organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4′-[(1,3,4-Thia­diazole-2,5-di­yl)bis­­(thio­methyl­ene)]dibenzo­nitrile

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: zhaohong@seu.edu.cn

(Received 27 June 2008; accepted 21 July 2008; online 26 July 2008)

The title mol­ecule, C18H12N4S3, consists of three essentially planar fragments, viz. two methyl-substituted benzonitrile rings and a substituted thia­diazole ring. The dihedral angles between the substituted benzonitrile rings and the central thia­diazole ring are 28.29 (10) and 78.83 (6)°, and the dihedral angle between the two benzonitrile rings is 72.89 (7)°.

Related literature

For related literature, see: Tarafder et al., (2000[Tarafder, M. T. H., Azahari, K., Crouse, K. A., Yamin, B. M., Sundara Raj, S. S., Ibrahim, A. R. & Fun, H.-K. (2000). Z. Kristallogr. New Cryst. Struct. 215, 487-488.]); El-Shekeil et al. (1988[El-Shekeil, A., Babaqi, A., Hassan, M. A. & Sheba, S. (1988). Heterocycles, 27, 2577-2580.]); Jinxia et al. (2003[Jinxia, L., Zhan, H. & Zhou, Y. (2003). Electrochem. Commun. 5, 555-560.]).

[Scheme 1]

Experimental

Crystal data
  • C18H12N4S3

  • Mr = 380.50

  • Monoclinic, P 21 /c

  • a = 7.6974 (15) Å

  • b = 8.4375 (17) Å

  • c = 27.272 (6) Å

  • β = 92.53 (3)°

  • V = 1769.5 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.43 mm−1

  • T = 293 (2) K

  • 0.45 × 0.40 × 0.30 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.814, Tmax = 0.903

  • 15327 measured reflections

  • 4028 independent reflections

  • 2754 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.115

  • S = 1.05

  • 4028 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1,3,4-thiadiazole-2,5-dithiol and its derivatives are interesting compounds that have attracted the attention of researchers because of their wide range of applications in many fields, such as the determination of trace elements, the synthesis of novel heterocyclic compounds with antimicrobial activity(El-Shekeil et al. 1988), advanced materials, and battery cathodes (Jinxia et al.2003, Tarafder et al., (2000)). In this paper, we report the structure of one such derviative, the title compound (I).

In (I, Fig. 1) all bond lengths and angles are normal. There are three planar fragments in the molecule, viz. the central S1—S2—S3—C1—C2—N1—N2 plane with C1 farthest out at (0.0077 (19) Å) and the two benzonitrile systems C11—C18 and N4 with C11 farthest out at 0.0280 (19) Å) and C3—C19 and N3 with N3 farthest out at 0.0738 (21) Å. The dihedral angles between the central substituted ring and benzonitrile systems are 28.29 (10)° and 78.83 (6)° and 72.89 (7)° between the two benzonitrile moieties. There is no evidence of typical hydrogenn bonding or intermolecular ππ interactions. Only van-der-waals interactions are observed in the crystal is packing (Fig.2).

Related literature top

For related literature, see: Tarafder et al., (2000); El-Shekeil et al. (1988); Jinxia et al. (2003)

Experimental top

A dry 50 ml flask was charged with 1,3,4-thiadiazole-2,5-dithiol (10 mmol), 4-(bromomethyl)benzonitrile (20 mmol), K2CO3(10 mmol), and methanol (30 mL). The mixture was stirred with refluxing for 4 h and then was poured into water (40 ml), the precipitate was washed with water for 2–3 times and purified by recrystallization from methanol to give the crystals of the target material.

Refinement top

All the C—H hydrogen atoms were calculated geometrically and were allowed to ride on the C atoms to which they are bonded, with acyclic C—H distances ranging as 0.97 Å, phenyl C—H distances ranging as 0.93 Å, and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.
[Figure 2] Fig. 2. Packing diagram of the title compound, showing the structure along the b axis.
4,4'-[(1,3,4-Thiadiazole-2,5-diyl)bis(thiomethylene)]dibenzonitrile top
Crystal data top
C18H12N4S3F(000) = 784
Mr = 380.50Dx = 1.428 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 12716 reflections
a = 7.6974 (15) Åθ = 3.3–27.3°
b = 8.4375 (17) ŵ = 0.43 mm1
c = 27.272 (6) ÅT = 293 K
β = 92.53 (3)°Prism, colorless
V = 1769.5 (6) Å30.45 × 0.40 × 0.30 mm
Z = 4
Data collection top
Rigaku Mercury2
diffractometer
4028 independent reflections
Radiation source: fine-focus sealed tube2754 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.0°
CCD_Profile_fitting scansh = 99
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1010
Tmin = 0.814, Tmax = 0.903l = 3535
15327 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0435P)2 + 0.4638P]
where P = (Fo2 + 2Fc2)/3
4028 reflections(Δ/σ)max < 0.001
226 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C18H12N4S3V = 1769.5 (6) Å3
Mr = 380.50Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.6974 (15) ŵ = 0.43 mm1
b = 8.4375 (17) ÅT = 293 K
c = 27.272 (6) Å0.45 × 0.40 × 0.30 mm
β = 92.53 (3)°
Data collection top
Rigaku Mercury2
diffractometer
4028 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2754 reflections with I > 2σ(I)
Tmin = 0.814, Tmax = 0.903Rint = 0.043
15327 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.05Δρmax = 0.20 e Å3
4028 reflectionsΔρmin = 0.25 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6555 (3)0.3789 (3)0.34124 (8)0.0469 (5)
C20.9214 (3)0.3764 (3)0.38800 (8)0.0476 (6)
C30.4395 (3)0.2503 (3)0.27094 (10)0.0619 (7)
H3A0.53570.25350.24910.074*
H3B0.44550.15140.28910.074*
C40.2700 (3)0.2614 (3)0.24188 (9)0.0494 (6)
C50.1254 (3)0.1815 (3)0.25715 (10)0.0681 (8)
H50.13440.11930.28530.082*
C60.0313 (3)0.1926 (3)0.23136 (10)0.0675 (8)
H60.12770.13790.24190.081*
C70.0448 (3)0.2853 (3)0.18983 (8)0.0463 (5)
C80.0971 (3)0.3662 (3)0.17434 (8)0.0504 (6)
H80.08730.42930.14640.060*
C90.2533 (3)0.3540 (3)0.20014 (9)0.0521 (6)
H90.34940.40870.18940.062*
C100.2123 (3)0.3038 (3)0.16434 (9)0.0576 (7)
C111.2030 (3)0.2210 (3)0.42467 (10)0.0602 (7)
H11A1.12650.14320.43860.072*
H11B1.21950.19200.39080.072*
C121.3756 (3)0.2188 (3)0.45268 (8)0.0489 (6)
C131.4027 (3)0.2929 (3)0.49739 (9)0.0571 (6)
H131.31260.35000.51060.068*
C141.5604 (3)0.2838 (3)0.52286 (9)0.0568 (6)
H141.57670.33460.55300.068*
C151.6945 (3)0.1987 (3)0.50351 (9)0.0486 (6)
C161.6682 (3)0.1221 (3)0.45909 (9)0.0563 (6)
H161.75750.06310.44620.068*
C171.5102 (3)0.1328 (3)0.43390 (9)0.0553 (6)
H171.49360.08150.40390.066*
C181.8610 (3)0.1876 (3)0.52986 (9)0.0558 (6)
N10.7442 (3)0.2519 (3)0.33425 (8)0.0576 (5)
N20.9002 (3)0.2507 (2)0.36166 (8)0.0573 (5)
N30.3451 (3)0.3216 (4)0.14549 (9)0.0848 (8)
N41.9930 (3)0.1766 (3)0.54989 (9)0.0740 (7)
S10.75230 (9)0.51067 (8)0.38233 (2)0.0594 (2)
S20.45247 (8)0.41683 (8)0.31298 (2)0.0595 (2)
S31.10283 (9)0.41341 (8)0.42665 (3)0.0642 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0514 (13)0.0435 (13)0.0451 (13)0.0003 (11)0.0051 (10)0.0021 (10)
C20.0521 (14)0.0403 (13)0.0499 (13)0.0007 (11)0.0046 (10)0.0007 (10)
C30.0557 (15)0.0595 (16)0.0689 (17)0.0079 (13)0.0167 (12)0.0152 (13)
C40.0475 (13)0.0459 (14)0.0540 (14)0.0037 (11)0.0076 (11)0.0056 (11)
C50.0654 (17)0.0724 (19)0.0653 (17)0.0093 (15)0.0122 (14)0.0269 (14)
C60.0509 (15)0.081 (2)0.0694 (18)0.0132 (14)0.0042 (13)0.0272 (15)
C70.0423 (13)0.0497 (14)0.0463 (13)0.0028 (11)0.0039 (10)0.0007 (10)
C80.0535 (14)0.0511 (14)0.0464 (13)0.0022 (12)0.0002 (11)0.0072 (11)
C90.0470 (14)0.0515 (15)0.0577 (15)0.0082 (12)0.0031 (11)0.0010 (12)
C100.0511 (16)0.0691 (18)0.0523 (15)0.0021 (14)0.0005 (12)0.0068 (13)
C110.0546 (15)0.0506 (15)0.0741 (17)0.0006 (12)0.0122 (13)0.0093 (13)
C120.0502 (14)0.0396 (13)0.0561 (15)0.0038 (11)0.0052 (11)0.0033 (11)
C130.0517 (14)0.0607 (16)0.0584 (15)0.0103 (13)0.0014 (12)0.0096 (13)
C140.0565 (15)0.0585 (16)0.0547 (15)0.0084 (13)0.0059 (12)0.0061 (12)
C150.0464 (13)0.0427 (13)0.0564 (15)0.0002 (11)0.0037 (11)0.0103 (11)
C160.0526 (15)0.0525 (15)0.0640 (16)0.0085 (12)0.0038 (12)0.0001 (13)
C170.0603 (16)0.0527 (15)0.0526 (15)0.0027 (13)0.0019 (12)0.0080 (12)
C180.0553 (16)0.0512 (15)0.0607 (16)0.0061 (13)0.0001 (12)0.0081 (12)
N10.0526 (12)0.0538 (13)0.0648 (13)0.0076 (10)0.0160 (10)0.0139 (10)
N20.0525 (12)0.0532 (13)0.0647 (13)0.0061 (10)0.0147 (10)0.0131 (10)
N30.0503 (14)0.126 (2)0.0771 (17)0.0071 (15)0.0094 (12)0.0204 (16)
N40.0572 (14)0.0870 (18)0.0765 (16)0.0146 (13)0.0119 (12)0.0068 (13)
S10.0657 (4)0.0441 (4)0.0664 (4)0.0074 (3)0.0187 (3)0.0101 (3)
S20.0572 (4)0.0556 (4)0.0640 (4)0.0118 (3)0.0159 (3)0.0095 (3)
S30.0646 (4)0.0468 (4)0.0786 (5)0.0012 (3)0.0278 (3)0.0094 (3)
Geometric parameters (Å, º) top
C1—N11.289 (3)C9—H90.9300
C1—S11.725 (2)C10—N31.134 (3)
C1—S21.742 (2)C11—C121.503 (3)
C2—N21.287 (3)C11—S31.799 (3)
C2—S11.727 (2)C11—H11A0.9700
C2—S31.740 (2)C11—H11B0.9700
C3—C41.499 (3)C12—C131.378 (3)
C3—S21.814 (2)C12—C171.382 (3)
C3—H3A0.9700C13—C141.374 (3)
C3—H3B0.9700C13—H130.9300
C4—C51.381 (3)C14—C151.381 (3)
C4—C91.382 (3)C14—H140.9300
C5—C61.372 (3)C15—C161.380 (3)
C5—H50.9300C15—C181.445 (3)
C6—C71.376 (3)C16—C171.373 (3)
C6—H60.9300C16—H160.9300
C7—C81.371 (3)C17—H170.9300
C7—C101.446 (3)C18—N41.136 (3)
C8—C91.370 (3)N1—N21.386 (3)
C8—H80.9300
N1—C1—S1114.56 (17)C12—C11—S3111.49 (17)
N1—C1—S2123.94 (18)C12—C11—H11A109.3
S1—C1—S2121.49 (14)S3—C11—H11A109.3
N2—C2—S1114.47 (17)C12—C11—H11B109.3
N2—C2—S3124.36 (18)S3—C11—H11B109.3
S1—C2—S3121.18 (14)H11A—C11—H11B108.0
C4—C3—S2107.93 (16)C13—C12—C17118.7 (2)
C4—C3—H3A110.1C13—C12—C11122.7 (2)
S2—C3—H3A110.1C17—C12—C11118.6 (2)
C4—C3—H3B110.1C14—C13—C12121.2 (2)
S2—C3—H3B110.1C14—C13—H13119.4
H3A—C3—H3B108.4C12—C13—H13119.4
C5—C4—C9118.5 (2)C13—C14—C15119.6 (2)
C5—C4—C3120.3 (2)C13—C14—H14120.2
C9—C4—C3121.2 (2)C15—C14—H14120.2
C6—C5—C4120.9 (2)C16—C15—C14119.7 (2)
C6—C5—H5119.6C16—C15—C18119.9 (2)
C4—C5—H5119.6C14—C15—C18120.4 (2)
C5—C6—C7119.6 (2)C17—C16—C15120.0 (2)
C5—C6—H6120.2C17—C16—H16120.0
C7—C6—H6120.2C15—C16—H16120.0
C8—C7—C6120.3 (2)C16—C17—C12120.7 (2)
C8—C7—C10120.2 (2)C16—C17—H17119.6
C6—C7—C10119.4 (2)C12—C17—H17119.6
C9—C8—C7119.8 (2)N4—C18—C15178.6 (3)
C9—C8—H8120.1C1—N1—N2112.22 (19)
C7—C8—H8120.1C2—N2—N1112.35 (19)
C8—C9—C4120.9 (2)C1—S1—C286.40 (12)
C8—C9—H9119.5C1—S2—C399.23 (11)
C4—C9—H9119.5C2—S3—C1198.82 (11)
N3—C10—C7177.8 (3)

Experimental details

Crystal data
Chemical formulaC18H12N4S3
Mr380.50
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.6974 (15), 8.4375 (17), 27.272 (6)
β (°) 92.53 (3)
V3)1769.5 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.43
Crystal size (mm)0.45 × 0.40 × 0.30
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.814, 0.903
No. of measured, independent and
observed [I > 2σ(I)] reflections
15327, 4028, 2754
Rint0.043
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.115, 1.05
No. of reflections4028
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.25

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by a Start-up Grant from Southeast University to HZ.

References

First citationEl-Shekeil, A., Babaqi, A., Hassan, M. A. & Sheba, S. (1988). Heterocycles, 27, 2577–2580.  CAS Google Scholar
First citationJinxia, L., Zhan, H. & Zhou, Y. (2003). Electrochem. Commun. 5, 555–560.  Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTarafder, M. T. H., Azahari, K., Crouse, K. A., Yamin, B. M., Sundara Raj, S. S., Ibrahim, A. R. & Fun, H.-K. (2000). Z. Kristallogr. New Cryst. Struct. 215, 487–488.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds