up from a Cl- anion and a protonated amino group cation (Fig. 1). The nitro group and the benzene ring are nearly planar, they are only twisted to each other by a torsion angles of C2-C1-N1-O1 (2.1 (7)° ) and C6-C1-N1-O2 (4.4 (7)° ), and the methyl 2-aminopropanoate substituent group is a zig-zag chain.

The crystal packing is stabilized by cation-anion N—H···Cl H-bonds and N—H···O H-bonds building an infinite two-dimensional network developping parallel to the (0 0 1) plane.(Table 1, Fig. 2).

The S absolute configuration at C8 is deduced from the synthetic pathway and confirmed by the X-ray analyses.

Related literature top

For details of α-amino acid derivatives as precursors for the synthesis of novel biologically active compounds, see: Lucchese et al. (2007); Arki et al. (2004); Hauck et al. (2006); Dai et al. (2008); Azim et al. (2006).

Experimental top

Under nitrogen protection, 2-amino-3-phenylpropanoic acid (30 mmol), nitric acid (50 mmol) and sulfuric acid (20 mmol) were added in a flask. The mixture was stirred at 110 °C for 3 h. The resulting solution was poured into ice water (100 mL), then filtered and washed with distilled water. The nitration amino acid was esterified with H2SO4 and CH3OH at 110 °C for 12 h, the crude product was obtained by evaporated the solution, and then recrystallized with distilled water by adding 1 ml HCl to yield colorless block-like crystals, suitable for X-ray analysis.

Refinement top

All H atoms attached to C atoms and N atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl), 0.97 Å (methylene), 0.98 Å (methine), 0.93 Å (aromatic) and N—H = 0.89 Å with Uiso(H) = 1.2Ueq(C except methyl) or Uiso(H) = 1.5Ueq(N and methyl C).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Bruno et al., 2002); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the b axis and all hydrogen atoms not involved in hydrogen bonding (dashed lines) were omitted for clarity.
(S)-1-Methoxycarbonyl-2-(4-nitrophenyl)ethanaminium chloride top
Crystal data top
C10H13N2O4+·ClF(000) = 272
Mr = 260.67Dx = 1.416 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1445 reflections
a = 4.825 (3) Åθ = 2.4–27.5°
b = 8.426 (3) ŵ = 0.32 mm1
c = 15.111 (9) ÅT = 298 K
β = 95.64 (4)°Block, colourless
V = 611.4 (6) Å30.25 × 0.18 × 0.17 mm
Z = 2
Data collection top
Rigaku Mercury2
diffractometer
2751 independent reflections
Radiation source: fine-focus sealed tube2077 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 13.6612 pixels mm-1θmax = 27.4°, θmin = 2.7°
ω scansh = 66
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1010
Tmin = 0.931, Tmax = 0.942l = 1919
6215 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0476P)2 + 0.0855P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2751 reflectionsΔρmax = 0.30 e Å3
154 parametersΔρmin = 0.17 e Å3
1 restraintAbsolute structure: Flack (1983), 1259 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (9)
Crystal data top
C10H13N2O4+·ClV = 611.4 (6) Å3
Mr = 260.67Z = 2
Monoclinic, P21Mo Kα radiation
a = 4.825 (3) ŵ = 0.32 mm1
b = 8.426 (3) ÅT = 298 K
c = 15.111 (9) Å0.25 × 0.18 × 0.17 mm
β = 95.64 (4)°
Data collection top
Rigaku Mercury2
diffractometer
2751 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2077 reflections with I > 2σ(I)
Tmin = 0.931, Tmax = 0.942Rint = 0.038
6215 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.112Δρmax = 0.30 e Å3
S = 1.03Δρmin = 0.17 e Å3
2751 reflectionsAbsolute structure: Flack (1983), 1259 Friedel pairs
154 parametersAbsolute structure parameter: 0.03 (9)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.98552 (15)0.75535 (11)0.54873 (5)0.0499 (2)
O30.8079 (4)0.7690 (3)0.30131 (12)0.0483 (5)
C90.6109 (5)0.7495 (4)0.35535 (16)0.0362 (6)
O40.4684 (5)0.8525 (3)0.38126 (14)0.0498 (6)
C80.5762 (6)0.5766 (3)0.37686 (18)0.0353 (6)
H8A0.75840.52430.38030.042*
N20.4629 (6)0.5646 (3)0.46458 (15)0.0448 (6)
H11A0.57880.61200.50580.067*
H11B0.44470.46290.47870.067*
H11C0.29730.61190.46170.067*
C40.4967 (6)0.4821 (4)0.21766 (19)0.0400 (7)
C70.3780 (7)0.4943 (4)0.3058 (2)0.0439 (7)
H7A0.33690.38850.32620.053*
H7B0.20440.55300.29800.053*
C10.7171 (8)0.4557 (4)0.0577 (2)0.0493 (8)
C20.8081 (8)0.3560 (5)0.1245 (2)0.0576 (9)
H2C0.94400.28050.11650.069*
C30.6962 (7)0.3682 (4)0.2046 (2)0.0512 (8)
H3A0.75510.29910.25060.061*
C50.4107 (7)0.5812 (4)0.1485 (2)0.0530 (9)
H5A0.27610.65760.15610.064*
C60.5198 (8)0.5697 (5)0.0674 (2)0.0612 (10)
H6A0.46090.63750.02070.073*
N10.8330 (9)0.4439 (5)0.0288 (2)0.0722 (10)
O11.0166 (8)0.3463 (5)0.0366 (2)0.1027 (12)
O20.7365 (9)0.5296 (5)0.0890 (2)0.1057 (12)
C100.8487 (10)0.9318 (4)0.2717 (3)0.0691 (11)
H10A0.99510.93400.23310.104*
H10B0.89840.99830.32240.104*
H10C0.67940.97020.24020.104*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0520 (4)0.0476 (4)0.0505 (4)0.0037 (4)0.0075 (3)0.0092 (4)
O30.0588 (12)0.0420 (12)0.0475 (11)0.0084 (12)0.0217 (10)0.0009 (12)
C90.0410 (14)0.0359 (14)0.0315 (12)0.0017 (16)0.0027 (11)0.0029 (15)
O40.0582 (14)0.0403 (12)0.0521 (13)0.0093 (11)0.0123 (11)0.0021 (11)
C80.0429 (16)0.0342 (15)0.0303 (14)0.0008 (13)0.0109 (12)0.0018 (12)
N20.0599 (17)0.0372 (14)0.0390 (14)0.0001 (13)0.0135 (12)0.0005 (12)
C40.0466 (17)0.0353 (15)0.0389 (16)0.0111 (13)0.0074 (14)0.0071 (13)
C70.0428 (17)0.0444 (18)0.0460 (17)0.0076 (14)0.0114 (14)0.0031 (15)
C10.058 (2)0.056 (2)0.0364 (17)0.0125 (17)0.0129 (15)0.0138 (15)
C20.060 (2)0.062 (2)0.052 (2)0.0040 (19)0.0099 (17)0.0160 (19)
C30.067 (2)0.0434 (18)0.0431 (18)0.0007 (17)0.0073 (16)0.0024 (15)
C50.060 (2)0.053 (2)0.0465 (19)0.0070 (17)0.0083 (16)0.0000 (17)
C60.078 (3)0.064 (2)0.0403 (19)0.006 (2)0.0023 (18)0.0038 (18)
N10.085 (3)0.089 (3)0.0451 (19)0.023 (2)0.0180 (17)0.021 (2)
O10.094 (2)0.141 (3)0.078 (2)0.008 (2)0.0345 (19)0.035 (2)
O20.155 (3)0.121 (3)0.0465 (16)0.005 (3)0.0353 (19)0.0011 (19)
C100.090 (3)0.052 (2)0.068 (2)0.011 (2)0.022 (2)0.013 (2)
Geometric parameters (Å, º) top
O3—C91.323 (3)C1—C21.353 (5)
O3—C101.462 (4)C1—C61.371 (5)
C9—O41.196 (4)C1—N11.475 (4)
C9—C81.506 (4)C2—C31.377 (4)
C8—N21.486 (3)C2—H2C0.9300
C8—C71.532 (4)C3—H3A0.9300
C8—H8A0.9800C5—C61.384 (5)
N2—H11A0.8900C5—H5A0.9300
N2—H11B0.8900C6—H6A0.9300
N2—H11C0.8900N1—O21.217 (5)
C4—C51.370 (4)N1—O11.223 (5)
C4—C31.387 (5)C10—H10A0.9600
C4—C71.505 (4)C10—H10B0.9600
C7—H7A0.9700C10—H10C0.9600
C7—H7B0.9700
C9—O3—C10115.6 (3)C2—C1—C6122.2 (3)
O4—C9—O3125.7 (3)C2—C1—N1119.8 (4)
O4—C9—C8123.5 (3)C6—C1—N1118.0 (4)
O3—C9—C8110.8 (3)C1—C2—C3118.9 (3)
N2—C8—C9108.4 (2)C1—C2—H2C120.6
N2—C8—C7109.6 (2)C3—C2—H2C120.6
C9—C8—C7111.2 (2)C2—C3—C4121.0 (3)
N2—C8—H8A109.2C2—C3—H3A119.5
C9—C8—H8A109.2C4—C3—H3A119.5
C7—C8—H8A109.2C4—C5—C6121.4 (3)
C8—N2—H11A109.5C4—C5—H5A119.3
C8—N2—H11B109.5C6—C5—H5A119.3
H11A—N2—H11B109.5C1—C6—C5118.2 (3)
C8—N2—H11C109.5C1—C6—H6A120.9
H11A—N2—H11C109.5C5—C6—H6A120.9
H11B—N2—H11C109.5O2—N1—O1123.7 (4)
C5—C4—C3118.4 (3)O2—N1—C1118.1 (4)
C5—C4—C7121.4 (3)O1—N1—C1118.2 (4)
C3—C4—C7120.2 (3)O3—C10—H10A109.5
C4—C7—C8112.7 (3)O3—C10—H10B109.5
C4—C7—H7A109.1H10A—C10—H10B109.5
C8—C7—H7A109.1O3—C10—H10C109.5
C4—C7—H7B109.1H10A—C10—H10C109.5
C8—C7—H7B109.1H10B—C10—H10C109.5
H7A—C7—H7B107.8
C10—O3—C9—O40.3 (4)C1—C2—C3—C41.1 (5)
C10—O3—C9—C8176.6 (3)C5—C4—C3—C20.9 (5)
O4—C9—C8—N229.2 (4)C7—C4—C3—C2179.7 (3)
O3—C9—C8—N2153.9 (2)C3—C4—C5—C60.4 (5)
O4—C9—C8—C791.4 (3)C7—C4—C5—C6179.9 (3)
O3—C9—C8—C785.5 (3)C2—C1—C6—C50.4 (6)
C5—C4—C7—C8103.2 (4)N1—C1—C6—C5180.0 (3)
C3—C4—C7—C877.3 (4)C4—C5—C6—C10.2 (5)
N2—C8—C7—C4172.3 (2)C2—C1—N1—O2176.2 (4)
C9—C8—C7—C467.8 (3)C6—C1—N1—O24.2 (5)
C6—C1—C2—C30.8 (6)C2—C1—N1—O12.3 (5)
N1—C1—C2—C3179.6 (3)C6—C1—N1—O1177.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H11B···O4i0.892.312.929 (4)127
N2—H11B···Cl1i0.892.713.380 (3)133
N2—H11C···Cl1ii0.892.423.175 (3)143
N2—H11A···Cl10.892.343.151 (3)151
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC10H13N2O4+·Cl
Mr260.67
Crystal system, space groupMonoclinic, P21
Temperature (K)298
a, b, c (Å)4.825 (3), 8.426 (3), 15.111 (9)
β (°) 95.64 (4)
V3)611.4 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.25 × 0.18 × 0.17
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.931, 0.942
No. of measured, independent and
observed [I > 2σ(I)] reflections
6215, 2751, 2077
Rint0.038
(sin θ/λ)max1)0.647
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.112, 1.03
No. of reflections2751
No. of parameters154
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.17
Absolute structureFlack (1983), 1259 Friedel pairs
Absolute structure parameter0.03 (9)

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and Mercury (Bruno et al., 2002), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H11B···O4i0.892.312.929 (4)126.5
N2—H11B···Cl1i0.892.713.380 (3)132.5
N2—H11C···Cl1ii0.892.423.175 (3)143.2
N2—H11A···Cl10.892.343.151 (3)151.3
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x1, y, z.
 

Acknowledgements

This work was supported by a Start-up Grant from Southeast University to Professor Ren-Gen Xiong.

References

First citationArki, A., Tourwe, D., Solymar, M., Fueloep, F., Armstrong, D. W. & Peter, A. (2004). Chromatographia, 60, S43–S54.  Web of Science CrossRef CAS Google Scholar
First citationAzim, A., Shah, V. & Doncel, G.-F. (2006). Bioconjugate Chem. 17, 1523–1529.  Web of Science CrossRef CAS Google Scholar
First citationDai, W. & Fu, D.-W. (2008). Acta Cryst. E64, o974.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHauck, T., Sunkel, K. & Beck, W. (2006). Z. Anorg. Allg. Chem. 632, 2305–2309.  Web of Science CrossRef CAS Google Scholar
First citationLucchese, G., Stufano, A. & Trost, B. (2007). Amino Acids, 33, 703–707.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds