organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Benzamide oxime

aLaboratory of Beibu Gulf Marine Protection and Exploitation, Department of Chemistry and Biology, Qinzhou University, Qinzhou, Guangxi 535000, People's Republic of China
*Correspondence e-mail: ljmmarise@163.com

(Received 22 May 2008; accepted 5 July 2008; online 12 July 2008)

In the crystal structure of the title compound, C7H8N2O, mol­ecules are connected via inter­molecular N—H⋯O and O—H⋯N hydrogen bonds to form a two-dimensional supra­molecular structure. The oxime group has an E configuration and the dihedral angle between the mean planes of the benzene ring and the amidoxime grouping is 20.2 (3)°.

Related literature

For related literature, see: Bruton et al. (2003[Bruton, E. A., Brammer, L., Pigge, F. C., Aakeröy, C. B. & Leinend, D. S. (2003). New J. Chem. 27, 1084-1094.]); Kang et al. (2007[Kang, S.-S., Wang, H.-B., Zeng, H.-S. & Li, H.-L. (2007). Acta Cryst. E63, o3279.]); Li et al. (2007[Li, H.-L., Zeng, H.-S., Kang, S.-S. & Wang, H.-B. (2007). Acta Cryst. E63, o4763.]); Srivastava et al. (1997[Srivastava, R. M., Brinn, I. M., Machuca-Herrera, J. O., Faria, H. B., Carpenter, G. B., Andrade, D., Venkatesh, C. G. & Morais, L. P. F. (1997). J. Mol. Struct. 406, 159-167.]); Wang et al. (2006[Wang, H.-B., Yan, X.-C. & Liu, Z.-Q. (2006). Acta Cryst. E62, o4243-o4244.], 2007[Wang, H.-B., Xing, Z.-T., Ding, W.-L., Yin, J. & Wang, P.-L. (2007). Acta Cryst. E63, o1834-o1835.]); Bertolasi et al. (1982[Bertolasi, V., Gilli, G. & Veronese, A. C. (1982). Acta Cryst. B38, 502-511.]); Chertanova et al. (1994[Chertanova, L., Pascard, C. & Sheremetev, A. (1994). Acta Cryst. B50, 708-716.]); Goel et al. (1981[Goel, A. B., Goel, S. & Vanderveer, D. (1981). Inorg. Chim. Acta, 54, L5-L6.]); Xing, Ding et al. (2007[Xing, Z.-T., Ding, W.-L., Wang, H.-B., Yin, J. & Han, F. (2007). Acta Cryst. E63, o1019-o1020.]); Xing, Wang et al. (2007[Xing, Z.-T., Wang, H.-B., Yin, J., Wu, W.-Y. & Han, F. (2007). Acta Cryst. E63, o2236-o2237.]).

[Scheme 1]

Experimental

Crystal data
  • C7H8N2O

  • Mr = 136.15

  • Monoclinic, P 21 /c

  • a = 12.579 (2) Å

  • b = 5.053 (1) Å

  • c = 10.908 (2) Å

  • β = 90.380 (7)°

  • V = 693.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 273 (2) K

  • 0.28 × 0.22 × 0.18 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.975, Tmax = 0.984

  • 4489 measured reflections

  • 1216 independent reflections

  • 967 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.145

  • S = 1.04

  • 1216 reflections

  • 92 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2i 0.82 2.10 2.820 (2) 147
N1—H1A⋯O1ii 0.86 2.29 3.031 (2) 145
Symmetry codes: (i) -x+1, -y, -z+2; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{5\over 2}}].

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The synthesis of Schiff base complexes containing oxime (–CN—OH) functional groups has attracted great interest due to their antiviral, anticancer and antibacterial activities (Srivastava et al., 1997; Goel et al., 1981; Li et al., 2007; Wang et al., 2007; Xing, Ding et al. (2007), Xing, Wang et al. (2007). Also, the interesting hydrogen-bond systems in the crystal structures of oximes have been analysed and a correlation between the pattern of hydrogen bonding and N—O bond lengths has been suggested (Bertolasi et al., 1982; Bruton et al., 2003). Herein, we report the synthesis and crystal structure of the title compound, (I). In the crystal structure of the title compound, molecules are connected via intermolecular N—H···O and O—H···N hydrogen bonds (see Table 1 and Fig. 2) to form a two-dimensional supramolecular structure. The oxime group has an E configuration [C4—C9—N1—O3 = -179.43 (14) °, Chertanova et al., 1994] and the dihedral angle between the mean planes of the benzene ring and the C7/N1/N2/O grouping is 20.2 (3) °, which is less than that reported for similar structures by Kang et al. (2007) and Xing, Ding et al. (2007), Xing, Wang et al. (2007).

Related literature top

For related literature, see: Bruton et al. (2003); Kang et al. (2007); Li et al. (2007); Srivastava et al. (1997); Wang et al. (2006, 2007), Xing et al. (2007a,b); Bertolasi et al. (1982); Chertanova et al. (1994); Goel et al. (1981); Xing, Ding, Wang, Jun & Han (2007); Xing, Wang, Jun, Wu & Feng (2007).

Experimental top

Reagents and solvents used were of commercially available quality. The Schiff base ligand benzamidoxime was synthesized according to the method of Kang et al. (2007). A mixture of benzonitrile (0.33 mol) and hydroxylamine hydrochloride (0.33 mol) in ethanol (231 ml) and potassium carbonate (0.33 mol) in water (66 ml) was refluxed for 12 h. After cooling and filtering, compound (I) was obtained. Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution.

Refinement top

H atoms were positioned geometrically, with N—H = 0.86 A (for NH), O—H = 0.82 Å (for OH) and C—H = 0.93 Å for aromatic H atoms, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N,O), where x = 1.5 for OH H, and x = 1.2 for all other H atoms.

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of I showing the atom numbering scheme with displacement ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal structure showing hydrogen bonds as dashed lines. H atoms, except for those involved in hydrogen bonds, are not included.
Benzamide oxime top
Crystal data top
C7H8N2OF(000) = 288
Mr = 136.15Dx = 1.304 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1198 reflections
a = 12.579 (2) Åθ = 2.5–27.7°
b = 5.053 (1) ŵ = 0.09 mm1
c = 10.908 (2) ÅT = 273 K
β = 90.380 (7)°Block, colorless
V = 693.3 (2) Å30.28 × 0.22 × 0.18 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
1216 independent reflections
Radiation source: fine-focus sealed tube967 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1414
Tmin = 0.975, Tmax = 0.984k = 66
4489 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0753P)2 + 0.2452P]
where P = (Fo2 + 2Fc2)/3
1216 reflections(Δ/σ)max < 0.001
92 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C7H8N2OV = 693.3 (2) Å3
Mr = 136.15Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.579 (2) ŵ = 0.09 mm1
b = 5.053 (1) ÅT = 273 K
c = 10.908 (2) Å0.28 × 0.22 × 0.18 mm
β = 90.380 (7)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1216 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
967 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.984Rint = 0.028
4489 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.145H-atom parameters constrained
S = 1.05Δρmax = 0.21 e Å3
1216 reflectionsΔρmin = 0.22 e Å3
92 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.50237 (11)0.1813 (3)1.12339 (12)0.0523 (4)
H10.45780.07501.09900.078*
N20.58736 (13)0.1959 (3)1.03730 (14)0.0453 (5)
C70.63885 (14)0.4152 (4)1.05147 (16)0.0391 (5)
N10.61721 (14)0.5943 (3)1.13971 (15)0.0508 (5)
H1A0.56660.56531.19060.061*
H1B0.65400.73731.14500.061*
C10.72942 (14)0.4640 (4)0.96838 (17)0.0411 (5)
C50.8218 (2)0.3813 (6)0.7814 (2)0.0710 (7)
H50.82560.29080.70730.085*
C60.73762 (19)0.3377 (5)0.8576 (2)0.0643 (7)
H60.68470.21950.83370.077*
C20.8089 (2)0.6386 (6)0.9997 (3)0.0781 (8)
H20.80620.72761.07420.094*
C40.89920 (19)0.5537 (5)0.8122 (2)0.0674 (7)
H40.95600.58390.75990.081*
C30.8926 (2)0.6829 (7)0.9215 (3)0.0962 (11)
H30.94550.80270.94370.115*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0545 (9)0.0537 (9)0.0488 (8)0.0083 (6)0.0195 (7)0.0020 (6)
N20.0477 (9)0.0438 (10)0.0445 (9)0.0035 (7)0.0130 (7)0.0000 (7)
C70.0435 (10)0.0375 (10)0.0364 (9)0.0027 (8)0.0008 (7)0.0041 (7)
N10.0609 (11)0.0444 (10)0.0471 (9)0.0028 (8)0.0116 (8)0.0054 (8)
C10.0427 (10)0.0376 (10)0.0429 (10)0.0011 (8)0.0024 (8)0.0036 (8)
C50.0705 (15)0.0845 (18)0.0583 (13)0.0135 (13)0.0222 (12)0.0124 (13)
C60.0606 (13)0.0763 (16)0.0562 (13)0.0226 (12)0.0151 (10)0.0164 (12)
C20.0739 (16)0.0848 (19)0.0757 (16)0.0334 (14)0.0208 (13)0.0281 (14)
C40.0543 (13)0.0735 (16)0.0747 (16)0.0065 (12)0.0226 (11)0.0063 (13)
C30.0763 (18)0.108 (2)0.105 (2)0.0503 (18)0.0278 (16)0.0271 (19)
Geometric parameters (Å, º) top
O1—N21.430 (2)C5—C41.348 (4)
O1—H10.8200C5—C61.368 (3)
N2—C71.292 (2)C5—H50.9300
C7—N11.350 (2)C6—H60.9300
C7—C11.481 (3)C2—C31.378 (4)
N1—H1A0.8600C2—H20.9300
N1—H1B0.8600C4—C31.362 (4)
C1—C61.371 (3)C4—H40.9300
C1—C21.375 (3)C3—H30.9300
N2—O1—H1109.5C6—C5—H5119.6
C7—N2—O1109.99 (15)C5—C6—C1121.6 (2)
N2—C7—N1123.82 (17)C5—C6—H6119.2
N2—C7—C1117.16 (16)C1—C6—H6119.2
N1—C7—C1118.97 (17)C1—C2—C3120.5 (2)
C7—N1—H1A120.0C1—C2—H2119.7
C7—N1—H1B120.0C3—C2—H2119.7
H1A—N1—H1B120.0C5—C4—C3118.7 (2)
C6—C1—C2117.3 (2)C5—C4—H4120.7
C6—C1—C7121.63 (18)C3—C4—H4120.7
C2—C1—C7121.06 (18)C4—C3—C2121.0 (2)
C4—C5—C6120.9 (2)C4—C3—H3119.5
C4—C5—H5119.6C2—C3—H3119.5
O1—N2—C7—N13.2 (2)C2—C1—C6—C50.5 (4)
O1—N2—C7—C1179.43 (14)C7—C1—C6—C5179.5 (2)
N2—C7—C1—C621.8 (3)C6—C1—C2—C30.2 (4)
N1—C7—C1—C6160.7 (2)C7—C1—C2—C3179.8 (3)
N2—C7—C1—C2158.2 (2)C6—C5—C4—C30.5 (5)
N1—C7—C1—C219.3 (3)C5—C4—C3—C20.2 (5)
C4—C5—C6—C10.9 (4)C1—C2—C3—C40.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N2i0.822.102.820 (2)147
N1—H1A···O1ii0.862.293.031 (2)145
Symmetry codes: (i) x+1, y, z+2; (ii) x+1, y+1/2, z+5/2.

Experimental details

Crystal data
Chemical formulaC7H8N2O
Mr136.15
Crystal system, space groupMonoclinic, P21/c
Temperature (K)273
a, b, c (Å)12.579 (2), 5.053 (1), 10.908 (2)
β (°) 90.380 (7)
V3)693.3 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.28 × 0.22 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.975, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
4489, 1216, 967
Rint0.028
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.145, 1.05
No. of reflections1216
No. of parameters92
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.22

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
O1—N21.430 (2)C7—N11.350 (2)
N2—C71.292 (2)C7—C11.481 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N2i0.822.102.820 (2)147.1
N1—H1A···O1ii0.862.293.031 (2)144.6
Symmetry codes: (i) x+1, y, z+2; (ii) x+1, y+1/2, z+5/2.
 

Acknowledgements

This work was supported by a grant from the Qinzhou University Foundation of Guangxi Zhuang Autonomous Region of the People's Republic of China (grant No. 2007XJ15).

References

First citationBertolasi, V., Gilli, G. & Veronese, A. C. (1982). Acta Cryst. B38, 502–511.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruton, E. A., Brammer, L., Pigge, F. C., Aakeröy, C. B. & Leinend, D. S. (2003). New J. Chem. 27, 1084–1094.  Web of Science CSD CrossRef CAS Google Scholar
First citationChertanova, L., Pascard, C. & Sheremetev, A. (1994). Acta Cryst. B50, 708–716.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGoel, A. B., Goel, S. & Vanderveer, D. (1981). Inorg. Chim. Acta, 54, L5–L6.  CSD CrossRef CAS Web of Science Google Scholar
First citationKang, S.-S., Wang, H.-B., Zeng, H.-S. & Li, H.-L. (2007). Acta Cryst. E63, o3279.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, H.-L., Zeng, H.-S., Kang, S.-S. & Wang, H.-B. (2007). Acta Cryst. E63, o4763.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrivastava, R. M., Brinn, I. M., Machuca-Herrera, J. O., Faria, H. B., Carpenter, G. B., Andrade, D., Venkatesh, C. G. & Morais, L. P. F. (1997). J. Mol. Struct. 406, 159–167.  CSD CrossRef CAS Web of Science Google Scholar
First citationWang, H.-B., Xing, Z.-T., Ding, W.-L., Yin, J. & Wang, P.-L. (2007). Acta Cryst. E63, o1834–o1835.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, H.-B., Yan, X.-C. & Liu, Z.-Q. (2006). Acta Cryst. E62, o4243–o4244.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXing, Z.-T., Ding, W.-L., Wang, H.-B., Yin, J. & Han, F. (2007). Acta Cryst. E63, o1019–o1020.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXing, Z.-T., Wang, H.-B., Yin, J., Wu, W.-Y. & Han, F. (2007). Acta Cryst. E63, o2236–o2237.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds