organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Acryloylphenyl­alanine

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: wjt@njut.edu.cn

(Received 3 July 2008; accepted 6 July 2008; online 12 July 2008)

The title compound, C12H13NO3, was prepared by the nucleophilic substitution reaction of acryloyl chloride with glycylglycine. In the crystal structure, inter­molecular N—H⋯O, O–H⋯O and C—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional network.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C12H13NO3

  • Mr = 219.23

  • Monoclinic, P 21

  • a = 6.0050 (12) Å

  • b = 7.5820 (15) Å

  • c = 12.512 (3) Å

  • β = 98.58 (3)°

  • V = 563.3 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 291 (2) K

  • 0.30 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.973, Tmax = 0.991

  • 1195 measured reflections

  • 1088 independent reflections

  • 940 reflections with I > 2σ(I)

  • Rint = 0.015

  • 3 standard reflections frequency: 120 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.161

  • S = 1.00

  • 1088 reflections

  • 145 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N—H0A⋯O2i 0.86 2.30 3.036 (6) 144
O1—H1B⋯O3ii 0.82 1.84 2.614 (6) 156
C12—H12B⋯O1iii 0.93 2.60 3.178 (8) 121
Symmetry codes: (i) x+1, y, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+1]; (iii) [-x+2, y-{\script{1\over 2}}, -z+1].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

N-Acryloylphenylalanie is one of the useful synthetic intermediates and free radical addition monomers. The crystal structure determination of the title compound has been carried out in order to elucidate the molecular conformation. We report herein its synthesis and crystal structure.

In the molecule of the title compound (Fig. 1) the bond lengths and angles are within normal ranges (Allen et al., 1987).

In the crystal structure, intermolecular N-H···O, O-H···O and C-H···O hydrogen bonds (Table 1) link the molecules into a three dimensional network (Fig. 2), in which they may be effective in stabilization of the structure.

Related literature top

For bond-length data, see: Allen et al. (1987).

Experimental top

For the preparation of the title compound, to a well stirred solutions of phenylalanie (2.5 g) in H2O (30 ml) and sodium hydroxide (0.66 g) in H2O (5 ml), acryloyl chloride (1.34 ml) containing diphenylpicrylhydrazyl polymerization inhibitor (0.01%) and sodium hydroxide solution (0.66 g) in H2O (5 ml) were added dropwise simultaneously over a 30 min period and the stirring was continued for another 1 h. The reaction mixture was kept at 273 K in an ice-water bath. The solution was acidified to pH = 2 with HCl (6 N). The resulting solid was filtered off, and crystallized from ethanol (95%) (yield; 61%, m.p.401-403 K).

Refinement top

H atoms were positioned geometrically, with O-H = 0.82 Å (for OH), N-H = 0.86 Å (for NH) and C-H = 0.93, 0.98 and 0.97 Å for aromatic, methine and methylene H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C,N,O), where x = 1.5 for OH H and x = 1.2 for all other H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
N-Acryloylphenylalanine top
Crystal data top
C12H13NO3F(000) = 232
Mr = 219.23Dx = 1.293 Mg m3
Monoclinic, P21Melting point: 402 K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 6.0050 (12) ÅCell parameters from 25 reflections
b = 7.5820 (15) Åθ = 10–14°
c = 12.512 (3) ŵ = 0.09 mm1
β = 98.58 (3)°T = 291 K
V = 563.3 (2) Å3Block, colorless
Z = 20.30 × 0.10 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
940 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.015
Graphite monochromatorθmax = 25.2°, θmin = 1.7°
ω/2θ scansh = 77
Absorption correction: ψ scan
(North et al., 1968)
k = 09
Tmin = 0.973, Tmax = 0.991l = 014
1195 measured reflections3 standard reflections every 120 min
1088 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.062H-atom parameters constrained
wR(F2) = 0.161 w = 1/[σ2(Fo2) + (0.06P)2 + 0.62P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
1088 reflectionsΔρmax = 0.19 e Å3
145 parametersΔρmin = 0.19 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.028 (5)
Crystal data top
C12H13NO3V = 563.3 (2) Å3
Mr = 219.23Z = 2
Monoclinic, P21Mo Kα radiation
a = 6.0050 (12) ŵ = 0.09 mm1
b = 7.5820 (15) ÅT = 291 K
c = 12.512 (3) Å0.30 × 0.10 × 0.10 mm
β = 98.58 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
940 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.015
Tmin = 0.973, Tmax = 0.9913 standard reflections every 120 min
1195 measured reflections intensity decay: none
1088 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0621 restraint
wR(F2) = 0.161H-atom parameters constrained
S = 1.01Δρmax = 0.19 e Å3
1088 reflectionsΔρmin = 0.19 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N0.7481 (7)0.7059 (7)0.2952 (3)0.0555 (11)
H0A0.87300.74690.27980.067*
O10.5602 (6)0.8820 (8)0.4513 (3)0.0843 (15)
H1B0.48710.91280.49850.126*
C10.8147 (14)0.9763 (11)0.0922 (6)0.086 (2)
H1A0.86110.97770.15990.103*
O20.2165 (6)0.8618 (7)0.3516 (3)0.0700 (11)
C20.9519 (13)1.0469 (10)0.0068 (7)0.084 (2)
H2A1.08831.09790.01640.101*
O30.5572 (6)0.4855 (7)0.3658 (3)0.0632 (11)
C30.8883 (9)1.0423 (9)0.0922 (5)0.0699 (16)
H3A0.98391.08570.15170.084*
C40.6681 (9)0.9687 (8)0.1060 (4)0.0592 (13)
C50.5445 (10)0.8933 (9)0.0224 (4)0.0670 (15)
H5A0.41400.83360.03250.080*
C60.6059 (12)0.9014 (10)0.0818 (5)0.0801 (19)
H6A0.51100.85840.14170.096*
C70.5920 (12)0.9795 (10)0.2154 (5)0.0743 (17)
H7A0.45761.05200.20850.089*
H7B0.70791.04000.26420.089*
C80.5411 (10)0.8052 (8)0.2676 (4)0.0608 (15)
H8A0.43620.73690.21590.073*
C90.4281 (9)0.8489 (9)0.3655 (4)0.0634 (15)
C100.7431 (9)0.5410 (8)0.3477 (3)0.0566 (14)
C110.9502 (11)0.4520 (10)0.3691 (4)0.0701 (18)
H11A1.07940.51120.35640.084*
C120.9710 (12)0.2919 (10)0.4055 (6)0.083 (2)
H12A0.84460.22970.41890.099*
H12B1.11240.23920.41830.099*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N0.055 (2)0.065 (3)0.049 (2)0.007 (2)0.0183 (18)0.002 (2)
O10.076 (3)0.118 (4)0.066 (2)0.021 (3)0.033 (2)0.036 (3)
C10.118 (5)0.070 (4)0.076 (4)0.005 (5)0.036 (4)0.008 (4)
O20.0515 (19)0.084 (3)0.078 (2)0.001 (2)0.0231 (17)0.001 (3)
C20.093 (5)0.074 (5)0.090 (4)0.000 (4)0.029 (4)0.023 (4)
O30.0551 (19)0.090 (3)0.0452 (18)0.009 (2)0.0088 (14)0.010 (2)
C30.062 (3)0.074 (4)0.078 (4)0.003 (3)0.026 (3)0.000 (3)
C40.077 (3)0.052 (3)0.052 (3)0.004 (3)0.020 (2)0.005 (3)
C50.081 (4)0.063 (4)0.059 (3)0.003 (3)0.019 (3)0.004 (3)
C60.116 (5)0.077 (5)0.048 (3)0.001 (4)0.017 (3)0.004 (3)
C70.099 (4)0.066 (4)0.064 (3)0.017 (4)0.032 (3)0.002 (3)
C80.072 (3)0.064 (4)0.048 (3)0.012 (3)0.016 (2)0.006 (3)
C90.068 (3)0.068 (4)0.055 (3)0.006 (3)0.011 (2)0.010 (3)
C100.073 (3)0.069 (4)0.030 (2)0.003 (3)0.011 (2)0.006 (2)
C110.083 (4)0.080 (5)0.053 (3)0.010 (4)0.031 (3)0.014 (3)
C120.067 (4)0.063 (4)0.115 (6)0.003 (3)0.003 (4)0.014 (4)
Geometric parameters (Å, º) top
N—C101.414 (8)C4—C71.509 (7)
N—C81.451 (7)C5—C61.408 (8)
N—H0A0.8600C5—H5A0.9300
O1—C91.261 (6)C6—H6A0.9300
O1—H1B0.8200C7—C81.525 (9)
C1—C21.358 (11)C7—H7A0.9700
C1—C61.400 (10)C7—H7B0.9700
C1—H1A0.9300C8—C91.523 (7)
O2—C91.261 (6)C8—H8A0.9800
C2—C31.350 (10)C10—C111.405 (9)
C2—H2A0.9300C11—C121.296 (10)
O3—C101.245 (6)C11—H11A0.9300
C3—C41.468 (8)C12—H12A0.9300
C3—H3A0.9300C12—H12B0.9300
C4—C51.319 (8)
C10—N—C8119.5 (4)C4—C7—H7A108.1
C10—N—H0A120.2C8—C7—H7A108.1
C8—N—H0A120.2C4—C7—H7B108.1
C9—O1—H1B109.5C8—C7—H7B108.1
C2—C1—C6122.2 (6)H7A—C7—H7B107.3
C2—C1—H1A118.9N—C8—C9112.9 (5)
C6—C1—H1A118.9N—C8—C7109.4 (5)
C3—C2—C1119.4 (7)C9—C8—C7107.3 (5)
C3—C2—H2A120.3N—C8—H8A109.0
C1—C2—H2A120.3C9—C8—H8A109.0
C2—C3—C4120.0 (6)C7—C8—H8A109.0
C2—C3—H3A120.0O2—C9—O1126.5 (5)
C4—C3—H3A120.0O2—C9—C8117.8 (5)
C5—C4—C3118.8 (5)O1—C9—C8115.4 (5)
C5—C4—C7122.2 (5)O3—C10—C11126.5 (6)
C3—C4—C7119.0 (5)O3—C10—N117.7 (5)
C4—C5—C6121.4 (6)C11—C10—N115.7 (5)
C4—C5—H5A119.3C12—C11—C10123.6 (7)
C6—C5—H5A119.3C12—C11—H11A118.2
C1—C6—C5117.7 (6)C10—C11—H11A118.2
C1—C6—H6A121.1C11—C12—H12A120.0
C5—C6—H6A121.1C11—C12—H12B120.0
C4—C7—C8116.7 (6)H12A—C12—H12B120.0
C6—C1—C2—C31.3 (12)C10—N—C8—C7178.2 (4)
C1—C2—C3—C42.8 (11)C4—C7—C8—N67.3 (7)
C2—C3—C4—C56.2 (10)C4—C7—C8—C9169.9 (5)
C2—C3—C4—C7174.7 (7)N—C8—C9—O2149.5 (6)
C3—C4—C5—C68.0 (10)C7—C8—C9—O289.9 (7)
C7—C4—C5—C6172.9 (7)N—C8—C9—O135.8 (8)
C2—C1—C6—C52.9 (12)C7—C8—C9—O184.9 (7)
C4—C5—C6—C16.5 (10)C8—N—C10—O31.8 (6)
C5—C4—C7—C858.1 (9)C8—N—C10—C11178.5 (4)
C3—C4—C7—C8121.1 (7)O3—C10—C11—C124.3 (9)
C10—N—C8—C958.7 (6)N—C10—C11—C12172.1 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H0A···O2i0.862.303.036 (6)144
O1—H1B···O3ii0.821.842.614 (6)156
C12—H12B···O1iii0.932.603.178 (8)121
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1/2, z+1; (iii) x+2, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC12H13NO3
Mr219.23
Crystal system, space groupMonoclinic, P21
Temperature (K)291
a, b, c (Å)6.0050 (12), 7.5820 (15), 12.512 (3)
β (°) 98.58 (3)
V3)563.3 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.973, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
1195, 1088, 940
Rint0.015
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.161, 1.01
No. of reflections1088
No. of parameters145
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.19

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H0A···O2i0.862.303.036 (6)144
O1—H1B···O3ii0.821.842.614 (6)156
C12—H12B···O1iii0.932.603.178 (8)121
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1/2, z+1; (iii) x+2, y1/2, z+1.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds