metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-Biimidazolium hexa­aqua­manganese(II) bis­­(sulfate)

aSchool of Chemistry, University of Bristol, Bristol BS8 1TS, England
*Correspondence e-mail: guy.orpen@bris.ac.uk

(Received 25 June 2008; accepted 2 July 2008; online 9 July 2008)

The title compound, (C6H8N4)[Mn(H2O)6](SO4)2, was obtained by cocrystallization of 2,2′-biimidazolium sulfate and bis­(tetra­butyl­ammonium) tetra­chlorido­manganate(II). The asymmetric unit contains one isolated (SO4)2− anion, one half of an octa­hedral [Mn(H2O)6]2+ dication and one half of a 2,2′-biimidazolium dication, each of which lies on an inversion centre. Mol­ecules are connected by a three-dimensional N—H⋯O and O—H⋯O hydrogen-bond network.

Related literature

For the syntheses, structural studies and thermal behaviour of related compounds, see: Rekik et al. (2006[Rekik, W., Naili, H., Bataille, T., Roisnel, T. & Mhiri, T. (2006). Inorg. Chim. Acta, 359, 3954-3962.], 2007[Rekik, W., Naili, H., Mhiri, T. & Bataille, T. (2007). J. Chem. Crystallogr. 37, 149-155.]).

[Scheme 1]

Experimental

Crystal data
  • (C6H8N4)[Mn(H2O)6](SO4)2

  • Mr = 491.34

  • Monoclinic, P 21 /c

  • a = 6.0625 (7) Å

  • b = 11.606 (2) Å

  • c = 12.218 (2) Å

  • β = 91.65 (1)°

  • V = 859.3 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.09 mm−1

  • T = 100 (2) K

  • 0.4 × 0.3 × 0.2 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick,1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.686, Tmax = 0.800

  • 9389 measured reflections

  • 1954 independent reflections

  • 1897 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.066

  • S = 1.06

  • 1954 reflections

  • 142 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.65 e Å−3

Table 1
Selected bond lengths (Å)

Mn1—O6 2.1335 (10)
Mn1—O7 2.1856 (10)
Mn1—O5 2.2218 (10)
Symmetry code: (i) -x, -y+2, -z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O3ii 0.88 1.93 2.7699 (15) 159
N1—H1A⋯O2ii 0.88 2.45 3.0994 (15) 131
N2—H2A⋯O3iii 0.88 1.92 2.7562 (16) 159
O5—H5A⋯O2 0.843 (14) 1.917 (15) 2.7600 (15) 176.8 (18)
O5—H5B⋯O3iv 0.813 (14) 2.088 (15) 2.8638 (15) 159.7 (17)
O6—H6A⋯O4v 0.839 (14) 1.908 (15) 2.7402 (15) 171.2 (18)
O6—H6B⋯O1vi 0.846 (14) 1.847 (15) 2.6904 (14) 174.2 (18)
O7—H7A⋯O4vii 0.851 (14) 1.888 (15) 2.7298 (15) 169.5 (18)
O7—H7B⋯O2v 0.846 (14) 1.892 (14) 2.7266 (14) 169.0 (17)
Symmetry codes: (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) x-1, y, z; (v) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) -x+1, -y+1, -z; (vii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The syntheses, structural studies and thermal behaviour of similar complexes with piperazinium, (C4H12N2)2+, and 1,4-diaza-bicyclo[2.2.2]octandiium, (C6H14N2)2+, cations have been reported (Rekik et al., 2006, 2007).

In the crystal structure of the title compound (Fig. 1; Table 1), the (C6H8N4)2+, [Mn(H2O)6]2+ and (SO4)2- ions are connected by N—H···O and O—H···O hydrogen bonds (Table 2), with the 2,2'-biimidazolium dications in the supramolecular cavities formed by the metal–sulfate framework (Fig. 2). The corresponding structures of some first row transition metal MII sulfates (M = Mn, Ni, Fe and Cu) templated with piperazinium display similar three-dimensional hydrogen-bonded networks (Rekik, Naili, Bataille et al., 2006). In particular, the structures of the (C4H12N2)2+[M(H2O)6]2+(SO4)22- (M = Mn or Ni) compounds contain channels (running parallel to the c-axis in those cases), which are defined by a square arrangement of [M(H2O)6]2+ cations and which contain the organic dications, mirroring the channels seen in the title compound (Fig. 2).

Related literature top

For the syntheses, structural studies and thermal behaviour of related compounds, see: Rekik et al. (2006, 2007).

Experimental top

The title compound was obtained unintentionally as the product of an attempted synthesis of a hydrogen-bonded salt of the tetrachloromanganate(II) anion and the biimidazolium cation, using slow evaporation of a water–acetonitrile solution (1:1 v/v) of equimolar amounts of bis(tetrabutylammonium) tetrachloromanganate(II) and 2,2'-biimidazolium sulfate at room temperature.

Refinement top

H atoms bonded to O atoms were located in a difference map and refined with distance restraints of O—H = 0.84 (2) Å and with Uiso(H) = 1.2Ueq(O). Other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 and N—H = 0.88 Å, and with Uiso(H) = 1.2Ueq(C, N).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) -x, 2-y, -z; (vi) 1-x, 1-y, -z.]
[Figure 2] Fig. 2. Packing diagram for the title compound viewed along the a-axis.
2,2'-Biimidazolium hexaaquamanganese(II) bis(sulfate) top
Crystal data top
(C6H8N4)[Mn(H2O)6](SO4)2F(000) = 506
Mr = 491.34Dx = 1.899 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7442 reflections
a = 6.0625 (7) Åθ = 2.4–27.5°
b = 11.606 (2) ŵ = 1.09 mm1
c = 12.218 (2) ÅT = 100 K
β = 91.65 (1)°Block, colourless
V = 859.3 (2) Å30.4 × 0.3 × 0.2 mm
Z = 2
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1954 independent reflections
Radiation source: fine-focus sealed tube1897 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ϕ and ω scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick,1996)
h = 77
Tmin = 0.686, Tmax = 0.800k = 1515
9389 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.042P)2 + 0.4497P]
where P = (Fo2 + 2Fc2)/3
1954 reflections(Δ/σ)max < 0.001
142 parametersΔρmax = 0.29 e Å3
6 restraintsΔρmin = 0.65 e Å3
Crystal data top
(C6H8N4)[Mn(H2O)6](SO4)2V = 859.3 (2) Å3
Mr = 491.34Z = 2
Monoclinic, P21/cMo Kα radiation
a = 6.0625 (7) ŵ = 1.09 mm1
b = 11.606 (2) ÅT = 100 K
c = 12.218 (2) Å0.4 × 0.3 × 0.2 mm
β = 91.65 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1954 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick,1996)
1897 reflections with I > 2σ(I)
Tmin = 0.686, Tmax = 0.800Rint = 0.018
9389 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0236 restraints
wR(F2) = 0.066H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.29 e Å3
1954 reflectionsΔρmin = 0.65 e Å3
142 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.50000.50000.00000.00892 (9)
S10.87954 (5)0.76694 (3)0.24181 (2)0.00829 (10)
N10.20621 (19)1.00486 (9)0.11407 (9)0.0107 (2)
H1A0.16291.05840.15970.013*
N20.21706 (17)0.89187 (9)0.02676 (9)0.0105 (2)
H2A0.18250.85850.08960.013*
C10.3926 (2)0.93818 (11)0.12742 (11)0.0125 (2)
H1B0.49690.94130.18690.015*
C20.3988 (2)0.86702 (11)0.03924 (11)0.0124 (2)
H2B0.50820.81060.02570.015*
C30.1021 (2)0.97533 (11)0.02099 (10)0.0098 (2)
O10.87996 (15)0.78300 (8)0.12285 (7)0.0128 (2)
O20.65505 (15)0.73605 (8)0.27723 (8)0.0126 (2)
O31.02939 (15)0.66897 (8)0.27336 (7)0.01179 (19)
O40.95582 (15)0.87250 (8)0.29863 (8)0.01210 (19)
O50.39485 (16)0.59047 (8)0.15004 (8)0.0137 (2)
O60.19308 (16)0.40995 (8)0.00527 (8)0.0135 (2)
O70.63321 (15)0.36233 (8)0.10452 (8)0.01286 (19)
H5A0.474 (3)0.6368 (14)0.1868 (14)0.015*
H6A0.134 (3)0.4002 (15)0.0553 (13)0.015*
H7A0.753 (3)0.3688 (15)0.1418 (14)0.015*
H5B0.273 (2)0.6050 (15)0.1724 (14)0.015*
H6B0.162 (3)0.3514 (14)0.0441 (14)0.015*
H7B0.548 (3)0.3290 (15)0.1482 (13)0.015*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.00931 (15)0.00906 (15)0.00839 (15)0.00039 (9)0.00042 (10)0.00021 (9)
S10.00802 (16)0.00845 (16)0.00839 (17)0.00010 (10)0.00033 (11)0.00019 (10)
N10.0120 (5)0.0100 (5)0.0103 (5)0.0002 (4)0.0001 (4)0.0003 (4)
N20.0109 (5)0.0105 (5)0.0102 (5)0.0002 (4)0.0007 (4)0.0012 (4)
C10.0128 (6)0.0120 (6)0.0127 (6)0.0003 (4)0.0010 (4)0.0025 (5)
C20.0112 (6)0.0119 (6)0.0141 (6)0.0008 (4)0.0006 (4)0.0019 (5)
C30.0103 (6)0.0089 (5)0.0104 (6)0.0016 (5)0.0015 (4)0.0009 (4)
O10.0167 (5)0.0125 (4)0.0090 (4)0.0011 (3)0.0005 (3)0.0010 (3)
O20.0088 (4)0.0139 (4)0.0150 (5)0.0014 (3)0.0021 (3)0.0016 (3)
O30.0116 (4)0.0115 (4)0.0123 (4)0.0028 (3)0.0006 (3)0.0016 (3)
O40.0124 (4)0.0110 (4)0.0129 (4)0.0018 (3)0.0009 (3)0.0027 (3)
O50.0106 (4)0.0166 (5)0.0141 (5)0.0010 (4)0.0026 (3)0.0052 (4)
O60.0139 (4)0.0152 (5)0.0116 (5)0.0036 (4)0.0027 (3)0.0025 (4)
O70.0106 (4)0.0145 (5)0.0134 (5)0.0004 (3)0.0002 (3)0.0035 (3)
Geometric parameters (Å, º) top
Mn1—O62.1335 (10)N2—C31.3371 (16)
Mn1—O6i2.1335 (10)N2—C21.3771 (17)
Mn1—O7i2.1856 (10)N2—H2A0.8800
Mn1—O72.1856 (10)C1—C21.3589 (19)
Mn1—O52.2218 (10)C1—H1B0.9500
Mn1—O5i2.2218 (10)C2—H2B0.9500
S1—O11.4653 (10)C3—C3ii1.445 (2)
S1—O41.4759 (10)O5—H5A0.843 (14)
S1—O21.4839 (10)O5—H5B0.813 (14)
S1—O21.4839 (10)O6—H6A0.839 (14)
S1—O31.4989 (9)O6—H6B0.846 (14)
N1—C31.3296 (17)O7—H7A0.851 (14)
N1—C11.3754 (17)O7—H7B0.846 (14)
N1—H1A0.8800
O6—Mn1—O6i180.0C3—N1—C1108.94 (11)
O6—Mn1—O7i91.90 (4)C3—N1—H1A125.5
O6i—Mn1—O7i88.10 (4)C1—N1—H1A125.5
O6—Mn1—O788.10 (4)C3—N2—C2108.33 (11)
O6i—Mn1—O791.90 (4)C3—N2—H2A125.8
O7i—Mn1—O7180.0C2—N2—H2A125.8
O6—Mn1—O589.18 (4)C2—C1—N1106.82 (11)
O6i—Mn1—O590.82 (4)C2—C1—H1B126.6
O7i—Mn1—O591.53 (4)N1—C1—H1B126.6
O7—Mn1—O588.47 (4)C1—C2—N2107.28 (11)
O6—Mn1—O5i90.82 (4)C1—C2—H2B126.4
O6i—Mn1—O5i89.18 (4)N2—C2—H2B126.4
O7i—Mn1—O5i88.47 (4)N1—C3—N2108.63 (11)
O7—Mn1—O5i91.53 (4)N1—C3—C3ii125.62 (15)
O5—Mn1—O5i180.0N2—C3—C3ii125.75 (15)
O1—S1—O4110.58 (6)Mn1—O5—H5A124.6 (12)
O1—S1—O2110.35 (6)Mn1—O5—H5B131.4 (13)
O4—S1—O2109.94 (6)H5A—O5—H5B101.5 (17)
O1—S1—O2110.35 (6)Mn1—O6—H6A115.7 (12)
O4—S1—O2109.94 (6)Mn1—O6—H6B126.2 (12)
O1—S1—O3109.47 (6)H6A—O6—H6B107.0 (17)
O4—S1—O3109.23 (6)Mn1—O7—H7A123.0 (12)
O2—S1—O3107.21 (6)Mn1—O7—H7B118.8 (12)
O2—S1—O3107.21 (6)H7A—O7—H7B103.3 (17)
C3—N1—C1—C20.07 (15)C1—N1—C3—C3ii179.08 (15)
N1—C1—C2—N20.36 (14)C2—N2—C3—N10.71 (14)
C3—N2—C2—C10.66 (14)C2—N2—C3—C3ii178.85 (15)
C1—N1—C3—N20.48 (14)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3iii0.881.932.7699 (15)159
N1—H1A···O2iii0.882.453.0994 (15)131
N2—H2A···O3iv0.881.922.7562 (16)159
O5—H5A···O20.84 (1)1.92 (2)2.7600 (15)177 (2)
O5—H5B···O3v0.81 (1)2.09 (2)2.8638 (15)160 (2)
O6—H6A···O4vi0.84 (1)1.91 (2)2.7402 (15)171 (2)
O6—H6B···O1i0.85 (1)1.85 (2)2.6904 (14)174 (2)
O7—H7A···O4vii0.85 (1)1.89 (2)2.7298 (15)170 (2)
O7—H7B···O2vi0.85 (1)1.89 (1)2.7266 (14)169 (2)
Symmetry codes: (i) x+1, y+1, z; (iii) x+1, y+1/2, z+1/2; (iv) x1, y+3/2, z1/2; (v) x1, y, z; (vi) x+1, y1/2, z+1/2; (vii) x+2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula(C6H8N4)[Mn(H2O)6](SO4)2
Mr491.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)6.0625 (7), 11.606 (2), 12.218 (2)
β (°) 91.65 (1)
V3)859.3 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.09
Crystal size (mm)0.4 × 0.3 × 0.2
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick,1996)
Tmin, Tmax0.686, 0.800
No. of measured, independent and
observed [I > 2σ(I)] reflections
9389, 1954, 1897
Rint0.018
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.066, 1.06
No. of reflections1954
No. of parameters142
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.65

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Mn1—O62.1335 (10)Mn1—O52.2218 (10)
Mn1—O72.1856 (10)C3—C3i1.445 (2)
Symmetry code: (i) x, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3ii0.881.932.7699 (15)159
N1—H1A···O2ii0.882.453.0994 (15)131
N2—H2A···O3iii0.881.922.7562 (16)159
O5—H5A···O20.843 (14)1.917 (15)2.7600 (15)176.8 (18)
O5—H5B···O3iv0.813 (14)2.088 (15)2.8638 (15)159.7 (17)
O6—H6A···O4v0.839 (14)1.908 (15)2.7402 (15)171.2 (18)
O6—H6B···O1vi0.846 (14)1.847 (15)2.6904 (14)174.2 (18)
O7—H7A···O4vii0.851 (14)1.888 (15)2.7298 (15)169.5 (18)
O7—H7B···O2v0.846 (14)1.892 (14)2.7266 (14)169.0 (17)
Symmetry codes: (ii) x+1, y+1/2, z+1/2; (iii) x1, y+3/2, z1/2; (iv) x1, y, z; (v) x+1, y1/2, z+1/2; (vi) x+1, y+1, z; (vii) x+2, y1/2, z+1/2.
 

Acknowledgements

MAK thanks Bayero University, Kano, Nigeria, for funding.

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationRekik, W., Naili, H., Bataille, T., Roisnel, T. & Mhiri, T. (2006). Inorg. Chim. Acta, 359, 3954–3962.  Web of Science CSD CrossRef CAS Google Scholar
First citationRekik, W., Naili, H., Mhiri, T. & Bataille, T. (2007). J. Chem. Crystallogr. 37, 149–155.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds