supplementary materials


hk2502 scheme

Acta Cryst. (2008). E64, o1628    [ doi:10.1107/S1600536808023301 ]

(2Z,3Z)-3,4-Dihydro-2H-1,4-benzothiazine-2,3-dione dioxime dihydrate

A. Kakanejadifard and V. Amani

Abstract top

In the molecule of the title compound, C8H11N3O4S, the thiazine ring adopts an envelope conformation. In the crystal structure, intermolecular N-H...O, O-H...O and O-H...N hydrogen bonds link the molecules.

Comment top

We have been interested in the synthesis and chemical behavior of vic-dioximes, in the past decade. In our investigations, the reaction of amines with dichloroglyoxime or cyanogendi-N-oxide resulted in various symmetrically substituted diaminoglyoxime derivatives, in which some of them were quite suitable to act, as donor species, towards some transition metal ions (Kakanejadifard, Niknam et al., 2007; Kakanejadifard, Saniei et al., 2007; Kakanejadifard & Niknam, 2006; Kakanejadifard & Amani, 2008). Some oximes are widely used for various purposes in organic, inorganic, bioinorganic, pigment, analytical, dyes and medical chemistry (Jones et al., 1961; Schrauzer & Kohnle, 1964; Yari et al., 2006; Hashemi et al., 2006; Ghiasvand et al., 2004; Ghiasvand et al., 2005; Kakanejadifard, Niknam & Zabardasti, 2007). vic-Dioximes, containing mildly acidic hydroxyl groups and slightly basic nitrogen atoms, are amphoteric and their transition metal complexes have been widely investigated as analytical reagents (Gok & Kantekin, 1997), and models for biological systems such as vitamin B12 (Hughes, 1981). We report herein the synthesis and crystal structure of the title compound.

In the molecule of the title compound (Fig. 1), the bond lengths and angles are within normal ranges. Ring A (S1/N4/C2/C3/C5/C6) adopts envelope conformation, with C2 atom displaced by 0.248 (3) Å from the plane of the other ring atoms. Ring B (C5–C10) is, of course, planar.

In the crystal structure, intermolecular N—H···O, O—H···O and O—H···N hydrogen bonds (Table 1) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For related literature, see: Kakanejadifard, Niknam et al. (2007); Kakanejadifard, Saniei et al. (2007); Kakanejadifard & Niknam (2006); Kakanejadifard & Amani (2008). For general background, see: Jones et al. (1961); Schrauzer & Kohnle (1964); Yari et al. (2006); Hashemi et al. (2006); Ghiasvand et al. (2004, 2005); Kakanejadifard, Niknam & Zabardasti (2007); Gok & Kantekin (1997); Hughes (1981).

Experimental top

For the preparation of the title compound, a solution of NaHCO3 (0.05 g, 0.6 mmol) in aqueous EtOH (10 ml) was added to a magnetically stirred solution of dicholoroglyoxime (1.57 g, 10 mmol) in aqueous EtOH (15 ml) and a solution of 2-aminothiophenole (1.25 g, 10 mmol) in EtOH (15 ml) at room temperature. The solution was stirred for 4 h and then the mixture was filtered. The filtrate was placed at room temperature for 24 h. The gray precipitate was removed by filtration and precipitate was washed with cold THF. It was recrystallized from 2-propanol in one week (yield; 0.31 g, 74.2%, m.p. 492 K).

Refinement top

H atoms were positioned geometrically, with O—H = 0.82 Å (for OH), N—H = 0.8691 Å (for NH), O—H = 0.8499–0.8501 Å (for H2O) and C—H = 0.93 Å for aromatic H, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C,N,O), where x = 1.5 for OH H, x = 0.95 for NH H, and x = 1.2 for all other H atoms.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of the title molecule. Hydrogen bonds are shown as dashed lines.
(2Z,3Z)-3,4-Dihydro-2H-1,4-benzothiazine-2,3-dione dioxime dihydrate top
Crystal data top
C8H7N3O2S·2H2OF000 = 1024
Mr = 245.26Dx = 1.498 Mg m3
Orthorhombic, PbcaMo Kα radiation
λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 910 reflections
a = 9.1636 (18) Åθ = 2.5–26.3º
b = 9.8195 (18) ŵ = 0.30 mm1
c = 24.165 (4) ÅT = 120 (2) K
V = 2174.4 (7) Å3Plate, yellow
Z = 80.5 × 0.5 × 0.1 mm
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2337 independent reflections
Radiation source: fine-focus sealed tube1482 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.082
T = 120(2) Kθmax = 27.0º
φ and ω scansθmin = 1.7º
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
h = 11→11
Tmin = 0.859, Tmax = 0.974k = 12→12
15018 measured reflectionsl = 30→28
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.107  w = 1/[σ2(Fo2) + (0.0534P)2 + 0.01P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2337 reflectionsΔρmax = 0.43 e Å3
145 parametersΔρmin = 0.25 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none
Crystal data top
C8H7N3O2S·2H2OV = 2174.4 (7) Å3
Mr = 245.26Z = 8
Orthorhombic, PbcaMo Kα
a = 9.1636 (18) ŵ = 0.30 mm1
b = 9.8195 (18) ÅT = 120 (2) K
c = 24.165 (4) Å0.5 × 0.5 × 0.1 mm
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2337 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
1482 reflections with I > 2σ(I)
Tmin = 0.859, Tmax = 0.974Rint = 0.082
15018 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.046145 parameters
wR(F2) = 0.107H-atom parameters constrained
S = 1.02Δρmax = 0.43 e Å3
2337 reflectionsΔρmin = 0.25 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.18557 (6)0.97098 (6)0.44569 (2)0.02751 (18)
O1W0.74924 (16)1.21073 (15)0.24961 (6)0.0294 (4)
H1WA0.75671.15440.22300.035*
H1WB0.82981.25230.25390.035*
O2W0.50348 (16)1.37490 (17)0.23976 (6)0.0302 (4)
H2WA0.52011.44200.21850.036*
H2WB0.58381.33170.24110.036*
O120.07401 (16)0.93917 (17)0.34431 (6)0.0326 (4)
H120.04230.91580.31400.049*
O140.61786 (17)1.16110 (16)0.34627 (6)0.0316 (4)
H140.65701.17570.31630.047*
N40.4660 (2)1.14780 (19)0.43170 (7)0.0231 (4)
H40.54891.18950.42760.022*
N110.20659 (19)1.00628 (19)0.33728 (8)0.0268 (5)
N130.48394 (19)1.09374 (19)0.33772 (8)0.0236 (4)
C20.2680 (2)1.0265 (2)0.38436 (9)0.0223 (5)
C30.4132 (2)1.0922 (2)0.38433 (9)0.0211 (5)
C50.4075 (2)1.1389 (2)0.48497 (9)0.0212 (5)
C60.2847 (2)1.0617 (2)0.49653 (9)0.0228 (5)
C70.2320 (2)1.0540 (2)0.55071 (9)0.0269 (5)
H70.15001.00140.55840.032*
C80.3006 (3)1.1236 (2)0.59269 (9)0.0289 (6)
H80.26511.11830.62870.035*
C90.4222 (3)1.2015 (2)0.58121 (10)0.0302 (6)
H90.46831.24930.60940.036*
C100.4756 (3)1.2084 (2)0.52783 (9)0.0269 (6)
H100.55831.26020.52050.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0211 (3)0.0357 (3)0.0257 (3)0.0062 (3)0.0008 (2)0.0020 (3)
O1W0.0243 (9)0.0344 (9)0.0295 (9)0.0021 (7)0.0050 (7)0.0041 (8)
O2W0.0251 (8)0.0325 (9)0.0329 (10)0.0035 (7)0.0048 (7)0.0067 (8)
O120.0237 (9)0.0466 (11)0.0275 (9)0.0140 (8)0.0027 (7)0.0017 (8)
O140.0269 (9)0.0398 (10)0.0282 (9)0.0107 (8)0.0022 (7)0.0030 (8)
N40.0217 (9)0.0262 (11)0.0213 (10)0.0026 (8)0.0009 (8)0.0002 (8)
N110.0201 (10)0.0316 (11)0.0287 (11)0.0038 (8)0.0016 (8)0.0025 (9)
N130.0209 (10)0.0249 (10)0.0251 (10)0.0049 (8)0.0011 (8)0.0008 (8)
C20.0200 (11)0.0249 (11)0.0220 (12)0.0024 (10)0.0004 (9)0.0010 (10)
C30.0215 (11)0.0200 (11)0.0219 (12)0.0014 (10)0.0025 (9)0.0018 (10)
C50.0220 (11)0.0198 (11)0.0218 (12)0.0067 (10)0.0003 (9)0.0017 (10)
C60.0210 (12)0.0239 (12)0.0236 (13)0.0061 (9)0.0015 (9)0.0033 (9)
C70.0224 (11)0.0316 (14)0.0268 (13)0.0050 (10)0.0023 (10)0.0060 (11)
C80.0320 (13)0.0327 (13)0.0219 (13)0.0095 (11)0.0042 (11)0.0021 (11)
C90.0413 (15)0.0251 (13)0.0243 (14)0.0050 (11)0.0033 (11)0.0024 (10)
C100.0310 (13)0.0209 (12)0.0289 (14)0.0006 (10)0.0003 (11)0.0019 (10)
Geometric parameters (Å, °) top
S1—C21.750 (2)C2—C31.479 (3)
S1—C61.769 (2)C5—C61.385 (3)
S1—C52.785 (2)C5—C101.388 (3)
S1—C32.823 (2)C6—C71.398 (3)
O12—N111.393 (2)C7—C81.376 (3)
O12—H120.8200C7—H70.9300
O14—N131.409 (2)C8—C91.380 (3)
O14—C32.195 (3)C8—H80.9300
O14—H140.8200C9—C101.381 (3)
N4—C31.357 (3)C9—H90.9300
N4—C51.397 (3)C10—H100.9300
N4—H40.8691O1W—H1WA0.8501
N11—C21.285 (3)O1W—H1WB0.8499
N11—C32.364 (3)O2W—H2WA0.8500
N13—C31.299 (3)O2W—H2WB0.8500
C2—S1—C6102.11 (11)C10—C5—S1150.86 (16)
C2—S1—C577.83 (9)N4—C5—S190.18 (13)
C6—S1—C376.88 (9)C9—C5—S1121.39 (10)
C5—S1—C352.39 (6)C7—C5—S162.11 (8)
N11—O12—H12109.5C3—C5—S164.59 (7)
N13—O14—H14109.5C6—C5—C5i85.42 (14)
C3—O14—H14142.8C10—C5—C5i90.62 (14)
C3—N4—C5127.96 (19)N4—C5—C5i93.28 (14)
C3—N4—H4113.8C9—C5—C5i88.25 (10)
C5—N4—H4118.1C7—C5—C5i84.92 (10)
C2—N11—O12110.30 (18)C3—C5—C5i92.99 (10)
O12—N11—C3143.99 (15)S1—C5—C5i87.74 (9)
C3—N13—O14108.23 (17)C5—C6—C7120.0 (2)
N11—C2—C3117.44 (19)C5—C6—S1123.56 (17)
N11—C2—S1120.86 (17)C7—C6—S1116.47 (17)
C3—C2—S1121.64 (16)C5—C6—C960.51 (13)
N13—C3—N4123.3 (2)C7—C6—C959.46 (14)
N13—C3—C2117.02 (19)S1—C6—C9175.77 (13)
N4—C3—C2119.71 (19)C8—C7—C6120.4 (2)
N4—C3—O1485.70 (14)C6—C7—C990.21 (16)
C2—C3—O14154.59 (16)C8—C7—C590.50 (16)
N13—C3—N1189.24 (14)C9—C7—C560.34 (10)
N4—C3—N11146.56 (17)C8—C7—H7119.8
O14—C3—N11126.34 (11)C6—C7—H7119.8
N13—C3—C5149.31 (17)C9—C7—H7150.0
C2—C3—C593.51 (14)C5—C7—H7149.7
O14—C3—C5111.88 (11)C7—C8—C9119.8 (2)
N11—C3—C5121.44 (11)C7—C8—H8120.1
N13—C3—S1145.97 (16)C9—C8—H8120.1
N4—C3—S189.42 (13)C8—C9—C10120.1 (2)
O14—C3—S1168.89 (11)C10—C9—C790.00 (16)
N11—C3—S160.67 (7)C8—C9—C590.44 (16)
C5—C3—S163.02 (7)C7—C9—C560.37 (9)
N13—C3—C9i90.05 (14)C8—C9—C660.40 (14)
N4—C3—C9i88.63 (13)C10—C9—C659.67 (14)
C2—C3—C9i91.67 (14)C8—C9—C3i80.63 (14)
O14—C3—C9i89.14 (9)C10—C9—C3i96.59 (15)
N11—C3—C9i99.92 (10)C7—C9—C3i83.30 (9)
C5—C3—C9i85.70 (8)C5—C9—C3i92.62 (9)
S1—C3—C9i80.76 (7)C6—C9—C3i87.82 (8)
C6—C5—C10118.9 (2)C8—C9—H9120.0
C6—C5—N4122.1 (2)C10—C9—H9120.0
C10—C5—N4119.0 (2)C7—C9—H9150.0
C6—C5—C989.45 (15)C5—C9—H9149.6
N4—C5—C9148.43 (17)C6—C9—H9179.4
C10—C5—C788.76 (15)C3i—C9—H992.8
N4—C5—C7152.27 (17)C9—C10—C5120.9 (2)
C9—C5—C759.29 (10)C9—C10—H10119.5
C6—C5—C396.54 (15)C5—C10—H10119.5
C10—C5—C3144.53 (17)H1WA—O1W—H1WB109.6
C9—C5—C3173.96 (13)H2WA—O2W—H2WB104.7
C7—C5—C3126.70 (12)
O12—N11—C2—C3177.69 (18)C2—S1—C5—C9170.77 (13)
O12—N11—C2—S10.5 (3)C6—S1—C5—C91.59 (17)
C3—N11—C2—S1177.2 (3)C3—S1—C5—C9179.04 (14)
C6—S1—C2—N11164.88 (19)C2—S1—C5—C7171.89 (11)
C5—S1—C2—N11168.1 (2)C6—S1—C5—C70.47 (18)
C3—S1—C2—N11177.1 (3)C3—S1—C5—C7179.84 (10)
C6—S1—C2—C318.0 (2)C2—S1—C5—C38.27 (10)
C5—S1—C2—C314.80 (18)C6—S1—C5—C3179.4 (2)
O14—N13—C3—N40.1 (3)C2—S1—C5—C5i102.67 (11)
O14—N13—C3—C2179.59 (18)C6—S1—C5—C5i85.0 (2)
O14—N13—C3—N11171.56 (13)C3—S1—C5—C5i94.39 (10)
O14—N13—C3—C56.9 (4)C10—C5—C6—C70.4 (3)
O14—N13—C3—S1161.9 (2)N4—C5—C6—C7178.8 (2)
O14—N13—C3—C9i88.52 (14)C9—C5—C6—C70.5 (2)
C5—N4—C3—N13172.2 (2)C3—C5—C6—C7179.75 (18)
C5—N4—C3—C28.1 (3)S1—C5—C6—C7179.2 (3)
C5—N4—C3—O14172.3 (2)C5i—C5—C6—C787.8 (2)
C5—N4—C3—N1123.0 (4)C10—C5—C6—S1178.75 (16)
C5—N4—C3—S12.3 (2)N4—C5—C6—S12.1 (3)
C5—N4—C3—C9i83.1 (2)C9—C5—C6—S1178.65 (15)
N11—C2—C3—N1316.8 (3)C7—C5—C6—S1179.2 (3)
S1—C2—C3—N13160.36 (17)C3—C5—C6—S10.57 (19)
N11—C2—C3—N4162.9 (2)C5i—C5—C6—S193.07 (16)
S1—C2—C3—N419.9 (3)C10—C5—C6—C90.10 (16)
N11—C2—C3—O1416.2 (5)N4—C5—C6—C9179.3 (2)
S1—C2—C3—O14160.9 (3)C7—C5—C6—C90.5 (2)
S1—C2—C3—N11177.2 (3)C3—C5—C6—C9179.22 (13)
N11—C2—C3—C5166.47 (19)S1—C5—C6—C9178.65 (15)
S1—C2—C3—C516.35 (19)C5i—C5—C6—C988.29 (10)
N11—C2—C3—S1177.2 (3)C2—S1—C6—C57.6 (2)
N11—C2—C3—C9i107.7 (2)C3—S1—C6—C50.51 (17)
S1—C2—C3—C9i69.45 (17)C2—S1—C6—C7171.56 (17)
N13—O14—C3—N4179.9 (2)C5—S1—C6—C7179.2 (3)
N13—O14—C3—C20.9 (4)C3—S1—C6—C7179.71 (18)
N13—O14—C3—N1110.50 (17)C5—C6—C7—C80.6 (3)
N13—O14—C3—C5176.2 (2)S1—C6—C7—C8178.67 (17)
N13—O14—C3—S1115.7 (6)C9—C6—C7—C80.03 (17)
N13—O14—C3—C9i91.21 (18)C5—C6—C7—C90.5 (2)
C2—N11—C3—N13165.1 (3)S1—C6—C7—C9178.70 (13)
O12—N11—C3—N13161.4 (2)S1—C6—C7—C5179.2 (3)
C2—N11—C3—N427.6 (3)C9—C6—C7—C50.5 (2)
O12—N11—C3—N431.3 (4)C6—C5—C7—C8179.5 (3)
O12—N11—C3—C23.7 (3)C10—C5—C7—C80.11 (18)
C2—N11—C3—O14171.4 (3)N4—C5—C7—C8178.2 (3)
O12—N11—C3—O14167.7 (2)C9—C5—C7—C80.13 (13)
C2—N11—C3—C515.9 (2)C3—C5—C7—C8179.20 (15)
O12—N11—C3—C519.6 (3)S1—C5—C7—C8179.02 (15)
C2—N11—C3—S11.7 (2)C5i—C5—C7—C890.85 (15)
O12—N11—C3—S12.0 (2)C10—C5—C7—C6179.6 (3)
C2—N11—C3—C9i75.1 (2)N4—C5—C7—C62.3 (4)
O12—N11—C3—C9i71.4 (3)C9—C5—C7—C6179.4 (2)
C2—S1—C3—N1332.4 (3)C3—C5—C7—C60.3 (2)
C6—S1—C3—N13165.8 (3)S1—C5—C7—C60.50 (19)
C5—S1—C3—N13166.0 (3)C5i—C5—C7—C689.6 (2)
C2—S1—C3—N4162.8 (3)C6—C5—C7—C9179.4 (2)
C6—S1—C3—N40.88 (13)C10—C5—C7—C90.24 (13)
C5—S1—C3—N41.15 (11)N4—C5—C7—C9178.4 (4)
C6—S1—C3—C2161.9 (2)C3—C5—C7—C9179.07 (15)
C5—S1—C3—C2161.6 (2)S1—C5—C7—C9178.89 (10)
C2—S1—C3—O14133.4 (7)C5i—C5—C7—C990.98 (10)
C6—S1—C3—O1464.8 (6)C6—C7—C8—C90.1 (3)
C5—S1—C3—O1465.0 (6)C5—C7—C8—C90.2 (2)
C2—S1—C3—N111.56 (18)C7—C8—C9—C100.6 (3)
C6—S1—C3—N11163.45 (10)C7—C8—C9—C50.2 (2)
C5—S1—C3—N11163.18 (10)C7—C8—C9—C60.03 (17)
C2—S1—C3—C5161.6 (2)C7—C8—C9—C3i92.8 (2)
C6—S1—C3—C50.27 (9)C6—C7—C9—C8180.0 (3)
C2—S1—C3—C9i108.5 (2)C5—C7—C9—C8179.7 (3)
C6—S1—C3—C9i89.59 (9)C8—C7—C9—C10179.5 (3)
C5—S1—C3—C9i89.86 (8)C6—C7—C9—C100.55 (18)
C3—N4—C5—C63.4 (3)C5—C7—C9—C100.24 (13)
C3—N4—C5—C10177.4 (2)C8—C7—C9—C5179.7 (3)
C3—N4—C5—C9177.9 (2)C6—C7—C9—C50.31 (12)
C3—N4—C5—C74.8 (5)C8—C7—C9—C6180.0 (3)
C3—N4—C5—S12.3 (2)C5—C7—C9—C60.31 (12)
C3—N4—C5—C5i90.1 (2)C8—C7—C9—C3i82.9 (2)
N13—C3—C5—C6164.3 (3)C6—C7—C9—C3i97.18 (14)
N4—C3—C5—C6177.1 (3)C5—C7—C9—C3i96.88 (9)
C2—C3—C5—C69.93 (18)C6—C5—C9—C80.44 (18)
O14—C3—C5—C6168.81 (14)C10—C5—C9—C8179.4 (3)
N11—C3—C5—C617.53 (18)N4—C5—C9—C8178.4 (3)
S1—C3—C5—C60.34 (11)C7—C5—C9—C80.13 (13)
C9i—C3—C5—C681.48 (13)S1—C5—C9—C81.28 (18)
N13—C3—C5—C1016.7 (5)C5i—C5—C9—C885.00 (15)
N4—C3—C5—C103.9 (3)C6—C5—C9—C10179.8 (3)
C2—C3—C5—C10169.0 (3)N4—C5—C9—C101.0 (3)
O14—C3—C5—C1012.2 (3)C7—C5—C9—C10179.5 (3)
N11—C3—C5—C10161.4 (2)S1—C5—C9—C10179.3 (3)
S1—C3—C5—C10178.6 (3)C5i—C5—C9—C1094.4 (2)
C9i—C3—C5—C1099.5 (3)C6—C5—C9—C70.31 (12)
N13—C3—C5—N412.8 (3)C10—C5—C9—C7179.5 (3)
C2—C3—C5—N4173.0 (3)N4—C5—C9—C7178.5 (3)
O14—C3—C5—N48.3 (2)S1—C5—C9—C71.15 (10)
N11—C3—C5—N4165.4 (3)C5i—C5—C9—C785.13 (10)
S1—C3—C5—N4177.4 (3)C10—C5—C9—C6179.8 (3)
C9i—C3—C5—N495.6 (2)N4—C5—C9—C6178.8 (4)
N13—C3—C5—C7164.5 (3)C7—C5—C9—C60.31 (12)
N4—C3—C5—C7177.2 (3)S1—C5—C9—C60.84 (9)
C2—C3—C5—C79.77 (19)C5i—C5—C9—C685.44 (14)
O14—C3—C5—C7168.97 (12)C6—C5—C9—C3i81.08 (13)
N11—C3—C5—C717.37 (19)C10—C5—C9—C3i98.7 (2)
S1—C3—C5—C70.18 (11)N4—C5—C9—C3i97.8 (3)
C9i—C3—C5—C781.64 (13)C7—C5—C9—C3i80.77 (9)
N13—C3—C5—S1164.6 (3)S1—C5—C9—C3i81.92 (11)
N4—C3—C5—S1177.4 (3)C5i—C5—C9—C3i4.36 (9)
C2—C3—C5—S19.60 (11)C5—C6—C9—C8179.5 (2)
O14—C3—C5—S1169.15 (11)C7—C6—C9—C80.03 (17)
N11—C3—C5—S117.20 (10)C5—C6—C9—C100.11 (16)
C9i—C3—C5—S181.81 (7)C7—C6—C9—C10179.4 (2)
N13—C3—C5—C5i78.6 (3)C5—C6—C9—C7179.5 (2)
N4—C3—C5—C5i91.3 (2)C7—C6—C9—C5179.5 (2)
C2—C3—C5—C5i95.66 (15)C5—C6—C9—C3i99.04 (13)
O14—C3—C5—C5i83.09 (12)C7—C6—C9—C3i80.43 (14)
N11—C3—C5—C5i103.26 (13)C8—C9—C10—C50.7 (3)
S1—C3—C5—C5i86.06 (9)C7—C9—C10—C50.4 (2)
C9i—C3—C5—C5i4.25 (9)C6—C9—C10—C50.11 (16)
C2—S1—C5—C6172.4 (2)C3i—C9—C10—C583.7 (2)
C3—S1—C5—C6179.4 (2)C6—C5—C10—C90.2 (3)
C2—S1—C5—C10170.1 (3)N4—C5—C10—C9179.4 (2)
C6—S1—C5—C102.2 (3)C7—C5—C10—C90.4 (2)
C3—S1—C5—C10178.4 (3)C3—C5—C10—C9178.6 (2)
C2—S1—C5—N49.39 (13)S1—C5—C10—C91.1 (4)
C6—S1—C5—N4178.2 (3)C5i—C5—C10—C985.3 (2)
C3—S1—C5—N41.12 (11)
Symmetry codes: (i) −x+1, −y+2, −z+1.
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···N11ii0.852.112.931 (2)162
O1W—H1WA···N13ii0.852.623.225 (2)129
O1W—H1WB···O2Wii0.852.002.845 (2)171
O2W—H2WA···N13iii0.852.022.853 (3)168
N4—H4···O140.872.082.493 (2)108
O2W—H2WB···O1W0.851.942.780 (2)171
O12—H12···O2Wiv0.821.892.699 (2)171
O14—H14···O1W0.821.852.673 (2)179
Symmetry codes: (ii) x+1/2, y, −z+1/2; (iii) −x+1, y+1/2, −z+1/2; (iv) −x+1/2, y−1/2, z.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···N11i0.852.112.931 (2)162
O1W—H1WA···N13i0.852.623.225 (2)129
O1W—H1WB···O2Wi0.852.002.845 (2)171
O2W—H2WA···N13ii0.852.022.853 (3)168
N4—H4···O140.872.082.493 (2)108
O2W—H2WB···O1W0.851.942.780 (2)171
O12—H12···O2Wiii0.821.892.699 (2)171
O14—H14···O1W0.821.852.673 (2)179
Symmetry codes: (i) x+1/2, y, −z+1/2; (ii) −x+1, y+1/2, −z+1/2; (iii) −x+1/2, y−1/2, z.
Acknowledgements top

The authors acknowledge the Research Grant Council of Lorestan University for financial support.

references
References top

Bruker (1998). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.

Ghiasvand, A. R., Ghaderi, R. & Kakanejadifard, A. (2004). Talanta, 62, 287–292.

Ghiasvand, A. R., Shadabi, S., Kakanejadifard, A. & Khajehkolaki, A. (2005). Bull. Korean Chem. Soc. 26, 781–785.

Gok, Y. & Kantekin, H. (1997). Polyhedron, 16, 2413–2420.

Hashemi, P., Rahmani, Z., Kakanejadifard, A. & Niknam, E. (2006). Anal. Sci. 21, 1297–1301.

Hughes, M. N. (1981). Introduction to Chemistry of Biological Processes. New York: Wiley.

Jones, M. E. B., Thornton, D. A. & Webb, R. F. (1961). Makromol. Chem. 49, 62–66.

Kakanejadifard, A. & Amani, V. (2008). Acta Cryst. E64, o1512.

Kakanejadifard, A. & Niknam, E. (2006). Pol. J. Chem. 80, 1645–1649.

Kakanejadifard, A., Niknam, E., Ranjbar, B. & Naderi-Manesh, H. (2007). Synth. Commun. 37, 2753–2756.

Kakanejadifard, A., Niknam, E. & Zabardasti, A. (2007). J. Coord. Chem. 60, 677–681.

Kakanejadifard, A., Saniei, A., Delfani, F., Farnia, M. & Najafi, G. R. (2007). J. Heterocycl. Chem. 44, 717–718.

Schrauzer, G. N. & Kohnle, J. (1964). Chem. Ber. 97, 3056–3063.

Sheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Yari, A., Azizi, S. & Kakanejadifard, A. (2006). Sens. Actuators B, 119, 167–173.