metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A second polymorph of aqua­(2,9-di­methyl-1,10-phenanthroline-κ2N,N′)bis­­(formato-κO)copper(II)

aState Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, People's Republic of China
*Correspondence e-mail: zhengyueqing@nbu.edu.cn

(Received 17 June 2008; accepted 21 July 2008; online 26 July 2008)

A new monoclinic polymorphic form of the title compound, [Cu(HCO2)2(C14H12N2)(H2O)], is described. It differs from the first ortho­rhom­bic polymorph [Pan, Lin & Zheng (2005[Pan, J. G., Lin, J. L. & Zheng, Y. Q. (2005). Z. Kristallogr. New Cryst. Struct. 220, 495-496.]). Z. Kristallogr. New Cryst. Struct. 220, 495–496] in the deviation of the Cu atom relative to the plane of the 2,9-dimethyl-1,10-phenanthroline (dmp) ligand. In the present structure, the Cu atom is shifted from the mean plane of the dmp ligand by only 0.005 (1) Å, compared with 0.318 (6) Å in the ortho­rhom­bic form. Hydrogen-bonding and ππ stacking inter­actions (mean inter­planar distance of 3.59 Å in the title compound) in the two different polymorphs are both essential to the supra­molecular assembly.

Related literature

For the orthorhombic polymorph, see: Pan et al. (2005[Pan, J. G., Lin, J. L. & Zheng, Y. Q. (2005). Z. Kristallogr. New Cryst. Struct. 220, 495-496.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(HCO2)2(C14H12N2)(H2O)]

  • Mr = 379.85

  • Monoclinic, P 21 /c

  • a = 10.669 (2) Å

  • b = 7.7677 (16) Å

  • c = 19.338 (4) Å

  • β = 94.22 (3)°

  • V = 1598.3 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.40 mm−1

  • T = 295 (2) K

  • 0.26 × 0.17 × 0.09 mm

Data collection
  • Bruker P4 diffractometer

  • Absorption correction: multi-scan (XSCANS; Siemens, 1996[Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]) Tmin = 0.749, Tmax = 0.879

  • 15099 measured reflections

  • 3632 independent reflections

  • 3202 reflections with I > 2σ(I)

  • Rint = 0.019

  • 3 standard reflections every 97 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.072

  • S = 1.06

  • 3632 reflections

  • 219 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu—O1 1.9450 (12)
Cu—O3 1.9546 (12)
Cu—O5 1.9726 (12)
Cu—N1 2.0328 (13)
Cu—N2 2.2801 (15)
O1—Cu—O3 95.53 (6)
O1—Cu—O5 87.40 (6)
O1—Cu—N1 174.06 (6)
O1—Cu—N2 107.40 (6)
O3—Cu—O5 167.05 (6)
O3—Cu—N1 86.33 (5)
O3—Cu—N2 95.28 (6)
O5—Cu—N1 89.57 (5)
O5—Cu—N2 95.87 (5)
N1—Cu—N2 77.98 (6)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5C⋯O2i 0.88 1.86 2.714 (2) 166
O5—H5B⋯O4ii 0.89 1.72 2.605 (2) 175
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y-1, z.

Data collection: XSCANS (Siemens, 1996[Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXL97; software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

We reported a structure of the copper-dmp complex aqua-(2,9-dimethyl-1,10-phenanthroline-κ2N:N')-diromato-copper(II) previously, which crystallizes in space group Pna21 (Pan, et al.,2005). On repeating the experiment recently, to our surprise, we found a new polyporph, (I), that had crystallized in the space group P21/c.

The crystal structure of the title compound is very similar to the previously reported complex, built up by the [Cu(dmp)(H2O)(HCOO)2] complex molecules. The Cu atoms are each square pyramidally coordinated by two N atoms of one dmp ligand, three O atoms of two formate anions and one water molecule with the N2 atom of the dmp ligand at the apical position. The apical and basal Cu—N bond distances are 2.280 (1) and 2.033 (2) Å, respectively. The Cu—O bond distances to the formate anions are 1.945 (1) and 1.955 (1) Å, slightly longer than that to the water molecule (1.973 (1) Å). Suggesting that the formate anions possess better coordinating capability to the water molecule in the structure, which also show no significant difference from the isomer crystal structure that reported by us. The Cu atom is shifted by 0.153 (1) Å from the equatorial plane through N1, O1, O3 and O5 atoms towards the apical N2 atom. Through the intermolecular hydrogen bond the complex molecules are link into double chains with the chelating dmp ligands extending parallelly on one side along [010]. The substituted phenanthroline ligands of one double chain protrude into the grooves between adjacent aromatic planes of the neighboring double chain, yielding two-dimensional layers parallel to (100). It is found that the assembly of the double chains is due to interchain π-π stacking interactions between the dmp ligands (mean interplanar distance: 3.59 Å).

Related literature top

For the first orthorhom polymorph, see: Pan et al. (2005).

Experimental top

Dropwise addition of 2.0 ml (1.0 M) Na2CO3 to an aqueous solution of 0.075 g (0.442 mmol) CuCl2.2H2O in 5.0 ml H2O yielded pale blue deposit, which was separated by centrifugation and washed with doubly distilled water until no Cl- anions are detectable in the supernatant. The precipitate was then added to a solution of 0.100 g (0.442 mmol) 2,9-dimethyl-1,10-phenanthroline in a mixed solvent consisting of 15 ml H2O and 15 ml me thanol. To the mixture 1.77 ml (1.0 M) formic acid was dropped and the precipitate was slowly dissolved under continuous stirring. The resulting blue solution was allowed to stand at room temperature, and slow evaporation for 10 days afforded blue plate crystals.

Refinement top

H atoms attached to C atoms of the dmp ligand were positioned geometrically and refined using a riding model, with C—H = 0.93 and 0.96 Å, and Uiso(H) values set at 1.2 Ueq(C) and 1.5 Ueq(C), respectively. The H atoms of the water molecule and formate anions were located from difference Fourier maps.

Computing details top

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS (Siemens, 1996); data reduction: XSCANS (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97 (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP view of the title compound. The displacement ellipsoids are drawn at 40% probability level.
[Figure 2] Fig. 2. A perspective view of the crystal structure of (I), with hydrogen bonds shown as dashed lines.
aqua(2,9-dimethyl-1,10-phenanthroline- κ2N,N')bis(formato-κO)copper(II) top
Crystal data top
[Cu(HCO2)2(C14H12N2)(H2O)]F(000) = 780
Mr = 379.85Dx = 1.579 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 10.669 (2) Åθ = 5.0–12.5°
b = 7.7677 (16) ŵ = 1.40 mm1
c = 19.338 (4) ÅT = 295 K
β = 94.22 (3)°Plate, blue
V = 1598.3 (6) Å30.26 × 0.17 × 0.09 mm
Z = 4
Data collection top
Bruker P4
diffractometer
3202 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.019
Graphite monochromatorθmax = 27.5°, θmin = 3.3°
θ/2θ scansh = 1313
Absorption correction: multi-scan
(XSCANS; Siemens, 1996)
k = 109
Tmin = 0.749, Tmax = 0.879l = 2425
15099 measured reflections3 standard reflections every 97 reflections
3632 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0413P)2 + 0.5201P]
where P = (Fo2 + 2Fc2)/3
3632 reflections(Δ/σ)max = 0.001
219 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
[Cu(HCO2)2(C14H12N2)(H2O)]V = 1598.3 (6) Å3
Mr = 379.85Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.669 (2) ŵ = 1.40 mm1
b = 7.7677 (16) ÅT = 295 K
c = 19.338 (4) Å0.26 × 0.17 × 0.09 mm
β = 94.22 (3)°
Data collection top
Bruker P4
diffractometer
3202 reflections with I > 2σ(I)
Absorption correction: multi-scan
(XSCANS; Siemens, 1996)
Rint = 0.019
Tmin = 0.749, Tmax = 0.8793 standard reflections every 97 reflections
15099 measured reflections intensity decay: none
3632 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.072H-atom parameters constrained
S = 1.06Δρmax = 0.35 e Å3
3632 reflectionsΔρmin = 0.22 e Å3
219 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.209657 (18)0.90493 (2)0.156116 (9)0.02440 (7)
N10.21922 (12)0.80402 (17)0.05966 (6)0.0257 (3)
N20.42113 (13)0.89494 (17)0.14606 (7)0.0275 (3)
C10.11886 (17)0.7632 (2)0.01841 (9)0.0325 (4)
C20.1317 (2)0.6999 (3)0.04910 (10)0.0472 (5)
H2A0.06050.67410.07780.057*
C30.2471 (2)0.6765 (3)0.07224 (10)0.0508 (5)
H3A0.25520.63320.11650.061*
C40.35505 (19)0.7178 (3)0.02912 (9)0.0393 (4)
C50.4803 (2)0.6986 (3)0.04949 (11)0.0541 (6)
H5A0.49290.65400.09310.065*
C60.5804 (2)0.7435 (3)0.00711 (11)0.0537 (6)
H6A0.66090.72980.02170.064*
C70.56433 (17)0.8120 (3)0.05998 (10)0.0397 (4)
C80.66470 (19)0.8661 (3)0.10598 (12)0.0511 (5)
H8A0.74680.85770.09310.061*
C90.64241 (19)0.9302 (3)0.16884 (12)0.0478 (5)
H9A0.70910.96590.19920.057*
C100.51845 (17)0.9430 (2)0.18838 (9)0.0350 (4)
C110.44274 (15)0.8321 (2)0.08260 (8)0.0289 (3)
C120.33615 (16)0.7831 (2)0.03694 (8)0.0281 (3)
C130.00801 (18)0.7856 (3)0.04536 (10)0.0438 (4)
H13A0.03020.68310.06940.066*
H13B0.06910.80660.00730.066*
H13C0.00620.88160.07670.066*
C140.4920 (2)1.0068 (3)0.25888 (10)0.0537 (6)
H14A0.42431.08840.25470.081*
H14B0.56591.06140.28020.081*
H14C0.46910.91160.28700.081*
O10.18364 (13)0.98991 (18)0.24857 (6)0.0408 (3)
O20.02000 (15)1.0452 (3)0.22488 (8)0.0613 (4)
C150.0760 (2)1.0407 (3)0.26275 (10)0.0471 (5)
O30.18495 (13)1.12747 (15)0.10994 (6)0.0365 (3)
O40.18327 (18)1.41073 (16)0.10823 (8)0.0530 (4)
C160.19793 (18)1.2723 (2)0.13792 (9)0.0360 (4)
O50.19568 (12)0.67025 (15)0.19376 (6)0.0344 (3)
H5B0.19580.58340.16360.051*
H5C0.14160.64520.22420.054*
H150.07511.09040.31110.052*
H160.23831.27050.18520.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.02683 (11)0.02277 (11)0.02410 (11)0.00161 (7)0.00524 (7)0.00126 (7)
N10.0280 (7)0.0227 (6)0.0263 (6)0.0003 (5)0.0021 (5)0.0001 (5)
N20.0267 (7)0.0283 (7)0.0276 (6)0.0012 (5)0.0032 (5)0.0011 (5)
C10.0353 (9)0.0304 (8)0.0313 (8)0.0023 (7)0.0011 (7)0.0003 (7)
C20.0495 (12)0.0554 (12)0.0350 (9)0.0055 (10)0.0086 (8)0.0096 (9)
C30.0627 (14)0.0601 (13)0.0297 (9)0.0010 (11)0.0040 (9)0.0158 (9)
C40.0467 (11)0.0421 (10)0.0300 (8)0.0022 (8)0.0093 (7)0.0060 (8)
C50.0587 (14)0.0690 (15)0.0373 (10)0.0073 (11)0.0227 (9)0.0110 (10)
C60.0430 (12)0.0737 (15)0.0474 (11)0.0080 (10)0.0234 (9)0.0016 (11)
C70.0319 (9)0.0479 (11)0.0408 (9)0.0023 (8)0.0126 (7)0.0052 (9)
C80.0246 (9)0.0722 (14)0.0575 (12)0.0005 (9)0.0102 (8)0.0079 (11)
C90.0306 (10)0.0592 (13)0.0526 (12)0.0096 (9)0.0033 (8)0.0047 (10)
C100.0323 (9)0.0346 (9)0.0374 (9)0.0041 (7)0.0018 (7)0.0021 (7)
C110.0292 (8)0.0288 (8)0.0295 (7)0.0007 (6)0.0077 (6)0.0020 (7)
C120.0327 (8)0.0264 (7)0.0258 (7)0.0020 (6)0.0070 (6)0.0006 (6)
C130.0308 (9)0.0564 (12)0.0434 (10)0.0056 (9)0.0033 (8)0.0005 (9)
C140.0484 (12)0.0687 (15)0.0426 (11)0.0057 (11)0.0066 (9)0.0160 (11)
O10.0475 (8)0.0463 (8)0.0293 (6)0.0104 (6)0.0073 (5)0.0055 (6)
O20.0465 (9)0.0904 (13)0.0485 (8)0.0135 (9)0.0128 (7)0.0072 (9)
C150.0577 (13)0.0534 (12)0.0319 (9)0.0127 (10)0.0159 (9)0.0061 (9)
O30.0529 (8)0.0249 (6)0.0319 (6)0.0037 (5)0.0045 (5)0.0000 (5)
O40.0859 (12)0.0259 (7)0.0479 (8)0.0012 (7)0.0098 (8)0.0004 (6)
C160.0443 (10)0.0292 (9)0.0346 (8)0.0012 (7)0.0028 (7)0.0013 (7)
O50.0415 (7)0.0271 (6)0.0359 (6)0.0028 (5)0.0122 (5)0.0032 (5)
Geometric parameters (Å, º) top
Cu—O11.9450 (12)C7—C111.408 (2)
Cu—O31.9546 (12)C8—C91.351 (3)
Cu—O51.9726 (12)C8—H8A0.9300
Cu—N12.0328 (13)C9—C101.405 (3)
Cu—N22.2801 (15)C9—H9A0.9300
N1—C11.326 (2)C10—C141.497 (3)
N1—C121.363 (2)C11—C121.439 (2)
N2—C101.327 (2)C13—H13A0.9600
N2—C111.356 (2)C13—H13B0.9600
C1—C21.411 (2)C13—H13C0.9600
C1—C131.496 (3)C14—H14A0.9600
C2—C31.353 (3)C14—H14B0.9600
C2—H2A0.9300C14—H14C0.9600
C3—C41.408 (3)O1—C151.264 (2)
C3—H3A0.9300O2—C151.215 (3)
C4—C121.403 (2)C15—H151.0122
C4—C51.429 (3)O3—C161.252 (2)
C5—C61.343 (3)O4—C161.223 (2)
C5—H5A0.9300C16—H160.9821
C6—C71.424 (3)O5—H5B0.8914
C6—H6A0.9300O5—H5C0.8760
C7—C81.405 (3)
O1—Cu—O395.53 (6)C9—C8—H8A119.9
O1—Cu—O587.40 (6)C7—C8—H8A119.9
O1—Cu—N1174.06 (6)C8—C9—C10119.97 (19)
O1—Cu—N2107.40 (6)C8—C9—H9A120.0
O3—Cu—O5167.05 (6)C10—C9—H9A120.0
O3—Cu—N186.33 (5)N2—C10—C9121.54 (18)
O3—Cu—N295.28 (6)N2—C10—C14117.62 (17)
O5—Cu—N189.57 (5)C9—C10—C14120.81 (18)
O5—Cu—N295.87 (5)N2—C11—C7122.89 (16)
N1—Cu—N277.98 (6)N2—C11—C12118.11 (14)
C1—N1—C12119.71 (14)C7—C11—C12119.01 (15)
C1—N1—Cu123.47 (11)N1—C12—C4122.22 (16)
C12—N1—Cu116.80 (11)N1—C12—C11118.15 (14)
C10—N2—C11118.80 (15)C4—C12—C11119.63 (16)
C10—N2—Cu132.20 (12)C1—C13—H13A109.5
C11—N2—Cu108.95 (11)C1—C13—H13B109.5
N1—C1—C2120.71 (17)H13A—C13—H13B109.5
N1—C1—C13118.29 (15)C1—C13—H13C109.5
C2—C1—C13121.00 (17)H13A—C13—H13C109.5
C3—C2—C1120.38 (18)H13B—C13—H13C109.5
C3—C2—H2A119.8C10—C14—H14A109.5
C1—C2—H2A119.8C10—C14—H14B109.5
C2—C3—C4119.86 (17)H14A—C14—H14B109.5
C2—C3—H3A120.1C10—C14—H14C109.5
C4—C3—H3A120.1H14A—C14—H14C109.5
C12—C4—C3117.10 (18)H14B—C14—H14C109.5
C12—C4—C5119.28 (18)C15—O1—Cu119.93 (13)
C3—C4—C5123.61 (18)O2—C15—O1128.13 (18)
C6—C5—C4121.48 (18)O2—C15—H15118.8
C6—C5—H5A119.3O1—C15—H15112.9
C4—C5—H5A119.3C16—O3—Cu126.20 (12)
C5—C6—C7120.61 (18)O4—C16—O3125.51 (17)
C5—C6—H6A119.7O4—C16—H16118.8
C7—C6—H6A119.7O3—C16—H16114.6
C8—C7—C11116.55 (17)Cu—O5—H5B117.0
C8—C7—C6123.44 (18)Cu—O5—H5C121.6
C11—C7—C6119.99 (19)H5B—O5—H5C107.7
C9—C8—C7120.23 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5C···O2i0.881.862.714 (2)166
O5—H5B···O4ii0.891.722.605 (2)175
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formula[Cu(HCO2)2(C14H12N2)(H2O)]
Mr379.85
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)10.669 (2), 7.7677 (16), 19.338 (4)
β (°) 94.22 (3)
V3)1598.3 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.40
Crystal size (mm)0.26 × 0.17 × 0.09
Data collection
DiffractometerBruker P4
diffractometer
Absorption correctionMulti-scan
(XSCANS; Siemens, 1996)
Tmin, Tmax0.749, 0.879
No. of measured, independent and
observed [I > 2σ(I)] reflections
15099, 3632, 3202
Rint0.019
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.072, 1.06
No. of reflections3632
No. of parameters219
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.22

Computer programs: XSCANS (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cu—O11.9450 (12)Cu—N12.0328 (13)
Cu—O31.9546 (12)Cu—N22.2801 (15)
Cu—O51.9726 (12)
O1—Cu—O395.53 (6)O3—Cu—N186.33 (5)
O1—Cu—O587.40 (6)O3—Cu—N295.28 (6)
O1—Cu—N1174.06 (6)O5—Cu—N189.57 (5)
O1—Cu—N2107.40 (6)O5—Cu—N295.87 (5)
O3—Cu—O5167.05 (6)N1—Cu—N277.98 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5C···O2i0.881.862.714 (2)166
O5—H5B···O4ii0.891.722.605 (2)175
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y1, z.
 

Acknowledgements

This project was sponsored by the K. C. Wong Magna Fund in Ningbo University, the Expert Project of Key Basic Research of the Ministry of Science and Technology of China (grant No. 2003CCA00800), and the Ningbo Municipal Natural Science Foundation (grant No. 2006 A610061).

References

First citationPan, J. G., Lin, J. L. & Zheng, Y. Q. (2005). Z. Kristallogr. New Cryst. Struct. 220, 495–496.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds