organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Hydr­­oxy-4,4-di­phenyl­butan-2-one

aSchool of Physical and Chemical Sciences, Queensland University of Technology, 2 George St, Brisbane, Queensland 4001, Australia
*Correspondence e-mail: j.mcmurtrie@qut.edu.au

(Received 3 July 2008; accepted 7 July 2008; online 12 July 2008)

The mol­ecules of the title compound, C16H16O2, display an intra­molecular O—H⋯O hydrogen bond between the hydroxyl donor and the ketone acceptor. Inter­molecular C—H⋯π inter­actions connect adjacent mol­ecules into chains that propagate parallel to the ac diagonal. The chains are arranged in sheets, and mol­ecules in adjacent sheets inter­act via inter­molecular O—H⋯O hydrogen bonds.

Related literature

For related literature, see: Rivett (1980[Rivett, E. E. A. (1980). J. Chem. Educ. 57, 751.]); Paulson et al. (1973[Paulson, D. R., Hartwig, A. L. & Moran, G. F. (1973). J. Chem. Educ. 50, 216-217.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16O2

  • Mr = 240.29

  • Monoclinic, P 21 /n

  • a = 9.8619 (2) Å

  • b = 9.2015 (2) Å

  • c = 14.3720 (3) Å

  • β = 102.098 (2)°

  • V = 1275.21 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 150 (2) K

  • 0.35 × 0.30 × 0.20 mm

Data collection
  • Oxford Diffraction Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.933, Tmax = 0.984

  • 7361 measured reflections

  • 2935 independent reflections

  • 2144 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.066

  • S = 1.01

  • 2935 reflections

  • 167 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯O1 0.910 (12) 2.016 (12) 2.7636 (12) 138.5 (11)
O2—H2O⋯O1i 0.910 (12) 2.385 (13) 3.0530 (12) 130.3 (10)
Symmetry code: (i) -x+1, -y, -z+2.

Data collection: CrysAlis CCD (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR97 (Altomare et al. 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and CrystalMaker (CrystalMaker, 2006[CrystalMaker (2006). CrystalMaker. CrystalMaker Software, Yarnton, Oxfordshire, UK.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

The molecular stucture of the title compound, (I), is illustrated in Fig. 1. There is an intramolecular hydrogen bond between the hydroxyl moiety and the ketone oxygen. The molecules are arranged in chains that propagate parallel to the ac diagonal via intermolecular CH···π interactions. There are two such interactions; the aromatic ring comprising C5—C10 is the CH donor and the ring comprising C11—C16 is the acceptor in both cases. Geometric parameters for the two interactions are as follows; C6—H6···C11—C16plane distance 2.731 Å with C5—C10plane···C11—C16plane dihedral angle 78.67° and C8—H8···C11—C16plane distance 2.947 Å with C5—C10plane···C11—C16plane dihedral angle 83.52°. The chains stack to form two-dimensional sheets in the crystal structure (Fig. 2). Intermolecular hydrogen bonds connect pairs of molecules from contiguous two-dimensional sheets. The pairwise intermolecular H-bond interactions and the intramolecular H-bond interactions are illustrated in Fig. 3.

Related literature top

For related literature, see: Rivett (1980); Paulson et al. (1973).

Experimental top

The title compound was prepared according to the procedure described by Rivett (1980) which is an adaptation of the method reported earlier by Paulson et al. (1973). Large colourless prismatic crystals of the compound were obtained by crystallization from an evaporating dichloromethane/methanol solution.

Refinement top

C-bound H atoms were included in idealized positions and refined using a riding model approximation with methylene, methyl and aromatic bond lengths fixed at 0.99, 0.98 and 0.95 Å, respectively. Uiso(H) values were fixed at 1.2Ueq of the parent C atoms for methylene and aromatic H atoms and 1.5Ueq of the parent C atoms for methyl H atoms. The hydroxy H atom was located in a Fourier difference map and refined with an O—H bond length restraint of 0.98 Å and with Uiso fixed at 1.5Ueq of the parent O atom.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SIR97 (Altomare et al. 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and CrystalMaker (CrystalMaker, 2006); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP depiction of the molecular structure with atom numbering scheme. Ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. (a) The molecules are arranged in sheets. Within the sheets the molecules are linked in one-dimensional chains by CH···π interactions between phenyl rings. Once such chain is highlighted with alternating molecules coloured green and blue. (b) Excerpt from (a) showing the propagation of the chain by CH···π interactions between phenyl rings of adjacent molecules.
[Figure 3] Fig. 3. Molecules in adjacent two-dimensional sheets are connected by intermolecular hydrogen bonds. The arrangement of these hydrogen bonds between a pair of molecules is illustrated (red/white dashed contact). The intramolecular hydrogen bonds are also shown (black/white dashed line). Symmetry code: (i) -x + 1, -y, -z + 2.
4-Hydroxy-4,4-diphenylbutan-2-one top
Crystal data top
C16H16O2F(000) = 512
Mr = 240.29Dx = 1.252 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3618 reflections
a = 9.8619 (2) Åθ = 2.9–28.7°
b = 9.2015 (2) ŵ = 0.08 mm1
c = 14.3720 (3) ÅT = 150 K
β = 102.098 (2)°Prism, colourless
V = 1275.21 (5) Å30.35 × 0.30 × 0.20 mm
Z = 4
Data collection top
Oxford Diffraction Gemini
diffractometer
2935 independent reflections
Radiation source: Enhance (Mo) X-ray Source2144 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 16.0774 pixels mm-1θmax = 28.8°, θmin = 2.9°
ω scansh = 1112
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
k = 1212
Tmin = 0.933, Tmax = 0.984l = 1919
7361 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.01P)2 + 0.4P]
where P = (Fo2 + 2Fc2)/3
2935 reflections(Δ/σ)max = 0.001
167 parametersΔρmax = 0.22 e Å3
1 restraintΔρmin = 0.20 e Å3
Crystal data top
C16H16O2V = 1275.21 (5) Å3
Mr = 240.29Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.8619 (2) ŵ = 0.08 mm1
b = 9.2015 (2) ÅT = 150 K
c = 14.3720 (3) Å0.35 × 0.30 × 0.20 mm
β = 102.098 (2)°
Data collection top
Oxford Diffraction Gemini
diffractometer
2935 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
2144 reflections with I > 2σ(I)
Tmin = 0.933, Tmax = 0.984Rint = 0.021
7361 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0361 restraint
wR(F2) = 0.066H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.22 e Å3
2935 reflectionsΔρmin = 0.20 e Å3
167 parameters
Special details top

Experimental. Crystal cleaved from larger prism.

Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.55546 (14)0.14657 (15)0.76771 (9)0.0373 (3)
H1A0.60470.05380.76940.056*
H1B0.62240.22660.77500.056*
H1C0.48960.15620.70670.056*
C20.47849 (12)0.15136 (14)0.84736 (8)0.0276 (3)
C30.42255 (12)0.29752 (13)0.86860 (8)0.0256 (3)
H3A0.38020.34490.80760.031*
H3B0.50120.35890.90040.031*
C40.31411 (11)0.29285 (13)0.93164 (7)0.0224 (2)
C50.27448 (11)0.44508 (13)0.95954 (8)0.0227 (2)
C60.30596 (13)0.57091 (14)0.91585 (8)0.0294 (3)
H60.35610.56480.86630.035*
C70.26527 (13)0.70651 (14)0.94343 (9)0.0328 (3)
H70.28750.79200.91270.039*
C80.19261 (12)0.71662 (14)1.01542 (8)0.0311 (3)
H80.16490.80891.03450.037*
C90.16028 (13)0.59169 (15)1.05965 (9)0.0330 (3)
H90.11000.59831.10910.040*
C100.20081 (13)0.45708 (14)1.03224 (8)0.0291 (3)
H100.17830.37191.06320.035*
C110.18229 (11)0.21520 (13)0.87881 (7)0.0221 (2)
C120.10703 (12)0.27142 (14)0.79318 (8)0.0282 (3)
H120.13790.35760.76770.034*
C130.01221 (13)0.20283 (15)0.74497 (8)0.0336 (3)
H130.06270.24230.68690.040*
C140.05786 (13)0.07704 (15)0.78118 (9)0.0344 (3)
H140.13900.02940.74770.041*
C150.01500 (13)0.02096 (15)0.86617 (9)0.0341 (3)
H150.01650.06500.89150.041*
C160.13418 (12)0.08994 (14)0.91473 (8)0.0281 (3)
H160.18340.05080.97330.034*
O10.46398 (10)0.04232 (10)0.89213 (6)0.0388 (2)
O20.37110 (8)0.22230 (9)1.01953 (5)0.02635 (19)
H2O0.4104 (14)0.1379 (14)1.0054 (9)0.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0371 (8)0.0363 (8)0.0426 (7)0.0045 (6)0.0178 (6)0.0073 (6)
C20.0246 (6)0.0290 (7)0.0283 (6)0.0047 (5)0.0030 (5)0.0038 (5)
C30.0260 (6)0.0247 (6)0.0271 (6)0.0035 (5)0.0077 (5)0.0001 (5)
C40.0258 (6)0.0221 (6)0.0196 (5)0.0044 (5)0.0057 (4)0.0023 (5)
C50.0219 (6)0.0225 (6)0.0230 (5)0.0026 (5)0.0032 (4)0.0014 (5)
C60.0337 (7)0.0256 (7)0.0315 (6)0.0036 (5)0.0127 (5)0.0010 (6)
C70.0379 (7)0.0221 (6)0.0391 (7)0.0039 (6)0.0099 (6)0.0023 (6)
C80.0316 (7)0.0245 (7)0.0360 (6)0.0080 (6)0.0042 (5)0.0057 (6)
C90.0348 (7)0.0341 (7)0.0331 (6)0.0062 (6)0.0141 (5)0.0043 (6)
C100.0336 (7)0.0259 (7)0.0304 (6)0.0016 (5)0.0126 (5)0.0008 (5)
C110.0247 (6)0.0227 (6)0.0200 (5)0.0055 (5)0.0074 (4)0.0024 (5)
C120.0318 (6)0.0310 (7)0.0227 (6)0.0070 (6)0.0078 (5)0.0012 (5)
C130.0318 (7)0.0444 (8)0.0230 (6)0.0105 (6)0.0018 (5)0.0046 (6)
C140.0257 (6)0.0414 (8)0.0354 (7)0.0009 (6)0.0049 (5)0.0143 (6)
C150.0333 (7)0.0308 (7)0.0396 (7)0.0031 (6)0.0110 (6)0.0035 (6)
C160.0307 (7)0.0270 (7)0.0268 (6)0.0027 (5)0.0063 (5)0.0007 (5)
O10.0515 (6)0.0275 (5)0.0405 (5)0.0123 (4)0.0166 (4)0.0030 (4)
O20.0320 (5)0.0241 (5)0.0214 (4)0.0077 (4)0.0021 (3)0.0016 (4)
Geometric parameters (Å, º) top
C1—C21.5009 (16)C8—C91.3828 (18)
C1—H1A0.9800C8—H80.9500
C1—H1B0.9800C9—C101.3839 (17)
C1—H1C0.9800C9—H90.9500
C2—O11.2165 (15)C10—H100.9500
C2—C31.5089 (16)C11—C161.3866 (16)
C3—C41.5403 (15)C11—C121.3965 (15)
C3—H3A0.9900C12—C131.3855 (17)
C3—H3B0.9900C12—H120.9500
C4—O21.4266 (13)C13—C141.3826 (19)
C4—C51.5301 (16)C13—H130.9500
C4—C111.5373 (16)C14—C151.3808 (18)
C5—C61.3830 (16)C14—H140.9500
C5—C101.3964 (15)C15—C161.3884 (17)
C6—C71.3934 (17)C15—H150.9500
C6—H60.9500C16—H160.9500
C7—C81.3795 (17)O2—H2O0.910 (12)
C7—H70.9500
C2—C1—H1A109.5C6—C7—H7120.0
C2—C1—H1B109.5C7—C8—C9119.65 (12)
H1A—C1—H1B109.5C7—C8—H8120.2
C2—C1—H1C109.5C9—C8—H8120.2
H1A—C1—H1C109.5C8—C9—C10120.33 (11)
H1B—C1—H1C109.5C8—C9—H9119.8
O1—C2—C1120.90 (12)C10—C9—H9119.8
O1—C2—C3122.65 (11)C9—C10—C5120.69 (12)
C1—C2—C3116.44 (11)C9—C10—H10119.7
C2—C3—C4114.99 (10)C5—C10—H10119.7
C2—C3—H3A108.5C16—C11—C12118.42 (11)
C4—C3—H3A108.5C16—C11—C4121.49 (10)
C2—C3—H3B108.5C12—C11—C4120.09 (11)
C4—C3—H3B108.5C13—C12—C11120.70 (12)
H3A—C3—H3B107.5C13—C12—H12119.6
O2—C4—C5105.04 (8)C11—C12—H12119.6
O2—C4—C11111.18 (9)C14—C13—C12120.15 (11)
C5—C4—C11108.60 (9)C14—C13—H13119.9
O2—C4—C3109.89 (9)C12—C13—H13119.9
C5—C4—C3112.06 (10)C15—C14—C13119.72 (12)
C11—C4—C3110.00 (9)C15—C14—H14120.1
C6—C5—C10118.35 (11)C13—C14—H14120.1
C6—C5—C4123.61 (10)C14—C15—C16120.17 (12)
C10—C5—C4118.03 (10)C14—C15—H15119.9
C5—C6—C7121.00 (11)C16—C15—H15119.9
C5—C6—H6119.5C11—C16—C15120.84 (11)
C7—C6—H6119.5C11—C16—H16119.6
C8—C7—C6119.97 (12)C15—C16—H16119.6
C8—C7—H7120.0C4—O2—H2O107.4 (8)
O1—C2—C3—C415.52 (17)C6—C5—C10—C90.08 (18)
C1—C2—C3—C4165.07 (10)C4—C5—C10—C9179.04 (11)
C2—C3—C4—O257.09 (13)O2—C4—C11—C162.22 (14)
C2—C3—C4—C5173.47 (9)C5—C4—C11—C16117.30 (11)
C2—C3—C4—C1165.63 (12)C3—C4—C11—C16119.73 (11)
O2—C4—C5—C6133.63 (11)O2—C4—C11—C12177.02 (10)
C11—C4—C5—C6107.35 (12)C5—C4—C11—C1261.94 (13)
C3—C4—C5—C614.36 (15)C3—C4—C11—C1261.03 (13)
O2—C4—C5—C1047.29 (13)C16—C11—C12—C130.53 (17)
C11—C4—C5—C1071.72 (12)C4—C11—C12—C13179.79 (11)
C3—C4—C5—C10166.56 (10)C11—C12—C13—C140.24 (18)
C10—C5—C6—C70.05 (18)C12—C13—C14—C150.74 (18)
C4—C5—C6—C7179.02 (11)C13—C14—C15—C160.48 (19)
C5—C6—C7—C80.10 (19)C12—C11—C16—C150.79 (17)
C6—C7—C8—C90.17 (19)C4—C11—C16—C15179.96 (11)
C7—C8—C9—C100.21 (19)C14—C15—C16—C110.29 (18)
C8—C9—C10—C50.16 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O10.91 (1)2.02 (1)2.7636 (12)139 (1)
O2—H2O···O1i0.91 (1)2.39 (1)3.0530 (12)130 (1)
Symmetry code: (i) x+1, y, z+2.

Experimental details

Crystal data
Chemical formulaC16H16O2
Mr240.29
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)9.8619 (2), 9.2015 (2), 14.3720 (3)
β (°) 102.098 (2)
V3)1275.21 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.35 × 0.30 × 0.20
Data collection
DiffractometerOxford Diffraction Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.933, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
7361, 2935, 2144
Rint0.021
(sin θ/λ)max1)0.678
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.066, 1.01
No. of reflections2935
No. of parameters167
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.20

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SIR97 (Altomare et al. 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and CrystalMaker (CrystalMaker, 2006), publCIF (Westrip, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O10.910 (12)2.016 (12)2.7636 (12)138.5 (11)
O2—H2O···O1i0.910 (12)2.385 (13)3.0530 (12)130.3 (10)
Symmetry code: (i) x+1, y, z+2.
 

Acknowledgements

The authors gratefully acknowledge the Synthesis and Molecular Recognition Program, Faculty of Science, Queensland University of Technology, for financial support.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCrystalMaker (2006). CrystalMaker. CrystalMaker Software, Yarnton, Oxfordshire, UK.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationPaulson, D. R., Hartwig, A. L. & Moran, G. F. (1973). J. Chem. Educ. 50, 216–217.  CrossRef CAS Google Scholar
First citationRivett, E. E. A. (1980). J. Chem. Educ. 57, 751.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds