organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages o1540-o1541

1-(4-Bromo­phen­yl)-3-(4-eth­oxy­phen­yl)­prop-2-en-1-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore 574 199, India, and cCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
*Correspondence e-mail: hkfun@usm.my

(Received 22 June 2008; accepted 13 July 2008; online 19 July 2008)

The title compound, C17H15BrO2, consists of two substituted benzene rings connected by a prop-2-en-1-one group. The mol­ecule is nearly planar and adopts an E configuration. The dihedral angle between the two benzene rings is 8.51 (19)°. The enone plane makes dihedral angles of 11.06 (19) and 7.69 (19)°, respectively, with the bromo­phenyl and ethoxy­phenyl rings. The mol­ecules are linked by C—H⋯O hydrogen bonds to form a zigzag ribbon-like structure along the b direction. The crystal structure is stabilized by weak intra- and inter­molecular C—H⋯O inter­actions.

Related literature

For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For similar structures, see: Fun et al. (2008[Fun, H.-K., Chantrapromma, S., Patil, P. S. & Dharmaprakash, S. M. (2008). Acta Cryst. E64, o1356-o1357.]); Patil, Fun et al. (2007[Patil, P. S., Fun, H.-K., Chantrapromma, S. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o2497-o2498.]); Patil, Ng et al. (2007[Patil, P. S., Ng, S.-L., Razak, I. A., Fun, H.-K. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o59-o60.]). For background on chalcones, see: Chopra et al. (2007[Chopra, D., Mohan, T. P., Vishalakshi, B. & Guru Row, T. N. (2007). Acta Cryst. C63, o704-o710.]); Fichou et al. (1988[Fichou, D., Watanabe, T., Takeda, T., Miyata, S., Goto, Y. & Nakayama, M. (1988). Jpn J. Appl. Phys. 39, 3798-3813.]); Goto et al. (1991[Goto, Y., Hayashi, A., Kimura, Y. & Nakayama, M. (1991). J. Cryst. Growth. 108, 688-698.]); Gu, Ji, Patil & Dharmaprakash (2008[Gu, B., Ji, W., Patil, P. S. & Dharmaprakash, S. M. (2008). J. Appl. Phys. 103, 103511.]); Gu, Ji, Patil, Dharmaprakash & Wang (2008[Gu, B., Ji, W., Patil, P. S., Dharmaprakash, S. M. & Wang, H. T. (2008). Appl. Phys. Lett. 92, 091118.]); Sathiya Moorthi, Chinnakali, Nanjundan, Radhika et al. (2005[Sathiya Moorthi, S., Chinnakali, K., Nanjundan, S., Radhika, R., Fun, H.-K. & Yu, X.-L. (2005). Acta Cryst. E61, o480-o482.]); Sathiya Moorthi, Chinnakali, Nanjundan, Selvam et al. (2005[Sathiya Moorthi, S., Chinnakali, K., Nanjundan, S., Selvam, P., Fun, H.-K. & Yu, X.-L. (2005). Acta Cryst. E61, o743-o745.]); Schmalle et al. (1990[Schmalle, H. W., Adiwidjaja, G., Jarchow, O. H., Hausen, B. M. & Wollenweber, E. (1990). Acta Cryst. C46, 1712-1715.]); Uchida et al. (1998[Uchida, T., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abdureyim, A. & Watanebe, Y. (1998). Mol. Cryst. Liq. Cryst. 314, 135-140.]); Wang et al. (2004[Wang, L., Zhang, Y., Lu, C.-R. & Zhang, D.-C. (2004). Acta Cryst. C60, o696-o698.]); Zhao et al. (2000[Zhao, B., Lu, W.-Q., Zhou, Z.-H. & Wu, Y. (2000). J. Mater. Chem. 10, 1513-1517.]).

[Scheme 1]

Experimental

Crystal data
  • C17H15BrO2

  • Mr = 331.19

  • Monoclinic, P 21

  • a = 3.9855 (1) Å

  • b = 10.0681 (3) Å

  • c = 17.5270 (4) Å

  • β = 92.227 (2)°

  • V = 702.77 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.92 mm−1

  • T = 100.0 (1) K

  • 0.47 × 0.17 × 0.09 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.340, Tmax = 0.781

  • 7696 measured reflections

  • 2620 independent reflections

  • 2339 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.095

  • S = 1.08

  • 2620 reflections

  • 182 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.98 e Å−3

  • Δρmin = −0.53 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 656 Friedel pairs

  • Flack parameter: 0.013 (13)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯O2i 0.93 2.57 3.257 (5) 131
C9—H9A⋯O1 0.93 2.48 2.814 (5) 102
C16—H16B⋯O1ii 0.97 2.49 3.446 (5) 170
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+2]; (ii) [-x, y-{\script{1\over 2}}, -z+2].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Chalcone and its derivatives have received much attention due to their interesting biological (Nel et al., 1998) and non-linear optical properties (Chopra et al., 2007; Sathiya Moorthi, Chinnakali, Nanjundan, Radhika et al., 2005; Sathiya Moorthi, Chinnakali, Nanjundan, Selvam et al., 2005; Schmalle et al., 1990; Wang et al., 2004; Gu, Ji, Patil & Dharmaprakash, 2008; Gu, Ji, Patil, Dharmaprakash & Wang, 2008). Understanding the origin and magnitude of nonlinearity in such exotic molecules is very important from both a fundamental point of view and for its wide range of applications. Some chalcone derivatives exhibiting second harmonic generation (SHG) also possess other attributes such as transparency in the relevant wavelengths, ability to withstand laser irradiation, and chemical stability (Fichou et al., 1988; Goto et al., 1991; Uchida et al., 1998; Zhao et al., 2000). We previously reported the crystal structure of a related chalcone derivative, 1-(3-bromophenyl)-3-(4-ethoxyphenyl) prop-2-en-1-one, (II) (Fun et al., 2008). In our continuing systematic study, we report here the structure of the title compound, (I) which also crystallized in a non-centrosymmetric space group and, as with (II), it should exhibit second-order nonlinear optical properties.

The molecular structure of (I) (Fig. 1) consists of two planar six-membered rings C1–C6 (ring A) and C10–C15 (ring B), with maximum deviations of 0.009 (4) and -0.010 (4) Å for atoms C6 (ring A) and C12(ring B), respectively. The molecule exists in an E configuration with respect to the C8=C9 double bond [1.336 (6) Å]: the torsion angle C7–C8–C9–C10 = -179.4 (4)°. The molecule is nearly planar with a dihedral angle between rings A and B of 8.51 (19)° [10.09 (11)° in (II) by Fun et al., 2008]. The mean plane C through enone unit (C7–C9/O1) makes dihedral angles of 11.06 (19)° and 7.69 (19)° with the planes of rings A and B, respectively [the corresponding values are 12.05 (11)° and 9.87 (11)° in (II)]. The ethoxy group itself is slightly twisted as indicated by the torsion angle C13—O2—C16—C17 = 173.4 (4)° but co-planar with the attached benzene ring B with the torsion angle C16/O2/C13/C12 = -1.2 (6)°. A weak C9–H9A···O1 intramolecular interaction (Fig. 1) generates an S(5) ring motif (Bernstein et al., 1995). The overall conformation of (I) is flatter than that observed for (II) which can be attributed to the different positions of the Br substituent on ring A (para in (I) and meta in (II). The bond distances and angles in (I) have normal values and are comparable with a number of closely related structures (Fun et al., 2008; Patil, Fun et al., 2007; Patil, Ng et al., 2007).

In the crystal packing, the molecules are arranged in an anti-parallel manner and linked by weak C—H···O interactions (Table 1) into a zigzag ribbon-like structure along the b direction (Fig. 2 and Fig. 3). Similar packing characteristics were observed in (II) (Fun et al., 2008). In (I) the same weak C—H···O (C16—H16B···O1) interaction is involved in the ribbon-linkage but there is also an additional weak C—H···O interaction which links the molecules (Table 1). This is also due to the different positions of the meta and para Br substitutions in (I) and (II) which made (I) more favourable for the C—H···O contacts.

Related literature top

For hydrogen-bond motifs, see: Bernstein et al. (1995). For similar structures, see: Fun et al. (2008); Patil, Fun et al. (2007); Patil, Ng et al. (2007). For background on chalcones, see: Chopra et al. (2007); Fichou et al. (1988); Goto et al. (1991); Gu, Ji, Patil & Dharmaprakash (2008); Gu, Ji, Patil, Dharmaprakash & Wang (2008); Nel et al. (1998); Sathiya Moorthi, Chinnakali, Nanjundan, Radhika et al. (2005); Sathiya Moorthi, Chinnakali, Nanjundan, Selvam et al. (2005); Schmalle et al. (1990); Uchida et al. (1998); Wang et al. (2004); Zhao et al. (2000).

Experimental top

The title compound was synthesized by the condensation of 4-ethoxybenzaldehyde (0.01 mol, 1.39 ml) with 4-bromoacetophenone (0.01 mol, 1.99 g) in methanol (60 ml) in the presence of a catalytic amount of sodium hydroxide solution (5 ml, 20%). After stirring for 3 h, the contents of the flask were poured into ice-cold water (500 ml) and left to stand for 4 h. The resulting crude solid was filtered and dried. Single crystals were obtained by recrystallization from acetone.

Refinement top

All H atoms were placed in calculated positions, with C—H = 0.93 Å, Uiso = 1.2Ueq(C) for aromatic and CH, C—H = 0.97 Å, Uiso = 1.2Ueq(C) for CH2 and C—H = 0.96 Å, Uiso = 1.5Ueq(C) for CH3 atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.78 Å from Br1 and the deepest hole is located at 0.84 Å from Br1.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 50% probability displacement ellipsoids and the atom-numbering scheme. The dashed line represents the intra-molcular C—H···O interaction.
[Figure 2] Fig. 2. Crystal packing for (I) viewed along the a axis showing an antiparallel arrangement of the molecules. Hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. Crystal packing for (I) showing the zigzag ribbon-like structure running along the b axis. Hydrogen bonds are shown as dashed lines.
1-(4-Bromophenyl)-3-(4-ethoxyphenyl)prop-2-en-1-one top
Crystal data top
C17H15BrO2F(000) = 336
Mr = 331.19Dx = 1.565 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2620 reflections
a = 3.9855 (1) Åθ = 1.2–29.0°
b = 10.0681 (3) ŵ = 2.92 mm1
c = 17.5270 (4) ÅT = 100 K
β = 92.227 (2)°Block, colorless
V = 702.77 (3) Å30.47 × 0.17 × 0.09 mm
Z = 2
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2620 independent reflections
Radiation source: fine-focus sealed tube2339 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 8.33 pixels mm-1θmax = 29.0°, θmin = 1.2°
ω scansh = 55
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 138
Tmin = 0.340, Tmax = 0.781l = 2323
7696 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0562P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
2620 reflectionsΔρmax = 0.98 e Å3
182 parametersΔρmin = 0.53 e Å3
1 restraintAbsolute structure: Flack (1983), 640 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.013 (13)
Crystal data top
C17H15BrO2V = 702.77 (3) Å3
Mr = 331.19Z = 2
Monoclinic, P21Mo Kα radiation
a = 3.9855 (1) ŵ = 2.92 mm1
b = 10.0681 (3) ÅT = 100 K
c = 17.5270 (4) Å0.47 × 0.17 × 0.09 mm
β = 92.227 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2620 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2339 reflections with I > 2σ(I)
Tmin = 0.340, Tmax = 0.781Rint = 0.033
7696 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.095Δρmax = 0.98 e Å3
S = 1.08Δρmin = 0.53 e Å3
2620 reflectionsAbsolute structure: Flack (1983), 640 Friedel pairs
182 parametersAbsolute structure parameter: 0.013 (13)
1 restraint
Special details top

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.43528 (8)0.23538 (6)0.502628 (18)0.02637 (12)
O10.1514 (7)0.6546 (3)0.77360 (17)0.0282 (7)
O20.5201 (7)0.5258 (3)1.22900 (16)0.0234 (6)
C10.0563 (11)0.5256 (4)0.6436 (3)0.0234 (9)
H1A0.06040.60520.63790.028*
C20.1400 (10)0.4543 (4)0.5789 (2)0.0210 (8)
H2A0.08350.48590.53020.025*
C30.3114 (9)0.3340 (4)0.5890 (2)0.0195 (8)
C40.3966 (9)0.2855 (4)0.6611 (2)0.0229 (8)
H4A0.50970.20510.66690.027*
C50.3112 (10)0.3583 (4)0.7242 (2)0.0216 (8)
H5A0.36590.32580.77280.026*
C60.1443 (10)0.4796 (4)0.7165 (2)0.0197 (8)
C70.0421 (11)0.5603 (4)0.7834 (2)0.0241 (9)
C80.1824 (10)0.5255 (5)0.8602 (2)0.0249 (9)
H8A0.33560.45610.86550.030*
C90.0927 (10)0.5921 (4)0.9221 (2)0.0236 (9)
H9A0.06260.66010.91420.028*
C100.2115 (10)0.5700 (4)1.0008 (2)0.0219 (8)
C110.4006 (10)0.4600 (4)1.0240 (3)0.0235 (9)
H11A0.45970.39790.98760.028*
C120.5036 (10)0.4399 (4)1.0993 (2)0.0241 (9)
H12A0.62520.36431.11330.029*
C130.4243 (10)0.5332 (4)1.1541 (2)0.0220 (8)
C140.2317 (10)0.6439 (4)1.1322 (2)0.0228 (9)
H14A0.17410.70591.16870.027*
C150.1258 (10)0.6625 (4)1.0569 (2)0.0223 (8)
H15A0.00280.73651.04330.027*
C160.7128 (11)0.4120 (4)1.2541 (3)0.0247 (9)
H16A0.90750.40141.22310.030*
H16B0.57730.33221.24950.030*
C170.8217 (13)0.4350 (5)1.3364 (3)0.0328 (12)
H17A0.96050.36251.35410.049*
H17B0.62720.44071.36690.049*
H17C0.94650.51631.34060.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02618 (18)0.0284 (2)0.02459 (17)0.0013 (3)0.00238 (12)0.0061 (2)
O10.0305 (16)0.0211 (17)0.0332 (16)0.0038 (13)0.0033 (13)0.0008 (13)
O20.0222 (14)0.0203 (15)0.0275 (14)0.0029 (12)0.0015 (12)0.0018 (12)
C10.026 (2)0.014 (2)0.030 (2)0.0016 (19)0.0027 (18)0.0004 (18)
C20.0227 (19)0.019 (2)0.0218 (18)0.0029 (17)0.0000 (15)0.0045 (15)
C30.0184 (17)0.017 (2)0.0229 (18)0.0049 (15)0.0036 (14)0.0029 (15)
C40.0199 (17)0.0192 (18)0.029 (2)0.0005 (17)0.0002 (15)0.0007 (17)
C50.0247 (19)0.017 (2)0.0226 (19)0.0001 (16)0.0030 (16)0.0040 (16)
C60.021 (2)0.0155 (18)0.0222 (18)0.0033 (15)0.0012 (16)0.0020 (17)
C70.026 (2)0.020 (2)0.027 (2)0.0048 (17)0.0057 (17)0.0006 (17)
C80.0225 (19)0.020 (2)0.032 (2)0.0018 (17)0.0013 (17)0.0015 (18)
C90.0233 (19)0.018 (2)0.029 (2)0.0030 (17)0.0013 (16)0.0010 (17)
C100.0191 (18)0.018 (2)0.029 (2)0.0054 (16)0.0046 (15)0.0038 (16)
C110.023 (2)0.016 (2)0.032 (2)0.0033 (16)0.0084 (16)0.0057 (16)
C120.0209 (19)0.0152 (19)0.036 (2)0.0016 (17)0.0035 (17)0.0028 (18)
C130.0178 (18)0.0172 (19)0.031 (2)0.0035 (16)0.0026 (16)0.0046 (17)
C140.0220 (19)0.0169 (19)0.030 (2)0.0018 (16)0.0029 (16)0.0068 (17)
C150.0201 (18)0.017 (2)0.030 (2)0.0004 (15)0.0011 (16)0.0030 (16)
C160.024 (2)0.013 (2)0.037 (2)0.0003 (16)0.0013 (18)0.0026 (18)
C170.032 (3)0.025 (2)0.042 (3)0.002 (2)0.003 (2)0.008 (2)
Geometric parameters (Å, º) top
Br1—C31.892 (4)C9—C101.456 (6)
O1—C71.231 (5)C9—H9A0.9300
O2—C131.354 (5)C10—C111.392 (6)
O2—C161.438 (5)C10—C151.406 (6)
C1—C61.391 (6)C11—C121.383 (6)
C1—C21.393 (6)C11—H11A0.9300
C1—H1A0.9300C12—C131.389 (6)
C2—C31.399 (6)C12—H12A0.9300
C2—H2A0.9300C13—C141.399 (6)
C3—C41.385 (6)C14—C151.383 (6)
C4—C51.381 (6)C14—H14A0.9300
C4—H4A0.9300C15—H15A0.9300
C5—C61.395 (6)C16—C171.508 (6)
C5—H5A0.9300C16—H16A0.9700
C6—C71.496 (6)C16—H16B0.9700
C7—C81.480 (6)C17—H17A0.9600
C8—C91.336 (6)C17—H17B0.9600
C8—H8A0.9300C17—H17C0.9600
C13—O2—C16117.9 (3)C11—C10—C9123.4 (4)
C6—C1—C2121.1 (4)C15—C10—C9118.8 (4)
C6—C1—H1A119.5C12—C11—C10122.2 (4)
C2—C1—H1A119.5C12—C11—H11A118.9
C1—C2—C3118.3 (4)C10—C11—H11A118.9
C1—C2—H2A120.8C11—C12—C13119.6 (4)
C3—C2—H2A120.8C11—C12—H12A120.2
C4—C3—C2121.5 (4)C13—C12—H12A120.2
C4—C3—Br1118.9 (3)O2—C13—C12124.7 (4)
C2—C3—Br1119.6 (3)O2—C13—C14116.2 (4)
C5—C4—C3119.0 (4)C12—C13—C14119.1 (4)
C5—C4—H4A120.5C15—C14—C13121.0 (4)
C3—C4—H4A120.5C15—C14—H14A119.5
C4—C5—C6121.2 (4)C13—C14—H14A119.5
C4—C5—H5A119.4C14—C15—C10120.3 (4)
C6—C5—H5A119.4C14—C15—H15A119.8
C1—C6—C5118.9 (4)C10—C15—H15A119.8
C1—C6—C7118.2 (4)O2—C16—C17107.5 (4)
C5—C6—C7122.8 (4)O2—C16—H16A110.2
O1—C7—C8121.5 (4)C17—C16—H16A110.2
O1—C7—C6119.8 (4)O2—C16—H16B110.2
C8—C7—C6118.7 (4)C17—C16—H16B110.2
C9—C8—C7121.1 (4)H16A—C16—H16B108.5
C9—C8—H8A119.4C16—C17—H17A109.5
C7—C8—H8A119.4C16—C17—H17B109.5
C8—C9—C10127.2 (4)H17A—C17—H17B109.5
C8—C9—H9A116.4C16—C17—H17C109.5
C10—C9—H9A116.4H17A—C17—H17C109.5
C11—C10—C15117.8 (4)H17B—C17—H17C109.5
C6—C1—C2—C30.9 (6)C7—C8—C9—C10179.4 (4)
C1—C2—C3—C40.2 (6)C8—C9—C10—C1110.6 (7)
C1—C2—C3—Br1179.1 (3)C8—C9—C10—C15170.8 (4)
C2—C3—C4—C50.3 (6)C15—C10—C11—C120.1 (6)
Br1—C3—C4—C5179.0 (3)C9—C10—C11—C12178.5 (4)
C3—C4—C5—C60.6 (6)C10—C11—C12—C131.5 (6)
C2—C1—C6—C51.8 (6)C16—O2—C13—C121.2 (6)
C2—C1—C6—C7179.2 (4)C16—O2—C13—C14178.8 (3)
C4—C5—C6—C11.6 (6)C11—C12—C13—O2178.0 (4)
C4—C5—C6—C7178.9 (4)C11—C12—C13—C142.1 (6)
C1—C6—C7—O19.3 (6)O2—C13—C14—C15178.8 (4)
C5—C6—C7—O1168.0 (4)C12—C13—C14—C151.2 (6)
C1—C6—C7—C8169.7 (4)C13—C14—C15—C100.2 (6)
C5—C6—C7—C813.0 (6)C11—C10—C15—C140.8 (6)
O1—C7—C8—C92.8 (7)C9—C10—C15—C14179.4 (4)
C6—C7—C8—C9178.3 (4)C13—O2—C16—C17173.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O2i0.932.573.257 (5)131
C9—H9A···O10.932.482.814 (5)102
C16—H16B···O1ii0.972.493.446 (5)170
Symmetry codes: (i) x+1, y1/2, z+2; (ii) x, y1/2, z+2.

Experimental details

Crystal data
Chemical formulaC17H15BrO2
Mr331.19
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)3.9855 (1), 10.0681 (3), 17.5270 (4)
β (°) 92.227 (2)
V3)702.77 (3)
Z2
Radiation typeMo Kα
µ (mm1)2.92
Crystal size (mm)0.47 × 0.17 × 0.09
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.340, 0.781
No. of measured, independent and
observed [I > 2σ(I)] reflections
7696, 2620, 2339
Rint0.033
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.095, 1.08
No. of reflections2620
No. of parameters182
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.98, 0.53
Absolute structureFlack (1983), 640 Friedel pairs
Absolute structure parameter0.013 (13)

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O2i0.932.57273.257 (5)131
C9—H9A···O10.932.47662.814 (5)102
C16—H16B···O1ii0.972.48783.446 (5)170
Symmetry codes: (i) x+1, y1/2, z+2; (ii) x, y1/2, z+2.
 

Footnotes

Additional correspondence author, e-mail: suchada.c@psu.ac.th.

Acknowledgements

This work is supported by the Department of Science and Technology (DST), Government of India, under grant No. SR/S2/LOP-17/2006. SC thanks the Prince of Songkla University for generous support. The authors also thank the Universiti Sains Malaysia for the Research University Golden Goose Grant No. 1001/PFIZIK/811012.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationChopra, D., Mohan, T. P., Vishalakshi, B. & Guru Row, T. N. (2007). Acta Cryst. C63, o704–o710.  Web of Science CSD CrossRef IUCr Journals
First citationFichou, D., Watanabe, T., Takeda, T., Miyata, S., Goto, Y. & Nakayama, M. (1988). Jpn J. Appl. Phys. 39, 3798–3813.
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals
First citationFun, H.-K., Chantrapromma, S., Patil, P. S. & Dharmaprakash, S. M. (2008). Acta Cryst. E64, o1356–o1357.  Web of Science CSD CrossRef IUCr Journals
First citationGoto, Y., Hayashi, A., Kimura, Y. & Nakayama, M. (1991). J. Cryst. Growth. 108, 688–698.  CrossRef CAS Web of Science
First citationGu, B., Ji, W., Patil, P. S. & Dharmaprakash, S. M. (2008). J. Appl. Phys. 103, 103511.  Web of Science CrossRef
First citationGu, B., Ji, W., Patil, P. S., Dharmaprakash, S. M. & Wang, H. T. (2008). Appl. Phys. Lett. 92, 091118.  Web of Science CrossRef
First citationPatil, P. S., Fun, H.-K., Chantrapromma, S. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o2497–o2498.  Web of Science CSD CrossRef IUCr Journals
First citationPatil, P. S., Ng, S.-L., Razak, I. A., Fun, H.-K. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o59–o60.  Web of Science CSD CrossRef IUCr Journals
First citationSathiya Moorthi, S., Chinnakali, K., Nanjundan, S., Radhika, R., Fun, H.-K. & Yu, X.-L. (2005). Acta Cryst. E61, o480–o482.  Web of Science CSD CrossRef IUCr Journals
First citationSathiya Moorthi, S., Chinnakali, K., Nanjundan, S., Selvam, P., Fun, H.-K. & Yu, X.-L. (2005). Acta Cryst. E61, o743–o745.  Web of Science CSD CrossRef IUCr Journals
First citationSchmalle, H. W., Adiwidjaja, G., Jarchow, O. H., Hausen, B. M. & Wollenweber, E. (1990). Acta Cryst. C46, 1712–1715.  CSD CrossRef CAS Web of Science IUCr Journals
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals
First citationUchida, T., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abdureyim, A. & Watanebe, Y. (1998). Mol. Cryst. Liq. Cryst. 314, 135–140.  Web of Science CrossRef
First citationWang, L., Zhang, Y., Lu, C.-R. & Zhang, D.-C. (2004). Acta Cryst. C60, o696–o698.  Web of Science CSD CrossRef CAS IUCr Journals
First citationZhao, B., Lu, W.-Q., Zhou, Z.-H. & Wu, Y. (2000). J. Mater. Chem. 10, 1513–1517.  Web of Science CrossRef CAS

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages o1540-o1541
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds